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Abstract 
 

This paper presents a fuzzy goal programming 

(FGP) procedure for solving multilevel 

programming problems (MLPPs) having chance 

constraints in large hierarchical decision 

organizations. In the proposed approach, first the 

chance constraints of a problem are converted into 

their respective deterministic equivalent in the 

decision making context. Then, the objective 

functions of decision makers (DMs) located at 

different hierarchical levels are converted into fuzzy 

goals by introducing an imprecise aspiration level to 

each of them to make decision in an uncertain 

environment. In the model formulation, the concept 

of tolerance membership functions in fuzzy sets for 

measuring the degree of satisfaction of DMs with 

regard to achieving the aspired levels of fuzzy goals 

as well as degree of optimality of the decision 

vectors controlled by upper-level DMs on the basis 

of their order of hierarchy in the organizational 

system. In the solution process, minimization of 

under deviational variables associated with 

membership goals defined for the membership 

functions are considered for achieving the highest 

membership value (unity) of each of the fuzzy goals 

to the extent possible on the basis of their weights of 

importance in the decision making horizon. To 

illustrate the effectiveness of the proposed 

approach, a numerical example is solved. 
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1. Introduction 
 

In real-world decision situations, DMs are often 

faced with the problem of inexact parameter values 

due to the imprecision in human judgments as well as 

inherent inexactness of parameters values of 

problems.  

 

The two types of prominent approaches for solving 

above problems are stochastic programming (SP) 

which deals with probabilistically defined data and 

fuzzy programming (FP) which deals with 

imprecisely described data in an uncertain decision 

environment.   

 

The field of study on SP based on the theory of 

probability,  initially introduced by Charnes and 

Cooper [1] as chance constrained programming 

(CCP), has been studied [2,3] extensively and applied 

to various real-life problems [4-11]. Actually, SP 

deals with the decision situations where some or all 

of the parameters of optimization problems are 

defined by stochastic (random / probabilistic) 

variables rather than deterministic quantities [5]. In 

recent years, the methods of multiobjective stochastic 

optimization problems have become increasingly 

important in searching solutions of practical decision 

problems like economics [6], water resource 

management [7], healthcare [8], transportation [9], 

agriculture [10], energy systems [11], and other real-

life problems.  

 

Again, FP approaches based on the theory of fuzzy 

sets, initially introduced by Zadeh [12], have been 

studied [13, 14] deeply from the point of view of 

potential uses to different real-world problems [15, 

16] with imprecisely defined data. Now, in practical 

decision situations, it has been realized that both the 

probabilistic and fuzzy data are frequently involved 

in optimization problems, and both the aspects of SP 

and FP would have to be taken into account for 

modelling and solving problems and thereby arriving 

at optimal decisions. But, consideration of both the 

aspects in a problem creates a great challenge to DMs 

for developing efficient solution methods in the 

current decision making horizon. 

 

The constructive modelling aspects on programming 

problems under randomness and fuzziness were first 

studied by Luhandjula [17] in 1983. The 

methodological development of fuzzy stochastic 

programming (FSP) [18] approaches for solving 

linear programming (LP) problems has been 
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surveyed by Luhandjula [19] in 2006. The use of 

FGP approach [20], an extension of conventional 

goal programming [21, 22] and as a robust tool for 

solving multiobjective decision analysis, has been 

studied in the field of SP by Pal et al. [23] in 2009. 

In the field of mathematical programming, multilevel 

programming MLP [24] was developed to solve 

decentralized planning problems with multiple 

decision makers in a hierarchical decision 

organization. An MLPP can be viewed as an 

extension of bilevel programming problem (BLPP) 

[25] for solving large and complex organizational 

planning problems, where two DMs are located 

hierarchically at two different decision levels and 

each control separately a decision vector with the 

interest of optimizing the individual benefit.  

