
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

135

A Novel Approach for Improving the Performance of TCP by TCP Reno and

SACK Acknowledgement in high traffic density conditions with cognitive

radios

Reena rai
1
 and Maneesh Shreevastava

2

Department of Information Technology LNCT Bhopal,

(M.P.) India

1,2

Abstract

The key factors that contribute to TCP’s

performance degradation as TCP losses, MAC link

failure detection latency, Route computation time

and, Link failure notification latency Transmission

Control Protocol (TCP) is the dominating end-to-

end transport layer protocol which provides secure

and reliable data transfer with some other protocols.

We identify the key factors that contribute to TCP’s

performance with evaluate the congestion control

algorithms in Reno, Vegas and SACK TCP from

different aspects. In this review paper, we contend

that existing approaches to improve TCP

performance over mobile ad-hoc networks have

focused only on a subset of the factors affecting

TCP performance by SACK and TCP. For Effective

resource utilization, such retransmission rate,

bandwidth utilization, and packet window size, is

compared. Our objective to improve the

performance of TCP Reno, TCP Vegas and TCP

SACK from many aspects of the both TCP Vegas

and TCP SACK make some performance

improvements to TCP Reno. and this paper is also

concern fair resource allocation from two main

categories, one is competition between different

TCP congestion control algorithms and the other is

fairness between different delay links.

Keywords

TCP Reno, SACK and Vegas, TCP, MANETs, Wireless,

routing protocol, data transmissions, destination, TCP

performance, TCP’s timers.

1. Introduction

Early TCP implementation uses go-back-n model

with cumulative positive acknowledgement and

requires a retransmit time-out to retransmit the lost

packet. These TCP is used to minimize network

congestion. The operation of TCP in wireless/mobile

communications has been an important research issue

in recent years, owing to the impressive growth

experienced in that area of modern

telecommunications during the past decade. In our

Paper, we will evaluate the congestion control

algorithms in Reno, Vegas and SACK TCP from

different aspects. First, we will compare the

performance of these algorithms: how much of the

available network bandwidth does it utilize? How

frequently does it retransmit packets? How does TCP

help to modify window size on congestion? These

comparisons are based on each version TCP running

separately on a congested network. The second

evaluation is the fairness of sharing the network. This

comparison is taken in two categories of experiment.

One is the fairness between different delay

connections running the same version TCP.

Significant contributions, such as the one presented

in [1], indicate that the unmodified, standardized

operation of TCP is not well aligned with the

peculiarities of cellular environments. Terminal

movement across cell boundaries, leading to

handover, is misinterpreted by common TCP

implementations as sign of congestion within the

fixed network. Some time to handle such congestion,

TCP slows down transmission by retransmissions and

reducing window sizes, if any relevant need arises.

Some algorithms may bias against long delay

connection, such as Reno TCP and SACK. The other

experiment is carried out between different versions

TCP when they compete each other on the same

connection. TCP Vegas does not receive a fair share

of bandwidth when competing with other TCP Reno

or SACK connections. Since bias exists in both

categories, how different queue algorithms may

affect the fairness is also studied.

Our assumption that packet losses due to network

loss are minimal and most of the packet losses are

due to buffer overflows at the router. It becomes

increasingly important for TCP to react to a packet

loss, take action to reduce congestion. TCP ensures

reliability by starting a timer whenever it sends a

segment. If it does not receive an acknowledgement

from the receiver within the „time-out‟ interval then it

retransmits the segment. In the end we shall do a

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

136

head to head comparison to further bring into light

the differences.

2. Related Work

Transmission Control Protocol (TCP) [9] is the

dominating end-to-end transport layer protocol which

provides secure and reliable data transfer together

with some other protocols. In this paper, they contend

that existing approaches to improve TCP

performance over mobile ad-hoc networks, and it

have focused only on a subset of the factors affecting

TCP performance by TCP Reno, Vegas and SACK.

Effective resource utilization, such as bandwidth

utilization. for evaluate these TCP congestion control

algorithms from many aspects are present and they

also concern fair resource allocation from two main

categories, 1 is fairness between different delay links,

and the other is competition between different TCP

congestion control algo.

In this Research Paper [2] they implemented

Multipath routing algo for heterogeneous network.

Multipath routing separates the traffic among

different paths to minimize congestion in terms of

multiple alternative paths through a network which

can provide a variety of benefits such as minimize

delay and congestion, improved security, or

maximize bandwidth. they propose a newly improved

QoS multipath routing algorithm for heterogeneous

networks.

