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Abstract  
 

This article presents goal programming (GP) 

procedure for solving Interval-valued multilevel 

programming (MLP) problems by using genetic 

algorithm (GA) in a hierarchical decision making 

and planning situation of an organization. In the 

proposed approach, first the individual best and 

least solutions of the objectives of the decision 

makers (DMs) located at different hierarchical 

levels are determined by using the GA method. 

Then, the target intervals of each of the objectives 

and decision vectors controlled by the upper-level 

DMs are defined in the inexact decision 

environment. Then, in the model formulation, the 

interval valued objectives and control vectors are 

transformed into the conventional form of goal by 

using interval arithmetic technique. In the goal 

achievement function, both the aspects of minsum 

and minmax GP formulations are adopted to 

minimize the lower bounds of the defined regret 

intervals for goal achievement within the specified 

interval from the optimistic point of view of the 

DMs.The potential use of the approach is illustrated 

by a numerical example. 
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1. Introduction and Literature 

Review 
 

MLP is a special field of study in the area of 

mathematical programming (MP) for solving 

decentralized planning problems having multiple 

DMs with different objectives in a large hierarchical 

decision organization. In multilevel programming 

problems (MLPPs) [1], one DM is located at each of 

the different hierarchical levels and each control a 

decision vector and an objective function separately 

in the decision making context. The execution of the 

decision power is sequential from an upper-level to a 

lower-level and each DM tries to optimize his/her 

own benefit paying serious attention to the benefits of 

the others in the decision environment. 

 

It may be mentioned here that most organizations of 

today have multilevel hierarchical decision 

structures.  In a practical decision situation, although 

the execution of the decision powers is sequential, the 

decision of an upper-level DM is often affected by 

the reactions of lower-level DMs due to their 

dissatisfaction with the decision of the upper-level 

DM. As a consequence, most of the hierarchical 

decision organizations frequently face the problem of 

proper distribution of decision powers to DMs for 

overall benefits of the organizations. 

 

Now, in the field of multiobjective decision making 

(MODM), the concept of MLPP for solving 

decentralized planning problems of a large decision 

system was suggested in [2]. Thereafter, during the 

past three decades, various versions of MLPPs as 

well as bilevel programming (BLP) problems, as a 

special case of MLPPs, have widely been studied 

extensively in [3,4,5,6,7] by the pioneer researchers 

in the field from the view point of their potential 

applications of such approaches to different real-life 

hierarchical decentralized problems, viz., firm 

management [8] , economic policy system [9], 

manufacturing [10], and especially for conflict 

resolutions [11]. 

 

Most of the classical approaches for solving 

hierarchical decision problems developed so far in 

the past often lead to the paradox that the decision 

power of a higher level DM is dominated by a lower 

level DM. 

 

However, concerning the hierarchical decision 

structure of a decentralized system, it is generally 

assumed that the DMs cooperative each other to 

reach a minimum level of satisfaction of each of them 
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for smoothing the activities of the organization. In 

such a situation, in order to overcome the 

shortcomings of the classical approaches, the idea of 

fuzzy programming (FP) [12] based on the concept of 

fuzzy set theory [13] has been introduced to solve 

hierarchical decision problems. 

 

But, the main drawback of such approaches is that 

there is a possibility of rejecting the solution again 

and again by the leader and re-evaluation of the 

problem with the elicited membership values of the 

membership functions is repeatedly introduced in the 

solution search process due to conflict in nature of 

the objectives. As a result decision deadlock often 

arises and the problem of proper distribution of 

decision powers is encountered in a decision making 

situation.  

 

To avoid such a computational difficulty, fuzzy goal 

programming (FGP) approach [14] as an extension of 

conventional GP [15] based on the goal satisficing 

philosophy [16], has been studied in [17] for making 

decision with regard to achievement of multiple 

fuzzy goals in uncertain environment. 

 

Now, it may be noted that although FP as well as 

FGP have been successfully implemented to the 

MODM problems, the main difficulty of using such 

approaches is that it may not always be possible for 

the DM to assign the fuzzy aspiration levels to the 

objectives and thereby defining the tolerance ranges 

of goal achievement in highly sensitive decision 

situations. Sometimes, tolerance intervals defined for 

achievement of the fuzzy goals are found not proper 

to arrive at a satisfactory decision. 