 

In a hierarchical decision situation, although the 

execution of decision is sequential from an upper-

level to a lower-level, the decision for optimizing the 

objective of an upper-level DM is often affected by 

the reaction of a lower-level DM due to his / her 

dissatisfaction with the decision, because the 

objectives at different levels often conflict each other 

owing to individual interests of each of DMs to 

optimize his / her own objective function. In such 

case, the problem for proper distribution of decision 

powers to the DMs is often encountered in most of 

the hierarchical decision situations.   

 

During 1980s, a considerable number of solution 

approaches for MLPPs as well as BLPPs as a special 

case have been deeply studied [24-29] by the pioneer 

researchers in the field from the viewpoint of their 

potential use to different real-life hierarchical 

decision problems such as economic problem [30], 

agricultural planning [24, 26], electric utility [31]. 

But, the classical approaches developed so far in the 

past often lead to a paradox that the decision power 

of a lower-level DM dominates that of a higher-level 

DM. To overcome this situation, Wen and Hsu [32] 

introduced an ideal point dependent solution 

approach. But their method does not always provide a 

satisfactory decision in a highly conflicting 

hierarchical decision situation.  

 

Now, in a hierarchical decision making context, 

although FP approach to BLPPs having chance 

constraints has been investigated [33] in the past, it is 

too early to deep study in the area of FSP from the 

view point of its potential use in real-life problems. 

Also, the use of FGP method to MLPPs with chance 

constraints is in general rare in the literature.  

In this paper, the FGP formulation of an MLPP [35] 

in the field of FSP with the characteristics of 

randomness in both the coefficient matrix and 

resource vector is considered. In the proposed 

solution approach, the notion of the using means and 

variances in CCP is taken into account to convert the 

defined chance constraints into their equivalent crisp 

system constraints. In the process of formulating the 

model of the problem, the individual best and least 

solutions of the objectives of each of the DMs located 

at the different hierarchical decision levels are 

determined first under the crisply defined system 

constraints for fuzzy description of the objectives as 

well as the control vector of the upper-level DMs.  

In the FGP model formulation, the membership 

functions defined for the fuzzy goals are transformed 

into membership goals by assigning the highest 

membership value (unity) as the aspiration level and 

introducing under- and over-deviational variables to 

each of them. In goal achievement function of the 

model, attainment of the aspired level of each of the 

membership goals to the extent possible by 

minimizing the associated under-deviational 

variables on the basis of weights of importance of 

achieving the fuzzy goals is taken into account.  

The potential use of the proposed approach is 

illustrated by a numerical example. 

 

2. Formulation of MLPP 
 

Let the vector of variables ),...,,( 21 nxxxX be 

involved in the multilevel hierarchical decision 

system, and let kF and kX be the objective function 

and control vector of the decision variables of the k th 

level DM, where k = 1, 2,…, K ; K n, 

and   XX 


Kkk

K

k
,...,2,1|

1
. 

Then, the generic form of an FMLPP in a hierarchical 

nested decision structure can be presented as: 

Find ),,,( 21 KXXXX  so as to:                        

rr

K

r

c) (F XX
X

1
1

1
1

Max 


           (top-level problem)                                

for given KXXX ,,; 21  solve 

rr

K

r

c)(F XX
X

2
1

2
2

Max 



       

(second- level problem)                     

                   ……….…………………… 

                  ……………………………. 

for given  kk XXXX ;,,, 121  solves   
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rKr

K

r
K

K

c) (F XX
X





1

Max
     

(K-th level problem)                     

subject to         

 }Rˆ , 0  ;  ]ˆ â[Pr|R{S m
i

n

1j
ij

n 











 


iij bpbx XXX  

                                                      (1) 

where krc  (k, r = 1,2,…,K) are coefficient vectors, 

„Pr‟ indicates the probabilistically defined constraints 

and jiba iij ,ˆ,ˆ 
 
are the normally distributed random 

variables and pi (0 < pi< 1) is the satisficing 

probability level defined for the randomness occurs 

in the i-th constraint. Again, it is assumed that the 

feasible region S (≠ Φ) is bounded. 

    Then, the conversion to deterministic (crisp) 

equivalent of the chance constraints in (1) is 

described in the following Section 2.1. 