Different types of adhoc routing protocols are

discussed in this paper such as Ad-Hoc On Demand

Multipath Distance Vector (AOMDV), QoS Ad-Hoc

On Demand Multipath Distance Vector (QAOMDV),

Ad-Hoc On-Demand Distance Vector (AODV).

These routing protocol are used in wireless network

which is designed to form multiple routes from

source to the destination and also avoid the loop

formation so that it reduces congestion in the

channel. The performance of AODV

,AOMDV,QAOMDV protocols are compared and

proved the new routing protocol is better than others.

The QAOMDV works better than other protocols in

terms of delay, load balance, bandwidth, outing

overhead and packet delivery ratio have been

considered by varying the traffic load in the network.

This paper analyzes the performance of different

multi-path routing algorithms such as AOMDV,

AODV and QAOMDV routing algorithms for

wireless segment of heterogeneous network has been

compared. The heterogeneous network is the

combination of fixed and mobile network. Multipath

routing protocols that computes multiple paths during

route discovery avoids high overhead, latency and

bandwidth. It is observed the performance of a QoS

multipath routing protocol of AOMDV, QAOMDV, ,

is efficient than AODV, DSR, AOMDV and DSDV.

Their Simulation results shows that the performance

of QAOMDV is better than other routing protocol in

wireless side and hierarchical routing is used in wired

network. they proved that Multipath routing

algorithm provides low delay and high throughput,

better bandwidth utilization and low packet loss

during data transmission. Finally the Timing analysis

gives the comparison between different traffic pattern

and Different routing protocols are compared by

Average End to End delay with pause time.

3. Proposed Technique

TCP congestion control lies in Additive Increase

Multiplicative Decrease (AIMD), halving the

congestion window for every window containing a

packet loss, and increasing the congestion window by

roughly one segment per RTT otherwise. and TCP

congestion control is the Retransmit Timer, including

the exponential bakeoffs of the retransmit timer when

a retransmitted packet is itself dropped. The 3rd

fundamental component is the show Slow-Start

mechanism for the initial probing for available

bandwidth. The 4th TCP congestion control

mechanism is ACK-clocking, where the arrival of

ACK at the sender is used to clock out the

transmission of new data.

A. Communication Model

In the scenario used in this study, five mobile nodes

communicate with one of two fixed nodes (hosts)

located on the Internet through a gateway. As the goal

of the simulations was to compare the different

approaches for gateway discovery, the Traffic/CBR

source was chosen to be a constant bit rate (CBR)

source. Each source mobile node generates packets

every 0.2 seconds in this study. In the other words,

each source generates only 5 packets per second.

Since each packet contain 256 bytes of data, the

amount of generated data is 5*256*8 bit/s = 10.24

kbit/s, for each source. The main parameters in

MTCbrSim.tcl are \connections" (number of sources)

and \rate" (packet rate); see Table 1, and 2

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

137

Table 1: The Main Parameters of Reno

S

No

Parameter Value

1 Channel type Channel/WirelessChannel

2

Radio-

propagation

model

Propagation/TwoRayGround

3 Antenna type Antenna/OmniAntenna

4 Link layer type LL

5
Interface queue

type
Queue/DropTail/PriQueue

6

Max packet in ifq

(interface priority

queue)

50

7
Network interface

type
Phy/WirelessPhy

8 MAC type Mac/802_11

9
Ad-hoc routing

protocol
Reno/ SACK

10
Number of

mobile nodes
4

11
X dimension of

the topography
300

12
Y dimension of

the topography
250

13 Simulation time 100 ms

The TCP variants discussed in this paper, except TCP

Vegas, all adhere to this underlying framework of

Slow-Start, AIMD, Retransmit Timers, and ACK-

clocking. None of these changes alter the

fundamental underlying dynamics of TCP congestion

control. Instead, these changes help to avoid

unnecessary Retransmit Timeouts, correct

unnecessary Fast Retransmits and Retransmit

Timeouts resulting from disordered or delayed

packets, and reduce unnecessary costs (in delay and

unnecessary retransmits) associated with the

mechanism of congestion notification.