 

To overcome the above difficulty, interval 

programming (IvP) approaches [18] have appeared as 

the prominent tool for solving MODM problems with 

interval-valued parameter sets in an inexact decision 

environment. The IvP approaches are actually based 

on interval arithmetic [19] technique for achieving 

the solution of decision problems with interval-

valued parameter sets. IvP approaches to decision 

problems in inexact environment have been deeply 

studied in [20] in the past. The basic difference 

between the IvP and FP approaches in the imprecise 

decision premises is that a satisfactory decision can 

always be made by specifying the intervals on the 

basis of needs and desires of the DMs in the decision 

situation in the first case, whereas a decision trouble 

may occur in the latter case if there is a lack of proper 

setting of imprecise parameter values in the decision-

making environment. However, the judgement of 

superiority of one over the other can be made 

depending on the decision-making context. 

 

Now, two types of methodological aspects are used to 

solve the IvP problems. The first one is based on the 

satisfying philosophy of GP and second one is on the 

traditional method of optimization. The GP 

formulation in MODM problems with interval 

parameter sets has been introduced in [21]. The 

solution approach with minimax regret criteria for 

obtaining the two types of solutions, necessary and 

possibly optimal solutions, has been investigated in 

[22] in the past. The methodological development of 

IvP has been surveyed in [23]. The IvP methodology 

for multiobjective fractional programming problems 

has been studied in [24]. However, methodological 

extension of IvP is still at an early stage from the 

viewpoint of its use to different real-life problems. 

Again, the IvP approach to MLPPs in the field of 

hierarchical optimization is yet to be circulated in the 

literature.   

 

Now, in order to solve most of the real-world 

hierarchical decision problems in the past, the 

conventional linear approximation approaches [25] 

were used, which involve huge computational load 

and inherent approximation errors in the decision 

search process. 

 

To overcome the computational difficulties arising 

due to the use of these traditional (single-point based) 

solution search approaches, GAs based on the natural 

selection and population genetics, initially introduced 

in [26] have appeared as volume-oriented global 

solution search tools to solve complex real-world 

MODM problems. The deep study on GA based 

solution methods to different problems has been well 

documented in [27, 28] in the past.  

 

The extensive study on the use of GAs as goal 

satisficers rather than objective optimizers to 

multiobjective decision problems in crisp decision 

environment has been discussed in [29]. The efficient 

use of GA solution search methods for solving 

conventional GP models of nonlinear MODM 

problems have also been studied in [30] with a view 

to avoid computational load for linearizing objectives 

in the process of solving the problems. The potential 

use of GAs to FGP models of real-life problems have 

been studied [31] in the recent past.  
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The GA based solution approach to bilevel 

programming problems (BLPPs) in crisp decision 

environment was first studied in [32]. Thereafter, the 

computational aspects of GAs to fuzzily described 

hierarchal decision problems have been investigated 

in [33] in the past.  The GA based solution concept to 

FGP approach has been further extended for MLPPs 

[34] in the past. 

 

The robustness of GA based GP approach to interval-

valued BLPPs has been investigated in [35]. 

However, methodological extension of using GAs to 

IvP problems is still at an early stage and their 

application to real-world problems is rare in 

literature. Further, deep study of the use of IvP 

approach to MLPPs in the field of hierarchical 

decision problems is yet to appear in the literature. 

In the proposed approach, first the objectives at the 

different hierarchical levels with interval coefficients 

are converted into interval-valued goals by 

introducing target intervals for achievement of the 

objectives to certain levels of their satisfactions. 

 

Then the interval-valued objectives are transformed 

into objective goals in the standard GP formulation 

by using interval arithmetic technique and 

introducing under- and over- deviational variables to 

each of them. In the model formulation of the 

problem, both the aspects of GP, minsum GP [15] and 

minmax GP [36] are taken into consideration to 

construct the achievement function for achievement 

of the objective values within the target specified in 

the decision situation. 