 

2.1 Deterministic Equivalent of Chance 

Constraints 

To determine the deterministic equivalent of chance 

constraints, the means and variances of ijâ  and 

,,ˆ jibi are to be defined by considering the 

distribution function of each of the random variables. 

Here, in the sequel of finding the value of a random 

variable, let the random variables are normally 

distributed, and let f( y ) be the distribution function 

of the random variable ,Y (say). Then, since f ( y ) is a 

monotonically non-decreasing function, the value of 

the corresponding variable y can be found as:  

,10},))Pr(Y|yMax {)(  yf        (2) 

where ε indicates the satisficing level of probability.   

Now, since ijâ  and ib̂  are random variables, the 

conversion of them to deterministic ones can be 

described as follows.     

Let, )ˆˆ(ˆ
1





n

j
ijiji bxay                   (3) 

Since, iŷ  is linear combination of the normally 

distributed random variables, it will also be the 

normal distribution. 

    Now, the constraints set in (1) with '' type 

restrictions can be expressed as: 

   Pr .;,...,2,1,]0ˆ[ 11 mmmipy ii 
               (4)  

    For '' type of restriction, the probabilistic 

constraint in (1) takes the form: 
 

Pr ,]0ˆ[ ii py  i   = m1+1, m1+2,…,m.             (5)
 

Here, the three following cases may arise:   

(i) If ijâ , (i = 1,2,…,m1; j= 1,2,…,n) are only  

normally distributed random variables, then the 

deterministic equivalent expression for „≥‟ type 

probabilistic constraints take the form [36]: 

      

,)ˆ( {var)()ˆ( 21

1
ijiji

n

j
jij bxapfxaE  




 

i=1,2,...,m1     (say)  (6) 

    Proceeding in an analogous way, the another set of 

non- linear constraints corresponding to the chance 

constraints in (1) with „‟ type restriction can be 

obtained as   

    

,)ˆ( {var)()ˆ( 21

1
ijiji

n

j
jij bxapfxaE  



    

i=(m1+1),(m1+2),,...,m        (7) 

(ii)  If ib̂ ,(i=1,2,…, m1) are only  random variables, 

then as in the above case, the deterministic 

expression appear as: 

    

,0}])ˆ( {var)()ˆ([ 1

1

 



 iii

n

j
jij bpfbExa   

i=1,2,...,m1         (8) 

(iii) If ijâ , (i = 1,2,…,m1; j= 1,2,…,n) and ib̂  

(i=1,2,…,m1) are simultaneously normally distributed 

random variables, then the deterministic equivalent 

expression for „≥‟ type probabilistic constraints take 

the form: 

,0)ˆ(  var)1()ˆ( 1  
iii ypfyE  i=1,2,...,m1        (9) 

The similar cases arise for consideration of „ ‟ type 

probabilistic constraints. 

Now, FGP formulation of the problem is presented in 

the following Section 3. 

 

3. FGP Problem Formulation 
 

To formulate the FGP problem of the proposed 

MLPP in an inexact environment, the fuzzy 

aspiration levels of the objectives kF (k =1,2, …, K) 

and decision vectors kX (k=1,2,…,K-1) are to be 

determined first. Then, the defined fuzzy goals would 

have to be characterized by their membership 

functions for measuring the degree of achievement of 

the aspired levels of the goals specified in the 

decision making situation.  

 

3.1 Fuzzy Goal Description 

Let )( 21
B

k
kB
K

kBkB F;, ... ,, XXX and )( 21
W
k

kW
K

kWkW ; F, ... ,, XXX be 

the   independent   best   and least solutions,   
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respectively,   of   the   k-th   level   DM, k=1,2,…,K, 

where  ; MinF andMax
SS

)(F)(FF k
W
kk

B
k XX

XX 
  k=1,2,...,K. 

Then the fuzzy objective goals appear as:  

   B
kk FF

~
  , k= 1,2, …, K.                    (10)   

Now, in the fuzzy decision making context, the lower 

tolerance limit of the k-th level DM can be 

introduced as W

kF )( B

k

W

k FF   ,   k=1,2,…,K. 

