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Abstract  
 

In distributed java environments the locality of 

objects plays a crucial role in determining the 

performance, scalability and stability of the overall 

system. A manual distribution of objects has several 

drawbacks and requires a series of assumptions 

which may not be applicable as the system scales. 

We introduce and demonstrate how a Dynamic 

Localization Algorithm can be used to place objects 

in different Java Virtual Machines based on the 

processing and communication times. Using the 

metrics obtained by the Locality Optimization 

Algorithm, we have designed a placement strategy 

for objects and migrated them to their optimal Java 

Virtual Machine. For simplicity, we use the problem 

statements of Matrix Multiplication and show how a 

repeated execution dynamically selects the optimal 

Java Virtual Machine. We have used Java Party 

runtime environment to demonstrate the algorithm. 
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1. Introduction 
 

Distributed system provides a single coherent 

environment of computers and software to 

accommodate remote resource sharing. Depending on 

the organization of processes, distributed system can 

be classified into two models: client-server and peer-

to-peer. Most distributed systems are based on the 

client-server model.[1][2][3] 

 

Replicating objects from remote servers to client 

machines for local executions reduces user response 

times. Replication also improves system scalability. 

Moreover, replication enhances the service 

availability as the clients are able to request services 

from locally valid replicas even through network 

connectivity is disrupted.[3][4][8][11] 

JavaParty is another companion of Java in this field. 

JavaParty allows easy porting of multi-threaded Java 

programs to distributed environments such as 

clusters. JavaParty extends the capabilities of Java to 

distributed computing environments to support 

multiple address space. [7][12][13] All language 

extensions are automatically transformed back to 

pure Java. JavaParty code is transformed into regular 

Java code plus RMI hooks. The resulting RMI 

portions are fed into the RMI compiler to generate 

stubs and skeletons. This approach maintains the Java 

object semantics such that the programmer can use 

remote objects just like normal Java 

Objects.[5][6][9][10]. 

 

2. Literature Review 
 

Object Replication and Migration can be done 

randomly or based on a strategy. It becomes very 

important to have a placement strategy with which 

the objects would be replicated, migrated or 

created.[2][3][4] Solely distributing objects and 

threads over virtual machines is not sufficient for 

achieving performance gains. Until, JavaParty 

provides a mechanism to create remote objects on 

specific nodes of a cluster environment. Such a 

manual approach has several disadvantages. First, the 

object distribution is dependent on the specific 

topology for which the program is compiled. The 

distribution strategy must be adapted to each target 

platform. Second, manually specifying the location of 

every single object creation is tedious. Third, the 

optimal placement of objects often cannot be 

determined statically for dynamic applications where 

the optimal location of objects changes at 

runtime.[1][7][8][9] The work at hand focuses on the 

automatic generation of a distribution strategy for 

remote objects. The generation is based on runtime 

information of the distributed system. Even if the 

initial object distribution generated by JavaParty is 

not optimal, the locality of the application is 

optimized at runtime.[10][11][12][13] 
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3. Proposed Algorithm 
 

Locality Optimization Algorithm 

Locality Decision in parallel object-oriented 

languages can be grouped in three categories:  

 Let the programmer specify placement and 

migration explicitly by means of 

annotations, 

 Static object distribution where the compiler 

tries to predict the best node for a new 

object, and 

 Dynamic object distribution based on a 

runtime system that keeps track of the call 

graph.  

 

We discussed the three modes with respect to 

JavaParty as follows: 

Manual Object Distribution 

The node of the object to be allocated with the tag 

@at n. The following code snippet allocates an object 

of remote class R on the distributed environment. 

import jp.lang.DistributedRuntime; 

public void manualDistribution()  

 { 

   int noOfRegisteredJVMs = 

DistributedRuntime.getMachineCnt(); 

   for (int n = 0; n < noOfRegisteredJVMs; n++)  

  { 

      /** @at n */ 

      SomeRemoteObject object = new 

SomeRemoteObject();}} 

In the above code snippet, the annotation  /** @ at n 

*/ makes sure that the Object formed by the statement  

SomeRemoteObject  object = new 

SomeRemoteObject(); 

 

Gets created in the JVM registered by the ID n 

Manual Object distribution assumes that the 

programmer has the idea where the object should 

execute.  

 

Static object distribution 

Although a Java thread cannot migrate, the control 

flow (called activity in the following) can: when a 

method of a remote object is invoked, the activity 

conceptually leaves the JVM of the caller and is 

continued at the callee’s JVM where it competes with 

other activities. Due to time slicing and blocking, 

competing activities on one JVM decrease the total 

parallelism. Additional costs are introduced by the 

remote method invocation itself because of 

communication latency and bandwidth limitations. 

