
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

90

Modeling For Runtime Locality Optimizations of Distributed Java

Applications Using Dynamic Localization Algorithm

Daya Shankar Verma
1
, Abhay Kumar

2
, Amarto Chakrabarty

3
, Haider Banka

4
, Amrita Priyam

5

Information Technology Department, Government of Jharkhand
1

Assistant Professor, Dept. of Computer Science, University Polytechnic, BIT Mesra, Ranchi
2

Manager State Projects, UIDAI, Government of India
3

Assistant Professor, Dept. of Computer Science and Engineering, ISM, Dhanbad
4

Associate Professor, Dept. of Computer Science, BIT Lalpur Extn., Ranchi
5

Abstract

In distributed java environments the locality of

objects plays a crucial role in determining the

performance, scalability and stability of the overall

system. A manual distribution of objects has several

drawbacks and requires a series of assumptions

which may not be applicable as the system scales.

We introduce and demonstrate how a Dynamic

Localization Algorithm can be used to place objects

in different Java Virtual Machines based on the

processing and communication times. Using the

metrics obtained by the Locality Optimization

Algorithm, we have designed a placement strategy

for objects and migrated them to their optimal Java

Virtual Machine. For simplicity, we use the problem

statements of Matrix Multiplication and show how a

repeated execution dynamically selects the optimal

Java Virtual Machine. We have used Java Party

runtime environment to demonstrate the algorithm.

Keywords

JVM, Java Party, Dynamic Localization Algorithm, DOC.

1. Introduction

Distributed system provides a single coherent

environment of computers and software to

accommodate remote resource sharing. Depending on

the organization of processes, distributed system can

be classified into two models: client-server and peer-

to-peer. Most distributed systems are based on the

client-server model.[1][2][3]

Replicating objects from remote servers to client

machines for local executions reduces user response

times. Replication also improves system scalability.

Moreover, replication enhances the service

availability as the clients are able to request services

from locally valid replicas even through network

connectivity is disrupted.[3][4][8][11]

JavaParty is another companion of Java in this field.

JavaParty allows easy porting of multi-threaded Java

programs to distributed environments such as

clusters. JavaParty extends the capabilities of Java to

distributed computing environments to support

multiple address space. [7][12][13] All language

extensions are automatically transformed back to

pure Java. JavaParty code is transformed into regular

Java code plus RMI hooks. The resulting RMI

portions are fed into the RMI compiler to generate

stubs and skeletons. This approach maintains the Java

object semantics such that the programmer can use

remote objects just like normal Java

Objects.[5][6][9][10].

2. Literature Review

Object Replication and Migration can be done

randomly or based on a strategy. It becomes very

important to have a placement strategy with which

the objects would be replicated, migrated or

created.[2][3][4] Solely distributing objects and

threads over virtual machines is not sufficient for

achieving performance gains. Until, JavaParty

provides a mechanism to create remote objects on

specific nodes of a cluster environment. Such a

manual approach has several disadvantages. First, the

object distribution is dependent on the specific

topology for which the program is compiled. The

distribution strategy must be adapted to each target

platform. Second, manually specifying the location of

every single object creation is tedious. Third, the

optimal placement of objects often cannot be

determined statically for dynamic applications where

the optimal location of objects changes at

runtime.[1][7][8][9] The work at hand focuses on the

automatic generation of a distribution strategy for

remote objects. The generation is based on runtime

information of the distributed system. Even if the

initial object distribution generated by JavaParty is

not optimal, the locality of the application is

optimized at runtime.[10][11][12][13]

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

91

3. Proposed Algorithm

Locality Optimization Algorithm

Locality Decision in parallel object-oriented

languages can be grouped in three categories:

 Let the programmer specify placement and

migration explicitly by means of

annotations,

 Static object distribution where the compiler

tries to predict the best node for a new

object, and

 Dynamic object distribution based on a

runtime system that keeps track of the call

graph.