 

In the solution process, the GA scheme is introduced 

first to define first the target intervals of the 

objectives. Then, goal achievement of the model 

goals is constructed, which is considered as the 

evaluation function of the GA scheme. 

A numerical illustration is provided to expound the 

potential use of the approach. 

 

2. Interval-Valued MLPP Problem 

Formulation  
 

Let )x,...,x,(xX
n21

 be the vector of decision 

variables involved with different levels of the 

decision system. Then, let
k

Z , k = 1,2,…,K be the 

objective function and kX be the control vector of 

the decision variables of the k-th level DM, 

k=1,2,…,K, K  n, 

k

k

n

knk2k1k

n R)x,...,x,(xX,RX   where 

nR )n...nn(n
K21

 is the n-dimensional 

Euclidean space. Then, the MLPP with interval 

coefficients can be stated as: 
 

Find )X,...,X,(XX
K21

 so as to  

k

K

1k

U

1k

L

1k1
X

X]C,[C(X)Zmaximize
1




    

(top-level problem)                                                                                                                                               

where, for given
K321

X,...,X,X;X   solve 

k

K

1k

U

2k

L

2k2
X

X]C,[C(X)Zmaximize
2




       

(second-level problem)                                                               

where, for given 
K321

X,...,X;XandX  solve 

                          …   …   …   … 

                           …   …   …   …                      

where, for the given 
K1K21

X ;,...XX,X


 solves    

 
k

K

1k

U

Kk

L

KkK
X

X]C,[C(X)Zmaximize
K




                             

(the K-th level problem) 

    (1)                           

subject to           

,Rb0,Xb, AXRXSX mn











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
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   (2)                                                                                                

where X is a vector of decision variables, ]C,[C U

jk

L

jk
, 

(j, k=1,2,…,K) are the vector of interval coefficients, 

L and U denote the lower and upper bounds, 

respectively, of the defined interval, A is a constant 

matrix and b is a constant vector. It is assumed that 

the feasible region φ)(S  is bounded. 
 

Now, using the rules of interval arithmetic operations 

[19], the interval-valued objectives in (1) can be 

successively expressed as:  

]xc...xcxc

,xc...xcxc[
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    (3)                                                                                                                                                                                                                                                                                                              

where, ]c,[c ii U
jk

L
jk  are the components of the vector of 

interval coefficients ]C,[C U

jk

L

jk
,  (j, k=1,2,…,K).     

                                                

Now, in the field of IvP, instead of introducing a 

single target level as the aspiration level (crisp or 

fuzzy) for goal achievement, an interval-valued target 

called the target interval [19,21] for the possible goal 

achievement is considered in the inexact decision 

environment. In the present decision situation, since 

the objectives at different hierarchical levels are 

conflicting in nature due to the hierarchy of execution 

of decision powers, and each of the DMs desire to 

obtain a solution to a certain satisfactory level, an GA 

method as the goal satisficer [29] rather than 

objective optimizer can be considered as an efficient 

multiobjective tool for solving hierarchical decision 

problems. 

 

The GA scheme adopted in the solution search 

process is presented in the following Section 3. 

 

3. Design of the GA Scheme 
 

In the literature of GAs, there is a number of schemes 

[26, 27] for generation of new populations with the 

use of the different operators: selection, crossover 

and mutation. Here, the binary coded representation 

of a candidate solution called chromosome is 

considered to perform genetic operations in the 

solution search Process. The conventional Roulette 

wheel selection scheme in [27], single-point 

crossover [28] and bit-by-bit mutation operations are 

adopted to generate offspring in new population in 

search domain defined in the decision making 

environment.  

 

The fitness score of a chromosome v (say) in 

evaluating a function, say, eval (Ev), based on 

maximization or minimization of an objective 

function defined on the basis of DMs‘ needs and 

desires in the decision making context. 

 

The fitness value of each chromosome is determined 

by evaluating an objective function.  

 

The fitness function is defined as: 

    eval (Ev) = (Zk)v , k=1,2,…,K; v=1,2,...,pop_size                                                    

                     (4) 

where Zk represents the objective function of the k-th 

level DM given by (1) and where the subscript ‗v‘ in 

(4) refers to the fitness value of the selected v-th 

chromosome, v = 1, 2, ..., pop_size.  