Based on a static type analysis, estimates for two 

values are derived:  

 work(t, a) describes the computing time that 

activity t spends on methods of object a, and  

 cost(t, a) describes the communication time 

that would be necessary if t and a are not located in 

the same address space.  

Through the placement of object a, the computing 

time of that activity t should be maximized in which 

address space a is created. At the same time, the sum 

of communication cost that is required for those 

activities ti assigned to remote virtual machines 

should be minimized. 

 

We assume an initial setting where all objects are 

located in a single address space with a single 

processor such that all method calls are local. Each 

object a can be mapped to an activity t in which 

address space it should be placed: 

- ∑ ti≠t  cost (ti 

,a)) 

Since usually more activities are used than virtual 

machines are available, several activities must share a 

virtual machine. The parallelization win of each 

activity can be estimated by mapping each object to 

its optimal activity. The parallelization win is 

computed by the sum of work (t, a) for objects a 

which reside in the address space of activity t minus 

the sum of cost (t, b) for objects b that are placed 

remotely. 

 

The sum of work(t, a) represents the computing time 

that activity t spends in its own address space. This 

work is done in parallel to other activities if no 

synchronization mechanisms are used. The time that 

is spent for communication with other address spaces 

is represented by the sum of cost(t, b) for all objects b 

that are not assigned to activity t. Note that we charge 

the cost of a remote call to the activity that invoked 

the remote method, not to the activity that actually 

executes the method call. Activities are assigned to 

the available virtual machines in decreasing order of 

their parallelization wins until a single activity has 

been scheduled to each virtual machine. For each 

remaining activity, a new parallelization win is 

computed that accounts for the potential co-location 

with other activities. The activity is assigned to that 

group of activities with the highest combined 

parallelization win. This process is repeated until all 

activities are scheduled to their optimal virtual 

machine. The result of the distribution analysis is a 

mapping of each remote object to the virtual machine 

on which it should be placed. 
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Dynamic Object Distribution 

The static approach of Object distribution has two 

disadvantages: 

 There is no knowledge about future call 

graphs and invocation frequencies. This 

problem is inherent to dynamic approaches 

but can be softened by using heuristics to 

predict future behaviour. 

 Creation of Objects that cannot migrate 

often results in a broad redistribution of 

other objects. In homogeneous clustered 

environments this can be reduced by 

avoiding cyclic redistributions of remote 

objects. 

The dynamic approach has an advantage that rather 

than estimating the value or work and cost they can 

be measured. Cost and Work needs to be measured in 

units of time. From Pentium processor onwards a 

RDTSC (Read Time Stamp Counter) method of 

measuring cycles is available. Also, with the Java 

Technology advancement the relationship of 

underlying hardware to the execution and the runtime 

environment has been made obsolete. Our cluster 

would essentially be a collection of Java Virtual 

Machines and not Physical machines. To compare the 

time for two or more Java Virtual machines, we 

would make use of API’s that can convert clock units 

to time units. The time in milliseconds can be 

retrieved using the System.currentTimeInMillis().  

To avoid measurement errors because of 

concurrency, we assume that the workstations of the 

cluster are used exclusively for JavaParty. Thus, we 

assume that those interrupts balance over time such 

that cycle counting actually reflects the average 

execution time. RMI uses a standard mechanism for 

communicating with remote objects – stubs and 

skeletons. We want to measure work(t, a) and cost(t, 

a) in order to apply the distribution algorithm. In the 

context of stubs and skeletons, work corresponds to 

the time that the actual method implementation takes 

and cost corresponds to the time that is required for 

carrying out the remote call, i.e. marshaling and 

transmitting parameters and result. For remote object 

r, a stub is instantiated on each node while only one 

skeleton is instantiated on the node where the 

implementation of r resides. That is, there are n stubs 

and one skeleton for each remote object. Basically, 

our approach is to measure the communication time 

of a remote call in the stub and the execution time of 

the implementation in the skeleton by using the 

RDTSC instruction. We store aggregated work and 

cost values in the skeleton. 

Exponential Moving Average  

An Exponential Moving Average (EMA), sometimes 

also called an Exponentially Weighted Moving 

Average (EWMA), applies weighting factors which 

decrease exponentially. The Figure 1 at below shows 

an example of the weight decrease. 

 

 
 

Figure 1: The weight decrease 

 

The degree of weighing decrease is expressed as a 

constant smoothing factor k, a number between 0 and 

1. k may be expressed as a percentage, so a 

smoothing factor of 10% is equivalent to k = 0.1. A 

higher k discounts older observations faster. 