We discussed the three modes with respect to

JavaParty as follows:

Manual Object Distribution

The node of the object to be allocated with the tag

@at n. The following code snippet allocates an object

of remote class R on the distributed environment.

import jp.lang.DistributedRuntime;

public void manualDistribution()

 {

 int noOfRegisteredJVMs =

DistributedRuntime.getMachineCnt();

 for (int n = 0; n < noOfRegisteredJVMs; n++)

 {

 /** @at n */

 SomeRemoteObject object = new

SomeRemoteObject();}}

In the above code snippet, the annotation /** @ at n

*/ makes sure that the Object formed by the statement

SomeRemoteObject object = new

SomeRemoteObject();

Gets created in the JVM registered by the ID n

Manual Object distribution assumes that the

programmer has the idea where the object should

execute.

Static object distribution

Although a Java thread cannot migrate, the control

flow (called activity in the following) can: when a

method of a remote object is invoked, the activity

conceptually leaves the JVM of the caller and is

continued at the callee’s JVM where it competes with

other activities. Due to time slicing and blocking,

competing activities on one JVM decrease the total

parallelism. Additional costs are introduced by the

remote method invocation itself because of

communication latency and bandwidth limitations.

Based on a static type analysis, estimates for two

values are derived:

 work(t, a) describes the computing time that

activity t spends on methods of object a, and

 cost(t, a) describes the communication time

that would be necessary if t and a are not located in

the same address space.

Through the placement of object a, the computing

time of that activity t should be maximized in which

address space a is created. At the same time, the sum

of communication cost that is required for those

activities ti assigned to remote virtual machines

should be minimized.

We assume an initial setting where all objects are

located in a single address space with a single

processor such that all method calls are local. Each

object a can be mapped to an activity t in which

address space it should be placed:

- ∑ ti≠t cost (ti

,a))

Since usually more activities are used than virtual

machines are available, several activities must share a

virtual machine. The parallelization win of each

activity can be estimated by mapping each object to

its optimal activity. The parallelization win is

computed by the sum of work (t, a) for objects a

which reside in the address space of activity t minus

the sum of cost (t, b) for objects b that are placed

remotely.

The sum of work(t, a) represents the computing time

that activity t spends in its own address space. This

work is done in parallel to other activities if no

synchronization mechanisms are used. The time that

is spent for communication with other address spaces

is represented by the sum of cost(t, b) for all objects b

that are not assigned to activity t. Note that we charge

the cost of a remote call to the activity that invoked

the remote method, not to the activity that actually

executes the method call. Activities are assigned to

the available virtual machines in decreasing order of

their parallelization wins until a single activity has

been scheduled to each virtual machine. For each

remaining activity, a new parallelization win is

computed that accounts for the potential co-location

with other activities. The activity is assigned to that

group of activities with the highest combined

parallelization win. This process is repeated until all

activities are scheduled to their optimal virtual

machine. The result of the distribution analysis is a

mapping of each remote object to the virtual machine

on which it should be placed.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

92

Dynamic Object Distribution

The static approach of Object distribution has two

disadvantages:

 There is no knowledge about future call

graphs and invocation frequencies. This

problem is inherent to dynamic approaches

but can be softened by using heuristics to

predict future behaviour.

 Creation of Objects that cannot migrate

often results in a broad redistribution of

other objects. In homogeneous clustered

environments this can be reduced by

avoiding cyclic redistributions of remote

objects.

The dynamic approach has an advantage that rather

than estimating the value or work and cost they can

be measured. Cost and Work needs to be measured in

units of time. From Pentium processor onwards a

RDTSC (Read Time Stamp Counter) method of

measuring cycles is available. Also, with the Java

Technology advancement the relationship of

underlying hardware to the execution and the runtime

environment has been made obsolete. Our cluster

would essentially be a collection of Java Virtual

Machines and not Physical machines. To compare the

time for two or more Java Virtual machines, we

would make use of API’s that can convert clock units

to time units. The time in milliseconds can be

retrieved using the System.currentTimeInMillis().