The best chromosome with largest fitness value at 

each generation is determined as:  
 

E* =  max{eval (Ev) | v = 1, 2, ..., pop_size} 

  or 

E* =  min{eval (Ev) | v = 1, 2, ..., pop_size},                        

 

which depends on searching the maximum or 

minimum value of an objective function. 

 

Now, the model formulation of interval-valued 

MLPP is presented in the next Section 4. 

 

4. Interval-valued MLPP model 

formulation 

 

To represent the objectives in the form of interval-

valued goals, the target intervals for each of them is 

to be introduced by defining the lower- and upper-

bounds of the intervals for achieving the objectives 

within a permissible range in the decision making 

context. 

 

In the above situation, the best and least solutions of 

the individual objectives can be reasonably 

considered as the upper- and lower-bounds of the 

target intervals for possible goal achievement in the 

MODM situation. 
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Here, the proposed GA method can be used to 

determine the solutions by defining the GA parameter 

values.  

 

Let the individual best and least solutions of the j-th 

objective be )T;X,...,X,(X *b

j

jb
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jb

2

jb

1
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Now, in the decision making context, it is reasonably 

assumed that the DMs are motivated to cooperate 

each other and each is willing to sacrifice his/her own 

benefit up to a certain level for a gain of the other 

from the view point of survival as well as sustainable 

growth of the organization.   

 

In the above context, the target intervals of the 
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and the consideration of which depends on the 

decision making situation. 
 

The objectives in (3) with interval coefficients and 

target intervals successively appear as:     
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Now, since execution of decision powers of the DMs 

is sequential, and the objectives generally conflict 

each other due to the interest of each of the DMs 

regarding achievement of the objective values to the 

highest possible one, certain relaxations on the 

decisions 1K1,2,...,k,X jb

k
  of the upper-level 

DMs need to be given for the benefit of the lower-

level DM.  
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Using the notion of mid-point arithmetic in IvP [19], 

the decision kX with target interval appears as:  
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Now, the GP formulation of the problem is discussed 

in the following Section 5. 

 

5. GP Model formulation of interval-

valued MLPP 
 

To formulate the GP model of the problem, the 

objectives in (5) are transformed into the standard 

goals by using the interval arithmetic operation rule 

[21] and introducing the under- and over- deviational 

variables to each of them. The conversion of interval-

valued goals to the conventional form of the goals for 
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….    ….    ….. 

b*

K

n

1i

n

1i

n

1i
KUKUKi

L

KK2i

L

K21i

L

K1

*

KKLKL

n

1i

n

1i

n

1i

Ki

U

KK2i

U

K21i

U

K1

tddxc...xcxc

tddxc...xcxc

1 2 K

iii

1 2 K

iii





  

  

  





  

l  

               (the K-th level problem)                                                                                              

 (8)                                                                                                                                                                                                                                                                                                                                   

where, K1,2,...,k0,d,d
kLkU

 , represent 

under- deviational variables 

and K1,2,...,k0,d,d kLkU 
 represent over-

deviational variables of the respective goal 

expressions. 

 

Similarly, the standard goal expressions for the 

decision vectors 1K,...,2,1k,X
k

  are obtained as:  

p

krLrLk
XddX  

 and  

,XddX jb

krUrUk
 

1K,...,2,1k;kKr   

                                           (9)                                                                          
                                                                           

 

where, 


rL
d ,



rL
d )0(  and 



rU
d ,



rU
d )0(  represents 

the vectors of under- and over- deviational variables, 

and dimension of them depends on the dimension of 

kX .  