Again in a hierarchical decision situation, since the 

benefit of a lower-level DM depends on the 

relaxation of the decision of the higher-level DMs, 

the fuzzy goals for the control vectors can be defined 

as  

 ~kX kB

kX  ,k = 1,2, …, K-1.               (11) 

Here '' ~ indicates the fuzzy version of '' in the 

sense of Zimmermann [14].  

    Now, let the DMs like to make cooperation each 

other, and relaxation on the decision of each of the 

upper-level DMs up to a certain level is made for the 

benefit of a lower level DM. 

The lower tolerance limit of the decision kX  can be 

determined as:     

).1(,...,2,1);(  KkkB
k

k
k

kW
k

k
k XXXX  

Then, characterization of membership functions of 

the defined fuzzy goals is presented in the Section 

3.2. 

 

3.2 Characterization of Membership 

Function 

The tolerance membership function for the fuzzy 

goals B
kk FF

~
 can be expressed as [20]:  
























W

BW

WB

W

B

kk

kkk

kk

kk

kk

kkF

F)(Fif,0

F)(FFif,
FF

F)(F

F)(F if    1,

)((Fμ

X

X
X

X

X

  

                     ,k=1,2,…,K.           (12) 

    Again, the tolerance membership function for the 

fuzzy goals 
Bk

kk XX ~ can be presented as: 
























k
k

kB
k

k
kk

k
kB
k

k
k

kB
k

XX

XXX
XX

XX

XX

XX

k

k
k

k

kk

if,0

if, 

 if    1,

)(μ                 

                                         ,k=1,2,…,K-1.     (13)                                                    

                                     

Now, the FGP model formulation of the problem is 

presented in the following Section 3.3. 

 

3.3 FGP Model Formulation 

In FGP model formulation, the defined membership 

functions in (12) and (13) are to be transformed into 

flexible goals by assigning the highest membership 

value (unity) as the aspiration level and introducing 

under- and over-deviational variables to each of 

them. 

Then, the minsum FGP model of the problem can be 

presented as [20]: 

Find )  ( KXXXX ,,, 21  so as to:  

    Minimize Z = 








 
1

11

K

k

kk

K

k

kk d wW  

 

and satisfy 

1
FF

F)(F

kk

kk 


 
kkWB

W

dd
X

; k=1,2,…,K           (14) 

I
  

  
kkk

k
kB
k

k
k 



   
k

XX

XX
 ; k=1,2,…,K-1      (15) 

subject to the system constraint sets defined in (6)-

(9).                                                                          (16)                                         

    Here, ,0, 
kk dd k = 1, 2,..., K, are the under- 

and over-deviational variables of the k-th objective 

goals in (14), and ,0,  
kk k=1,2,…,K-1 are the 

vectors of under- and over-deviational variables 

associated with the respective goals in (15) and Z 

represents the goal achievement function consisting 

of the weighted under-deviational variables and 

vectors of weighted under-deviational variables, 

where the numerical weights 

kW (k=1,2,…,K), 


kw (1,2,…,K-1)  (> 0), represent the relative 

weights of importance of achieving the goals to their 

aspired levels, and they are determined as [20]:  

 W ,
)

WBk
kk F(F

1



  for the defined goals in (14), 

 w ,
)XX(

k
k

kB
k   

k


  1  for the defined goals in (15). 
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    The effective use of the proposed approach is 

illustrated by a numerical example presented in the 

Section 4. 

 

4. An Illustrative Example 
  

The following chance constrained tri-level 

programming problem is considered. 

Let 21, xx and 3x be the decision variables under the 

control of the first-level, second- level and third-level 

DMs, respectively.  