Alternatively, k may be expressed in terms of N time 

periods, where:   

Smoothing Factor (k)= 2 / (N +1) 

The observation at a time period t is designated Yt, 

and the value of the EMA at any time period t is 

designated St. S1 is undefined. S2 may be initialized 

in a number of different ways, most commonly by 

setting S2 to Y1, though other techniques exist, such 

as setting S2 to an average of the first four or five 

observations. The prominence of the S2 

initialization's effect on the resultant moving average 

depends on k; smaller k values make the choice of S2 

relatively more important than larger k values, since a 

higher k discounts older observations faster. The 

formula for calculating the EMA at time periods t > 2 

is :   St = k * Yt-1 + (1-k) * St-1 

This formula can also be expressed in technical 

analysis terms as follows, showing how the EMA 

steps towards the latest data point, but only by a 

proportion of the difference (each time): 

EMA(N)= EMA(N-1) + k [Value(N) – EMA(N-1)] 

Calculation of Costs and Averages 

We have used the Moving Average formula for 

determination of Average Cost and Work as: 

Average CostJVM(X,N) = Average CostJVM(X,N-1) + k 

[CostJVM(X) – Average CostJVM(X,N-1)] 

and Average WorkJVM(X,N) = Average WorkJVM(X,N-1) + 

k [WorkJVM(X) – Average WorkJVM(X,N-1)] 

Where 

Smoothing factor (k)= 2 / [ NoOfJVM(O) + 1 ] 

and 

Average CostJVM(X,N) =  Average Cost for JVM with 

ID X after Executing N objects 

Average CostJVM(X,N-1) = Average Cost for JVM with 

ID X after Executing -1 objects 



International Journal of Advanced Computer Research (ISSN (print): 2249-7277   ISSN (online): 2277-7970)  

Volume-3 Number-1 Issue-8 March-2013 

93          

 

Average CostJVM(X,N) =  Average Cost for JVM with 

ID X after Executing N objects 

Average CostJVM(X,N-1) = Average Cost for JVM with 

ID X after Executing -1 objects 

NoOfJVM(O)= Number of Registered (and Willing) 

JVM’s for Object Type O 

CostJVM(X) = Cost of Executing Latest Network Call 

on JVM with ID X 

WorkJVM(X) = Work effort in Executing method on 

JVM with ID X 

We need to understand the relationship: 

CostJVM(X) = CommJVM(X) +  WorkJVM(X) 

Where 

CommJVM(X) =  Communication Time for Executing 

Object O on JVM X 

We have used the above concepts and implemented 

the same using JavaParty.   

 

Expected Solution 

As soon as the Program starts, it should show up the 

number of registered Java Virtual Machines in a 

tabular form. The Tablel 1 shows the metrics based 

on the combination of Problem statement and Java 

Virtual Machine Number. 

 

Table 1:  Metrics on the combination of Problem 

statement and JVM Number 

 

J

V

M

 

I

D 

JVM/

Proces

s 

No 

Of 

Uni

ts 

Rece

nt 

Cost 

Rece

nt 

Wor

k 

Aver

age 

Cost 

Average 

Work 

 

0 

Matrix 

Multipl

ier-

JVM#0 

 

0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

 

1 

Matrix 

Multipl

ier-

JVM#1 

 

0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

 

As soon as one Object of Matrix Multiplier gets 

introduced by clicking on Matrix Multiplication 

method the Table 2 shows the values of recent cost 

and work incurred while executing it. 
 

Table 2: The values of recent cost and work  

 

J

V

M 

I

JVM/

Proce

ss 

N

o 

O

f 

Rece

nt 

Cost 

Recen

t 

Work 

Avera

ge 

Cost 

Avera

ge 

Work 

D U

ni

ts 

 

0 

Matrix 

Multip

lier-

JVM#

0 

 

1 

 

235.0 

 

172.0 

 

235.0 

 

172.0 

 

1 

Matrix 

Multip

lier-

JVM#

1 

 

0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

 

When the Matrix Multiplier gets pressed again, the 

next object should execute in JVM 1 as it has never 

been used. This is how the Table 3 should look. 
 

Table 3: Execution in JVM #1 

 

J

V

M 

I

D 

JVM/

Proce

ss 

N

o 

Of 

U

nit

s 

Rece

nt 

Cost 

Rece

nt 

Work 

Avera

ge 

Cost 

Average 

Work 

 

0 

Matrix 

Multip

lier-

JVM#

0 

 

1 

 

235.0 

 

172.0 

 

235.0 

 

172.0 

 

1 

Matrix 

Multip

lier-

JVM#

1 

 

1 

 

203 

 

156 

 

203 

 

156 

 

There should be another Table 4 which lists how 

many instances have been created and which Java 

Virtual Machine are being used. 