(a)TCP congestion control:

 Main algorithms

 Slow start

 Congestion Avoidance

 Fast Retransmit

 Fast Recovery

 TCP SACK (Selective Acknowledgement)

(b)TCP Tahoe:

The Tahoe TCP implementation added a number of

new algorithms and refinements to earlier TCP

implementations. The new algorithms include Slow-

Start, Congestion Avoidance, and Fast Retransmit

[3]. With Fast Retransmit, after receiving a small

number of duplicate acknowledgments for the same

TCP segment (dup ACKs), the data sender infers that

a packet has been lost and retransmits the packet

without waiting for a retransmission timer to expire,

leading to higher channel utilization and connection

throughput [4].

(c)TCP Reno:

The Reno TCP implementation retained the

enhancements incorporated into Tahoe TCP but

modified the Fast Retransmit operation to include

Fast Recovery [5]. Fast Recovery operates by

assuming each dup ACK received represents a single

packet having left the pipe. Thus, during Fast

Recovery the TCP sender is able to make intelligent

estimates of the amount of outstanding data. Reno

significantly improves upon the behavior of Tahoe

TCP when a single packet is dropped from a window

of data, but can suffer from performance problems

when multiple packets are dropped from a window of

data.

Table 2: The Main Parameters of TCP- Ad-hoc

S No Parameter Value

1 Transmission

rate

10.24 Kb/s

2 Simulation

time

100 s

3 Topology size 600m x

500m

4 Number of

nodes

04

5 number of

sources

4

6 Traffic type TCP/Vegas

7 Packet rate 10 packets/s

8 Packet size 1000 bytes

9 Maximum

speed

20 m/s

10 Queue Size 10 ackets/s

(d).TCP SACK:

The congestion control algorithms implemented in

SACK TCP are a conservative extension of Reno's

congestion control, in that they use the same

algorithms for increasing and decreasing the

congestion window, and make minimal changes to

the other congestion control algorithms. Adding

SACK (Selective Acknowledgement) to TCP does

not change the basic underlying congestion control

algorithms. The main difference between the SACK

TCP implementation and the Reno TCP

implementation is in the behavior when multiple

packets are dropped from one window of data.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

138

During Fast Recovery, SACK maintains a variable

called pipe that represents the estimated number of

packets outstanding in the path. The sender

decrements pipe by two rather than one for partial

ACKs, the SACK sender never recovers more slowly

than a Slow-Start. Detailed description of SACK

TCP can be found in [6].

(e)TCP Vegas:

The idea is that when the network is not congested,

the actual flow rate will be close to the expected flow

rate. Otherwise, the actual flow rate will be smaller

than the expected flow rate. TCP Vegas adopts a

more sophisticated bandwidth estimation scheme. It

uses the difference between expected and actual flow

rates to estimate the available bandwidth in the

network. TCP Vegas, using this difference in flow

rates, estimates the congestion level in the network

and updates the window size accordingly. This

difference in the flow rates can be easily translated

into the difference between the window size and the

number of acknowledged packets during the round

trip time, using the equation TCP Vegas tries to keep

at least α packets but no more than β packets in the

queues.

4. Experiment and Result Analysis

To justify the observation in [7] that TCP Reno is

biased against the connections with longer delays.

The reason for this behavior is as follows. While a

source does not detect any congestion, it continues to

increase its window size by one during one round trip

time (RTT). Obviously, connections with a shorter

delay can update their window sizes faster than those

with longer delays, and thus capture higher

bandwidths. To our understanding, TCP SACK does

not change this window increasing mechanism, so we

expect the same unfair behavior with TCP SACK.

We try to designing the simulation scenarios as

follows.

The network topology is shown in Topology fig 1. S1

and S2 will be set to be the same TCP agents, such as

two Reno, two Vegas or two SACK TCP agents,

respectively.

Results of X=1ms (the same propagation delay as

comparison baseline) and X=23ms (the RTT of

longer delay connection is 8 times of the shorter one)

will be collected to show the fairness between

different delay connections.

Fig 1: Topology Network

B. Simulation study

In order to verify our analytical model, the utilization

of the Reno is obtained by computer simulation. A

scenario is simulated using ns2 with a network of two

subnets (receiver and sender) that communicate

through a server with a base station. Fig 2 shows both

simulated and calculated utilizations.

Fig 2: shows both simulated and calculated

utilizations

(a). Fast retransmit algorithm:

Old TCPs would recognize the lost packets and the

network congestion by a timeout mechanism. After

sending a packet, the receiver waits for a period of

time (RTO).