 

Now, in the decision making environment, the aim of 

the DMs is to minimize the possible regrets for 

under-deviations from 
l*

j
t and over-deviations from 

K1,2,...,j,t *b

j
 and also the regrets for vectors of 

under- and over-deviations from
jb
k

p
k XandX , 

respectively, defined for the upper level DMs‘ 

control vectors 1K1,2,..,k,X
k

 to reach a 

satisfactory solution for achieving the aspired goal 

levels within their respective target intervals 

specified in the decision situation.  As a matter of 

fact, minimization of the deviational variables 
-

kL
d and



kU
d , (k =1, 2, …, K) and the vectors of 

deviational variables
-

rL
d and



rU
d (r = K+1, K+2,…, 

2K-1) in the context of minimizing the total possible 

regrets for goal achievement is taken into account, 

and then the designed objective function of the 

proposed GP model is termed as the ‗regret function‘ 

in the sense of minimizing the regrets.  

 

The development of the executable GP model by 

constructing the regret function is presented as 

follows: 

 

5.1. Construction of the executable GP model 

There are different versions of GP [37,38] for solving 

real-life MODM problems. The most widely used 

approaches are weighted GP (WGP) [36], minmax 

GP (MGP) [39], and non-dominance GP [15]. 

 

In WGP, also called minsum GP, minimization of the 

(unwanted) deviational variables in the achievement 

function (regret function) is considered on the basis 

of weights of importance of achieving the target 

levels of goals in the decision environment. 

 

On the other hand, in case of MGP, minimization of 

maximum deviation of a goal from the target level is 

considered. This approach provides a solution that 

gives highest importance to the goal most displaced 

with respect to its target. Here, the most balanced 

solution among the achievement of different goals is 

obtained.  

 

An intuitive idea in using GP is to take the convex 

combination of WGP and MGP models, called 

extended GP (EGP) [40], to make a reasonable 

balance of the solution for aggregate achievement of 

goals provided by the former model and a balanced 

solution provided by the latter one. 

 

In a GP model, the objective function is termed as 

‗achievement function‘ where minimization of the 

(unwanted) deviational variables on the basis of 

needs and desires of the DMs is considered in the 

decision making context. 

 

In the present context of GP formulation of the 

problem, both the stated aspects of GP, WGP and 

MGP, are taken together as their convex combination 

to reach a satisfactory decision within the target 

intervals defined for the problem in the decision 

situation.  

 

Now, from the optimistic point of view of all the 

DMs, minimization of the possible regrets involved 

with both the under- and over- deviational variables 


kL
d  and K)1,2,...,(k,d

kU


 as well as the vector of 
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deviational variables 


rL
d  and 



rU
d  (r = K+1, K+2, …, 

2K-1) are taken into consideration to reach a 

reasonable balance of decision powers of the DMs in 

the decision making environment. 

 

The regret function appears as: 

1λ,0λ)D(1)}dwd(w

)dwd(wλ{Zminimize

rUrUrLrL

12K

1Kr

K

1k

kUkUkLkL


















                                                                               (10)                                                                                             

where ).d{(dmaxD
mUmL

12K

1m






  

0w,w
kUkL


)K,...,2,1k(  and 0w,w
rUrL


 

(r = K+1, K+2,…, 2K-1) represent the relative 

numerical weights of importance of minimizing the 

deviational variables and vector of deviational 

variables, respectively, for goal achievement, and 

   


 
K

1k

kUkL
1)w(w   and )w(w

rU

-

rL

12K

1Kr






  = I ,  

                                                                  (11)  
   

where ‗I‘ is a column vector with all entries equal to 

1. 

 

Then, the executable GP model of the problem can be 

presented as: 
 

Find )X,...,X,X(X
K21

 so as to: 

1λ0λ)D,(1  )}dwd(w

)dwd(wλ{ Zminimize

rUrL

12K

1Kr

K

1k

kUkL

rUrL

kUkL

















 

and satisfy the goal expressions in (8) and (9), subject 

11,2,...,2Km0,D)d(d
mUmL

                             

and the given system constraints in (2).       

    (12) 
 

Now, for the developed GP model of the proposed 

problem, the task of all the DMs is to search the 

solution to satisfy the goal levels to the extent 

possible by evaluating the defined regret function for 

the overall benefit of the organization. 

 

5.2. GA for IvP model 

 Now, since GA is a goal satisficer rather than 

optimizer, the proposed GA scheme can be employed 

here to minimize the regret function ‗Z‘ and thereby 

to reach a satisfactory decision for proper distribution 

of decision powers to the DMs.  