To avoid measurement errors because of

concurrency, we assume that the workstations of the

cluster are used exclusively for JavaParty. Thus, we

assume that those interrupts balance over time such

that cycle counting actually reflects the average

execution time. RMI uses a standard mechanism for

communicating with remote objects – stubs and

skeletons. We want to measure work(t, a) and cost(t,

a) in order to apply the distribution algorithm. In the

context of stubs and skeletons, work corresponds to

the time that the actual method implementation takes

and cost corresponds to the time that is required for

carrying out the remote call, i.e. marshaling and

transmitting parameters and result. For remote object

r, a stub is instantiated on each node while only one

skeleton is instantiated on the node where the

implementation of r resides. That is, there are n stubs

and one skeleton for each remote object. Basically,

our approach is to measure the communication time

of a remote call in the stub and the execution time of

the implementation in the skeleton by using the

RDTSC instruction. We store aggregated work and

cost values in the skeleton.

Exponential Moving Average

An Exponential Moving Average (EMA), sometimes

also called an Exponentially Weighted Moving

Average (EWMA), applies weighting factors which

decrease exponentially. The Figure 1 at below shows

an example of the weight decrease.

Figure 1: The weight decrease

The degree of weighing decrease is expressed as a

constant smoothing factor k, a number between 0 and

1. k may be expressed as a percentage, so a

smoothing factor of 10% is equivalent to k = 0.1. A

higher k discounts older observations faster.

Alternatively, k may be expressed in terms of N time

periods, where:

Smoothing Factor (k)= 2 / (N +1)

The observation at a time period t is designated Yt,

and the value of the EMA at any time period t is

designated St. S1 is undefined. S2 may be initialized

in a number of different ways, most commonly by

setting S2 to Y1, though other techniques exist, such

as setting S2 to an average of the first four or five

observations. The prominence of the S2

initialization's effect on the resultant moving average

depends on k; smaller k values make the choice of S2

relatively more important than larger k values, since a

higher k discounts older observations faster. The

formula for calculating the EMA at time periods t > 2

is : St = k * Yt-1 + (1-k) * St-1

This formula can also be expressed in technical

analysis terms as follows, showing how the EMA

steps towards the latest data point, but only by a

proportion of the difference (each time):

EMA(N)= EMA(N-1) + k [Value(N) – EMA(N-1)]

Calculation of Costs and Averages

We have used the Moving Average formula for

determination of Average Cost and Work as:

Average CostJVM(X,N) = Average CostJVM(X,N-1) + k

[CostJVM(X) – Average CostJVM(X,N-1)]

and Average WorkJVM(X,N) = Average WorkJVM(X,N-1) +

k [WorkJVM(X) – Average WorkJVM(X,N-1)]

Where

Smoothing factor (k)= 2 / [NoOfJVM(O) + 1]

and

Average CostJVM(X,N) = Average Cost for JVM with

ID X after Executing N objects

Average CostJVM(X,N-1) = Average Cost for JVM with

ID X after Executing -1 objects

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

93

Average CostJVM(X,N) = Average Cost for JVM with

ID X after Executing N objects

Average CostJVM(X,N-1) = Average Cost for JVM with

ID X after Executing -1 objects

NoOfJVM(O)= Number of Registered (and Willing)

JVM’s for Object Type O

CostJVM(X) = Cost of Executing Latest Network Call

on JVM with ID X

WorkJVM(X) = Work effort in Executing method on

JVM with ID X

We need to understand the relationship:

CostJVM(X) = CommJVM(X) + WorkJVM(X)

Where

CommJVM(X) = Communication Time for Executing

Object O on JVM X

We have used the above concepts and implemented

the same using JavaParty.

Expected Solution

As soon as the Program starts, it should show up the

number of registered Java Virtual Machines in a

tabular form. The Tablel 1 shows the metrics based

on the combination of Problem statement and Java

Virtual Machine Number.

Table 1: Metrics on the combination of Problem

statement and JVM Number

J

V

M

I

D

JVM/

Proces

s

No

Of

Uni

ts

Rece

nt

Cost

Rece

nt

Wor

k

Aver

age

Cost

Average

Work

0

Matrix

Multipl

ier-

JVM#0

0

0.0

0.0

0.0

0.0

1

Matrix

Multipl

ier-

JVM#1

0

0.0

0.0

0.0

0.0

As soon as one Object of Matrix Multiplier gets

introduced by clicking on Matrix Multiplication

method the Table 2 shows the values of recent cost

and work incurred while executing it.