 

Table 4: Creation instances in used JVM 

 

I

D 

Nam

e 

JVM Start 

Time 

End 

Time 

Cost Work 

 

1 

Matr

ix 

Mult

iplier 

Matri

x 

Multi

plier-

JVM

#0 

Sun 

Jul 12 

00:45:

50 IST 

2012 

Sun 

Jul 

12 

00:45

:50 

IST 

2012 

 

235.0 

 

172.0 

 

2 

Matr

ix 

Mult

iplier 

Matri

x 

Multi

plier-

JVM

Sun 

Jul 12 

00:47:

20 IST 

2012 

Sun 

Jul 

12 

00:47

:20 

 

203 

 

156 
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#1 IST 

2012 

 

As per this Table 4 the second injection of object 

resulted in its execution in JVM which got the benefit 

of doubt that it could be the more efficient one. Now, 

if a distribution mechanism is not available the third 

object could execute anywhere. On the other hand if 

a distribution mechanism is present, it should use the 

work and cost metrics to decide where will the code 

execute. Based on the above data, the cost of using 

JVM#0 is more than the cost of using JVM#1. This 

means based on Locality Optimization Techniques 

(LOT) discussed so far, the next object would be 

optimally placed in JVM#1 and not JVM#0. On 

clicking the injection button (Matrix Multiplier) 

again, the JVM Table 5 changes as follows: 

 

Table 5: Object Optimally placed in JVM#1 

 

J

V

M 

I

D 

JVM/

Proce

ss 

No Of 

Units 

Rece

nt 

Cost 

Rec

ent 

Wo

rk 

Averag

e Cost 

Avera

ge 

Work 

 

0 

Matri

x 

Multi

plier-

JVM#

0 

 

1 

 

235.0 

 

172.

0 

 

235.0 

 

172.0 

 

1 

Matri

x 

Multi

plier-

JVM#

1 

 

2 

 

172 

 

156 

 

182.33 

 

156 

 

and the Table 6 which lists what instance executed 

and where should be placed. 

 

Table 6: The average cost of JVM#1 

 

I

D 

Name JV

M 

Start 

Time 

End Time Cost Work 

1 Matrix 

Multipli

er 

Mat

rix 

Mul

tipli

er-

JV

M#

0 

Sun 

Jul 

12 

00:45

:50 

IST 

2012 

Sun Jul 12 

00:45:50 

IST 2012 

 

235.0 

 

172.0 

2 Matrix 

Multipli

er 

Mat

rix 

Mul

tipli

er-

JV

M#

1 

Sun 

Jul 

12 

00:47

:20 

IST 

2012 

Sun Jul 12 

00:47:20 

IST 2012 

 

203 

 

156 

 

 

 

 

3 

Matrix 

Multipli

er 

Mat

rix 

Mul

tipli

er-

JV

M#

1 

Sun 

Jul 

12 

00:52

:30 

IST 

2012 

Sun Jul 12 

00:52:30 

 IST 2012 

 

172 

 

156 

 

Since the average cost of JVM#1 is still less, the 4
th

 

object should also be executed in the same Java 

Virtual Machine. The above algorithm depicted as 

Figure 2. 

 
 

Figure 2: Flow Chart 

 

4. Result Analysis 
 

The system works on a Dynamic Localization 

scheme. Initially each of the three JVM’s got the 

chance to execute objects. When the fourth object 

came in, average of JVM 2 was least and it got the 

chance to execute. As long as the Moving average of 

JVM2 does not go more than the average of JVM 1, 

JVM 2 will be the optimal choice and would get the 

chance to execute Objects. 
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Figure 3: Result Analysis 

 

This Demo can be run again and again for the two 

family of objects and readings could be verified and 

put in a graphical form as Figure 3. The system will 

always use the most optimal Java Virtual machine to 

execute objects. 

 

5. Conclusion and Future Work 
 

Using the Java Party Distributed Runtime 

Environment we are able to demonstrate our 

Dynamic Localization of Distributed Objects. We are 

able to show how dynamic distribution helps in 

deciding the best option and helps us to design 

systems which are much more powerful and much 

more intelligent. This logic does not include the 

dimension of concurrency i.e. even of the average of 

a JVM is very good if objects come in at a very high 

rate then the principles of parallel processing should 

supersede and objects should be moved to separate 

JVM’s.  This work assumes that the incoming objects 

are of same atomic workload. However, this may not 

be true every time. There could be cases when the 

work could be of same type but different computing 

overheads. The Locality Optimization Logics could 

be improved to foresee the possible overhead and 

then determine the optimal machine. For Objects of 

varying sizes and overheads the concept of Moving 

Average will not hold good. This logic could be 

improved by taking into consideration the health of 

the Java Virtual Machine as well. Currently if the 

memory of the JVM is being filled at a very fast rate 

the logic does not take into account that the JVM 

could actually crash very soon. 
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