 

Here, the fitness function appears as: 

 

vv
(Z))eval(E   

vrUrL

12K

1Kr

K

1k

kUkL
λ)D](1  )}dwd(w)dwd(w{[

rUrLkUkL
 








    

                            (13)    

                                                        

where, v represents a chromosome. 

Here, the best chromosome *E
  

with highest fitness 

value at each generation is determined as: 

   pop_size}1,2,...,v|)(Emin{evalE*
v


 

 

6. An illustrative example 
 

To illustrate the proposed approach, the following 

trilevel programming problem with interval 

coefficients is solved to expound the model. 
 

Find )x,x,X(x
321

so as to 

3213211
x

[2,4]x[1,3]x[5,7]x)x,x,(x Zimizemax
1

                                                

                                     (top-level problem)    

where, for given 321 x,x;x solve 

3213212
x

[3,5]x[4,6]x[2,4]x)x,x,(xZmaximize
2

                                        

                                         (middle-level problem)      

where, for given 1x and 32 x;x solves 

3213213
x

[1,2]x[6,8]x[1,3]x)x,x,(ximizeZmax
3

 ,                                         

                                         (bottom-level problem)   

subject to 

  4.80xxx
321
  

11.856xx5x
321
  

13.60x3x2x
321
  

0x,x,x
321
  

(14)   
                                                                                                                                                                                            

Now, to solve the problem by employing the proposed 

GA scheme, the following genetic parameters which 

are widely used as efficient ones in conventional GA 

methods are adopted in the solution search process. 

Population Type  : Bit string 

Population Size  : 20 

Selection  : Roulette 

Crossover Function : Single Point 

Crossover Fraction : 0.8 

Mutation Rate  : 0.08 

Number of generations : 100 

 

The GA is implemented using Optimization Toolbox 

in MATLAB (Version 7.10.0.499 (R010a)). The 

execution is made in an Intel Pentium IV processor 

with 2.66 GHz. clock-pulses and 1 GB RAM.  
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Now, following the procedure and employing the GA 

scheme, the individual best and least solutions, 

respectively, of the objectives of the DMs of the 

successive hierarchical levels are obtained as: 
 

21.9210),0.0343;3.4261,(1.6437,)T;x,x,(x *b

1

1b

3

1b

2

1b

1


1.8394)0.3106;3.6023,0.4768,()T;x,x,(x *

1

1

3

1

2

1

1
llll

                                          (top level DM‘s solution)   
                                                                                             

31.0735)1.2912;4.1029,(0,)T;x,x,(x *b

2

2b

3

2b

2

2b

1
 , 

11.4410)0.4628;2.6272,(1.1602,)T;x,x,(x *

2

2

3

2

2

2

1
llll

                                       (middle-level DM‘s solution)  
                                                                                                                                                          

35.9102)0.5347;4.3551,(0,)T;x,x,(x *b

3

3b

3

3b

2

3b

1


16.4608)0.4628;2.6272,(1.1602,)T;x,x,(x *

3

3

3

3

2

3

1
llll

.  (bottom-level DM‘s solution)     
 

                                                                                                            

Then, the objectives of the DMs with the target 

intervals of the successive hierarchical levels can be 

set as in (6) using the concept of (5): 
 

   19.00][2.00,[2,4]x[1,3]x[5,7]x
321
  ,                

   00][19.21,30.[3,5]x[4,6]x[2,4]x 321  , 

   34.38][18.00,[1,2]x[6,8]x[1,3]x 321  , respectively.                                                        

     (15)  
     

Now, in the decision situation, the top-level and the 

middle-level DMs give a relaxation on the values of 

1x  up to 0.30 and that on 2x up to 3.75, 

respectively, for the benefit of each of the successive 

lower level DMs. As such, 
 

)x0.300.30(xx 1b

1

1

1

p

1
 l

and    

)x3.753.75(xx 2b

2

2

2

p

2
 l

  

are considered as the lower tolerance limits of the 

decisions 1x and 2x , respectively. 