Table 2: The values of recent cost and work

J

V

M

I

JVM/

Proce

ss

N

o

O

f

Rece

nt

Cost

Recen

t

Work

Avera

ge

Cost

Avera

ge

Work

D U

ni

ts

0

Matrix

Multip

lier-

JVM#

0

1

235.0

172.0

235.0

172.0

1

Matrix

Multip

lier-

JVM#

1

0

0.0

0.0

0.0

0.0

When the Matrix Multiplier gets pressed again, the

next object should execute in JVM 1 as it has never

been used. This is how the Table 3 should look.

Table 3: Execution in JVM #1

J

V

M

I

D

JVM/

Proce

ss

N

o

Of

U

nit

s

Rece

nt

Cost

Rece

nt

Work

Avera

ge

Cost

Average

Work

0

Matrix

Multip

lier-

JVM#

0

1

235.0

172.0

235.0

172.0

1

Matrix

Multip

lier-

JVM#

1

1

203

156

203

156

There should be another Table 4 which lists how

many instances have been created and which Java

Virtual Machine are being used.

Table 4: Creation instances in used JVM

I

D

Nam

e

JVM Start

Time

End

Time

Cost Work

1

Matr

ix

Mult

iplier

Matri

x

Multi

plier-

JVM

#0

Sun

Jul 12

00:45:

50 IST

2012

Sun

Jul

12

00:45

:50

IST

2012

235.0

172.0

2

Matr

ix

Mult

iplier

Matri

x

Multi

plier-

JVM

Sun

Jul 12

00:47:

20 IST

2012

Sun

Jul

12

00:47

:20

203

156

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

94

#1 IST

2012

As per this Table 4 the second injection of object

resulted in its execution in JVM which got the benefit

of doubt that it could be the more efficient one. Now,

if a distribution mechanism is not available the third

object could execute anywhere. On the other hand if

a distribution mechanism is present, it should use the

work and cost metrics to decide where will the code

execute. Based on the above data, the cost of using

JVM#0 is more than the cost of using JVM#1. This

means based on Locality Optimization Techniques

(LOT) discussed so far, the next object would be

optimally placed in JVM#1 and not JVM#0. On

clicking the injection button (Matrix Multiplier)

again, the JVM Table 5 changes as follows:

Table 5: Object Optimally placed in JVM#1

J

V

M

I

D

JVM/

Proce

ss

No Of

Units

Rece

nt

Cost

Rec

ent

Wo

rk

Averag

e Cost

Avera

ge

Work

0

Matri

x

Multi

plier-

JVM#

0

1

235.0

172.

0

235.0

172.0

1

Matri

x

Multi

plier-

JVM#

1

2

172

156

182.33

156

and the Table 6 which lists what instance executed

and where should be placed.

Table 6: The average cost of JVM#1

I

D

Name JV

M

Start

Time

End Time Cost Work

1 Matrix

Multipli

er

Mat

rix

Mul

tipli

er-

JV

M#

0

Sun

Jul

12

00:45

:50

IST

2012

Sun Jul 12

00:45:50

IST 2012

235.0

172.0

2 Matrix

Multipli

er

Mat

rix

Mul

tipli

er-

JV

M#

1

Sun

Jul

12

00:47

:20

IST

2012

Sun Jul 12

00:47:20

IST 2012

203

156

3

Matrix

Multipli

er

Mat

rix

Mul

tipli

er-

JV

M#

1

Sun

Jul

12

00:52

:30

IST

2012

Sun Jul 12

00:52:30

 IST 2012

172

156

Since the average cost of JVM#1 is still less, the 4
th

object should also be executed in the same Java

Virtual Machine. The above algorithm depicted as

Figure 2.

Figure 2: Flow Chart

4. Result Analysis

The system works on a Dynamic Localization

scheme. Initially each of the three JVM’s got the

chance to execute objects. When the fourth object

came in, average of JVM 2 was least and it got the

chance to execute. As long as the Moving average of

JVM2 does not go more than the average of JVM 1,

JVM 2 will be the optimal choice and would get the

chance to execute Objects.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

95

Figure 3: Result Analysis

This Demo can be run again and again for the two

family of objects and readings could be verified and

put in a graphical form as Figure 3. The system will

always use the most optimal Java Virtual machine to

execute objects.