The performance of the routing protocols in terms of

throughput is examined with respect to mobility of

the nodes.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

139

Fig 3: Average throughput for different node

speeds before the bytes values on the traffic sinks

Fig 3 displays a graphical representation of analysis

on the throughputs derived from various mobility

scenarios before the bytes values on the traffic sinks.

The X axis shows the simulation time in seconds

while the Y axis shows the throughput in bits/sec. the

throughput rises gradually and starts surpassing

1,50,000 bit/sec at some later stage.

The average throughput of our algorithm received in

such a network is about 8,10,001 bit/sec. the medium

mobility network, the throughput in a high mobility

network keeps on rising gradually, however, with a

lower rate than that of the medium rate network.

Fig 4: Average throughput for different node

speeds after the bytes values on the traffic sinks

A fig 4 displays a graphical representation of analysis

on the throughputs derived from various mobility

scenarios after the bytes values on the traffic sinks.

The X axis shows the simulation time in seconds

while the Y axis shows the throughput in bits/sec. the

throughput rises gradually and starts surpassing

1,50,000 bit/sec at some later stage. The average

throughput of our algorithm received in such a

network is about 550,001 bit/sec. the medium

mobility network, the throughput in a high mobility

network keeps on rising gradually, however, with a

lower rate than that of the medium rate network.

Meanwhile, in the case of our algorithm, the decrease

of the throughput is somewhat noticeable but not

dramatic in high mobility scenarios in after the bytes

values on the traffic sinks. Among the two scenarios,

it appears that the low mobility results in the highest

average throughput of 4, 00,000 bit/sec, which is

good result as much as that of a medium and a high

mobility rate .

Fig 5: a comparative analysis throughput for

different node speeds before and after the bytes

values on the traffic sinks

C. Performance Metrics

A comprehensive list of the metrics for TCP

performance evaluation is described in the TMRG

RFC \Metrics for the Evaluation of Congestion

Control Mechanisms" by S. Floyd. In the first step,

this tool tries to implement some commonly used

metrics described there. Here we follow the RFC and

classify the metrics into network metrics and

application metrics. They are listed as follows.

(a). Throughput

 (b). Delay

 (c). Jitter

 (d). Loss Rate

(a). Throughput

For network metrics, we collect bottleneck link

utilization as the aggregate link throughput.

Throughput is sometimes different from good put,

because good put consists solely of useful transmitted

traffic, where throughput may also include

retransmitted traffic. But users care more about the

useful bits the network can provide. So the tool

collects application level

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

140

End-to-end good put no matter what the transport

protocol is employed. For long-lived FTP traffic, it

measures the transmitted traffic during some intervals

in bits per second. For short-lived web traffic, the

Pack Mime HTTP model collects request/response

good put and response time to measure web traffic

performance.

Voice and video traffic are different from above.

Their performance is affected by packet delay, delay

jitter and packet loss rate as well as good put. So their

good put is measured in transmitted packet rate

excluding lost packets and delayed packets in excess

of a predefined delay threshold.

(b). Delay

We use bottleneck queue size as an indication of

queuing delay in bottlenecks. Besides mean and

max/min queue size statistics, we also use percentile

queue size to indicate the queue length during most

of the time.

FTP traffic is not affected much by packet

transmission delay. For web traffic, we report on the

response time, defined as the duration between the

client's sending out requests and receiving the

response from the server. For streaming and

interactive traffic, packet delay is a one-way

measurement, as defined by the duration between

sending and receiving at the end nodes.

(c). Jitter

Delay jitter is quite important for delay sensitive

traffic, such as voice and video. Large jitter requires

much more buffer size at the receiver side and may

cause high loss rates in strict delay requirements. We

employ standard packet delay deviation to show jitter

for interactive and streaming traffic.

Fig 6:Throughput of NS2 Simulation on

performance of TCP on mobile nodes

(d).Loss Rate

To obtain network statistics, we measure the

bottleneck queue loss rate. We do not collect loss

rates for FTP and web traffic because they are less

affected by this metric. For interactive and streaming

traffic, high packet loss rates result in the failure of

the receiver to decode the packet. In this tool, they

are measured during specified intervals. The received

packet is considered lost if its delay is beyond a

predefined threshold [8].

D. Performance Evaluation

We have changed the number of mobile nodes and

measured the performance in terms of the number of

total packets sent. If the numbers of mobile nodes are

limited, the intermediate transmission path of the

wireless link becomes unreliable and hence there is

huge probability of packet losses and timeouts. As a

result, the total number of packets sent is low.