Then, the control variables 1x and 2x  of the top-

level and middle-level DMs with the target intervals 

can be obtained as: 
 

   1.6437][0.3000,[1,1]x
1
  

and  1029][3.7500,4.[1,1]x
2
 ,  respectively. 

 

 Now, the goals in conventional form are obtained as: 

 2dd4x3x7x
1L1L321
 

 

19dd2xx5x
1U1U321
 

 

19.21dd5x6x4x
2L2L321
 

 

30dd3x4x2x
2U2U321
 

 

18dd2x8x3x
3L3L321
 

 

34.3ddx6xx
3U3U321
   

0.30ddx
4L4L1
   

1.6437ddx
4U4U1
   

3.75ddx
5L5L2
   

4.1029ddx 5U5U2  
, 

where, 0d,d,d,d kUkUkLkL 
with 0.dd kLkL 

; 

k=1,2,…,5. 

(16)                                                     

The executable GP model can be obtained as: 

 

Find )x,x,x(X 321 so as to  

minimize 


 
5

1k

kUkUkLkL
λ)D(1)dwd(wλZ   

and satisfy the goal expressions in (16), subject to 

0,D-)d(d

0,D-)d(d0,D-)d(d

0,D-)d(d0,D-)d(d

5U5L

4U4L3U3L

2U2L1U1L













 

and the system constraints in (14).                                                             
     

(17)                                                                                                                                                                                                                                                                                                                                         

Now, for simplicity and without loss of generality, 

introducing  the equal weights 

1,...,5k,
10

1
ww

kUkL
 

 for achievement of the 

goals and taking 5.0 , the problem is solved by 

employing  the GA scheme with the consideration of 

the evaluation function defined in (13) as the fitness 

function. 

 

The optimal decision out of 30 runs is obtained as: 

0.8588),3.8701,(0.5654)x,x,(x
321
   

 

The objective function values in the interval form are 

obtained as: 

]34.4,24.6[Z],29.819.2,[Z],19.0,8.4[Z
321


 

The obtained interval-valued forms of the objectives 

are found within the target intervals. The result shows 

that the GA based EGP model in (17) gives a 

satisfactory decision from the view point of 

distributing the proper decision powers to the DMs in 

the decision making context.  

     

Note1: If 0λ  in (17), the model is transformed to 

MGP approach. The solution of the problem using 

proposed GA is  

0.75),3.75,(0.3)x,x,(x 321   
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The objective function values in the interval-valued 

form are obtained as: 

]32.423.6,[Z],27.417.8,[Z],16.4,6.8[Z 321  . 
 

Note2: If 1λ   in (17), the model is transformed to 

WGP approach. The solution of the problem using 

proposed GA is  

0.75),3.75,(0.3)x,x,(x 321    

The result is same as that obtained by MGP method. 
 

The objective function values in the interval-valued 

form are obtained as: 

]32.423.6,[Z],27.417.8,[Z],16.4,6.8[Z 321  . 

 

The results indicate that the proposed GA based 

approach offers a superior solution in terms of greater 

satisfaction of the DMs in the hierarchical decision 

making context. 

 

The achievement of the objective values within their 

specified intervals under the three different 

approaches is shown in the Figure 1. 

 

 
 

Figure 1: Achievement of Objective Values 

 

A comparison shows that the proposed GA based 

EGP model is superior over the use of the 

conventional methodology of MGP and WGP from 

the point of view of proper distribution of decision 

powers to the DMs as well as arriving at the most 

satisfactory decision in the decision making 

environment.  

 

7. Conclusions 
 

In the proposed decision making environment of 

MLPP, the main advantage of using the GP 

formulations of IvP approach is that the difficulty of 

assigning the fixed parameter values to the problem 

does not arise here as in the case of conventional 

approaches. Further, GA as a goal satisficer is more 

fruitful to apply here to make a balance of the 

decision powers of the DMs in the MODM context. 

The proposed GA based EGP approach can also be 

extended for solving hierarchical decision problems 

having the characteristics of fractional programming, 

which is a problem for future study. 

However, it is hoped that the approach presented here 

may open up many new vistas of future works in the 

field of large-scale hierarchical decentralized decision 

problems. 
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