5. Conclusion and Future Work

Using the Java Party Distributed Runtime

Environment we are able to demonstrate our

Dynamic Localization of Distributed Objects. We are

able to show how dynamic distribution helps in

deciding the best option and helps us to design

systems which are much more powerful and much

more intelligent. This logic does not include the

dimension of concurrency i.e. even of the average of

a JVM is very good if objects come in at a very high

rate then the principles of parallel processing should

supersede and objects should be moved to separate

JVM’s. This work assumes that the incoming objects

are of same atomic workload. However, this may not

be true every time. There could be cases when the

work could be of same type but different computing

overheads. The Locality Optimization Logics could

be improved to foresee the possible overhead and

then determine the optimal machine. For Objects of

varying sizes and overheads the concept of Moving

Average will not hold good. This logic could be

improved by taking into consideration the health of

the Java Virtual Machine as well. Currently if the

memory of the JVM is being filled at a very fast rate

the logic does not take into account that the JVM

could actually crash very soon.

References

[1] M. Factor, A. Schuster, and K. Shagin, “A

distributed runtime for Java: yesterday and

today”, Parallel and Distributed Processing

Symposium, 2004.

[2] W. Zhu, C. –L. Wang, and F.C.M. Lau,

“JESSICA2: A Distributed Java Virtual Machine

with Transparent Thread Migration Support”,

IEEE Fourth International Conference on Cluster

Computing, Chicago, USA, September 2002.

[3] Sun Microsystems, “Java Remote Method

InvocationSpecification”,2003.http://java.sun.co

m/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html.

[4] Sun Microsystems, “Java Native Interface”,

2003.

http://java.sun.com/j2se/1.4.2/docs/guide/jni.

[5] Intel Corp, “Using the RDTSC Instruction for

PerformanceMonitoring”,1997.http://developer.in

tel.com/drg/pentiumII/appnotes/RDTSCPM1.HT

M.

[6] R. Veldema, R. A. F. Bhoedjang, and H. E. Bal,

“Jackal, a compiler based implementation of java

for clusters of workstations”, Proceedings of

PPoPP, 2001.

[7] Abhay Kumar, D.S.Verma, V. Bhattacherjee et.

al., “Modeling using K-means clustering

algorithm” Recent Advances in Information

Technology (RAIT-2012), IEEExplore

ISBN: 978-1-4577-0694-3, Page number: 554 –

558, 15-17 March 2012.

[8] G. Antoniu, L. Bouge, P. Hatcher, M. MacBeth,

K McGuigan, and R. Namyst, “The Hyperion

system: Compiling multithreaded Java bytecode

for distributed execution”, Parallel Computing,

2001.

[9] Y. Aridor, M. Factor, and A. Teperman, “Cjvm: a

single system image of a JVM on a cluster”,

Parallel Processing, 1999, pp. 4-11.

[10] T. Fahringer, “JavaSymphony: a system for

development of locality-oriented distributed and

parallel Java applications”, Cluster

Computing,2000.

[11] V. Felea, R. Olejnik, and B. Toursel, “ADAJ:a

Java Distributed Environment for Easy

Programming Design and Efficient Execution”,

Shedae Informaticae, UJ Press, Krakow, 2004,

pp. 9-36.

[12] J.Maassen and R.V. Nieuwpoort, “Fast parallel

Java”, Master’s thesis, Dept. of Computer

Science, Vrije Universiteit, Amsterdam, August

1998.

[13] M. Philippsen and M. Zenger, “JavaParty

Transparent Remote Objects in Java”,

Concurrency: Practice and Experience, 1997.

Daya Shankar Verma, M.Tech(CS),

MCA, MCSE, born in India, having 10+

years of experience in academic and

software industry, completed M.Tech in

Computer Science from BIT Mesra,

Ranchi and Microsoft Certified Systems

Engineer (MCSE) from Microsoft, USA and presently

working as Scientific Officer (Programmer) in Information

Technology Department, Government of Jharkhand in

India. Published paper "Modeling using K-means clustering

algorithm" in IEEE xplore. Current research focuses on

Data Mining.

Author’s

Photo

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/jni
http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM
http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM
http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kumar,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Verma,%20D.S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bhattacherjee,%20V..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6188804
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6188804