Another reason for small number of packet

transmission is limited antenna coverage. Increased

number of mobile nodes as it uses modified quick

start procedure under this packet loss and timeout

conditions. But if the number of mobile nodes

increases more, the optimum value of congestion and

nodal delay also increases and hence the total number

of packets sent falls again.

We have changed the speed of the mobile nodes and

measured the total number of packet drops and

percentage of packet drops. With the increase of this

speed, probability of timeout increases as it performs

handoff and wrong estimation of Round Trip Time

(RTT). that the number of packet drops increases

although the performance is not uniform. But the

average performance is better than other existing

approaches because of its improved functional

criteria in case of timeout. The reason behind this

behavior depends on the mobile ad-hoc network‟s

topology pattern in simulation like nodes initial and

final positions and their antenna parameters.

E. Loss Rate

To obtain network statistics, we measure the

bottleneck queue loss rate. We do not collect loss

rates for FTP and web traffic because they are less

affected by this metric. For interactive and streaming

traffic, high packet loss rates result in the failure of

the receiver to decode the packet. In this tool, they

are measured during specified intervals. The received

packet is considered lost if its delay is beyond a

predefined threshold.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

141

5. Conclusion

In this research paper, we Propose to improve the

performance of TCP Reno, TCP Vegas and TCP

SACK from many aspects. of the both TCP Vegas

and TCP SACK make some performance

improvements to TCP Reno. TCP Vegas achieves

higher throughput than Reno and SACK for large

loss rate. TCP SACK is better when more than one

packets are dropped in one window. TCP Vegas

causes much fewer packets retransmissions than TCP

Reno and SACK.

In conclusion, the mechanisms in the Atra contribute

to Reducing the number of predicting route failures,

route failures before they occur and Minimizing the

latency for route error information delivery to

sources, and thus, in the process, significantly

improves throughput performance both when

compared to the default protocol stack and an ELFN

enabled protocol stack. We also suggest a change in

Vegas algorithm to make Vegas more aggressive in

the competition. This may be worthy of further

investigation. the efforts in analysis of queuing

algorithms effects lie in the gateway side of the

network. There are many suggestions of modification

that lie on the host side to improve the fairness.

References

[1] R. Caceres, and Iftode. “Improving the

performace of reliable transport protocals in

mobile computing Environments”, IEEE JSAC,

Vol 13, No 5, June 1995.

[2] S.Santhi, G.Sudha Sadasivam, "Performance

Evaluation of Different Routing Protocols to

Minimize Congestion in Heterogeneous

Network", IEEE-International Conference on

Recent Trends in Information Technology, PP

336-341, 2011.

[3] V. Jacobson, Congestion avoidance and control,

ACM SIGCOMM Computer Communication

Review, v.18 n.4, p.314-329, August 1988.

[4] Kevin Fall, Sally Floyd, Simulation-based

comparisons of Tahoe, Reno and SACK TCP,

ACM SIGCOMM Computer Communication

Review, v.26 n.3, p.5-21, July 1996.

[5] V. Jacobson. “Modified TCP Congestion

Avoidance Algorithm”, Technical report, 30 Apr.

1990.

[6] Kevin Fall, Sally Floyd, Simulation-based

comparisons of Tahoe, Reno and SACK TCP,

ACM SIGCOMM Computer Communication

Review, v.26 n.3, p.5-21.

[7] Jeonghoon Mo, Richard J. La, Venkat

Anantharam, and Jean Walrand, Analysis and

Comparison of TCP Reno and Vegas.

[8] G. Aggelou and R. Tafazolli, “On the Relaying

Capacity of Next-Generation GSM Cellular

Networks” , IEEE Personal Communications

Magazine, pp.40–47,Feb. 2001.

[9] Mrs. Reena rai and Dr. Maneesh Shreevastava,

“Performance Improvement of TCP by TCP

Reno and SACK Acknowledgement”,

International Journal of Advanced Computer

Research”. ISSN (print): 2249-7277 ISSN

(online): 2277-7970) Volume 2 Number 1 March

2012.

Reena rai was born in korba, dist.

Korba,(Chhattisgarh) India on 26th

September 1984. She received his

Bachelor of Engineering Degree in

Information Technology with first

division and M.Tech in Information

Technology. Her research interests

include Computing Techniques,

Security System, Robotics and Environmental with

knowledge and skills for growth and development of

Nation.