Then, the MLPP is of the form: 

Maximize 3211 326 xxxF                      

(first-level problem)                   

and, for given 321 ,; xxx  solves 

    Maximize 3213212 365),,(F xxxxxx                

(second-level problem)  

and, for given 321 ;, xxx  solves 

Maximize 3213213 832),,(F xxxxxx          

(third-level problem) 

subject to   
   

0.958]ˆˆˆ[Pr 313212111  xaxaxa  

050.][Pr 1321  bxxx ˆ                             

0.90]ˆˆˆˆ[Pr 2323222121  bxaxaxa                                                                                                                                                                                                                              

(17)                       

where, 22322211131211
ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ baaabaaa are independent 

normally distributed random variables. 

Now, in the decision situation, let the means and 

variances of 131211
ˆ,ˆ,ˆ aaa and 1b̂  are successively 

given as (1, 5), (3, 16), (9, 4) and (2.5, 2).  

Again, the means and variances of 232221
ˆ,ˆ,ˆ aaa and 

2b̂  are successively given as (5, 3), (6, 4), (8, 5.5) 

and (7, 5). 

 Then, following the procedure, the deterministic 

equivalent of the successive constraints in (17) is 

obtained as:       

 ,8)41625(645.1 93 2

1
2

3

2

2

2

1321  xxxxxx      

5.174,321  xxx   

and .8)55.543(28.1 865 2

1

2
3

2
2

2
1321  xxxxxx                                                                                 

(18)  

Now, following the procedure, the individual optimal 

solutions of the three successive decision levels are 

obtained as:      

),1998.50;0.0552,(0.8482,)F;,,( 1

1

3

1

2

1

1
BBBB xxx

6.1087),;00.6327,(0.4625,)F;,,( 2

2

3

2

2

2

1
BBBB xxx   

),2914.5;6166.00.0765,(0.0645,)F;,,( 3

3

3

3

2

3

1
BBBB xxx

respectively. 

Then, the fuzzy goals can be obtained as: 

  1F ~ 5.1998, 2F ~ 6.1087, 3F ~ 5.2914,  

   and 1x ~
0.8482 and 2x ~

0.6327. 

The lower-tolerance limits of the objective goals are 

determined as:  

  ..;.;. 86211F 74311F51441F W
32

W
1  W

 

Now, let the first-level and second-level DMs feel 

that their respective control variables 1x  and 2x  can 

be relaxed up to 0.5 and 0.3, respectively, for benefit 

of the lowest level DM, and not beyond of them. 

So, )0.5( 0.5 1
1W
1

1
1

1Bxxx 
 

and 

)0.30.3( 2

2W

2

2

2

2Bxxx 
 
act as lower-tolerance limits 

of the decisions 1x and 2x , respectively. 

Following the procedure and using the above 

numerical values, the membership functions of the 

defined fuzzy goals can be constructed by using (12) 

and (13). 

Then, the executable FGP model is obtained as: 

Find ),,( 321 xxx so as to: 









21

321

0.3327

1

0.3482

1

d
3.4293

1
d

4.3656

1
d

3.6844

1
 =  ZMinimize

 

and satisfy 

1dd)5144.1326)(3.68441(:μ 113211F
 xxx

1dd)7431.1365)(4.36561(:μ 223212F  xxx

1dd)8621.1832)(3.42931(:μ 333213F  xxx

10.5).3482)(x01(:μ 1111x  
 

10.3))(x0.33271(:μ 2222x  
 

subject to the system constraints in (18).  

                                                                               (19) 

Here,   211332211 ,,,,,,,, dddddd and ),0(2   

represent the under- and over- deviational variables 

associated with the respective goals of the model in 

(19). 
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The LINGO (ver. 12.0) solver (the permissible size 

of instance is 500 variables and 250 constraints) is 

used to solve the problem. The model (variable size 

19, constraint size 23) is executed in Pentium IV 

CPU with 2.66 GHz Clock-pulse and 2GB RAM. 

The required CPU time is 0.01 second.  

 The resultant decision is obtained as:  

 0)0.5929,(0.5075,),,( 321 xxx      

  with ).793728995(5.1308,)F,F,(F 321 .,.  

 The achieved membership values are   

 
0.8804.μand8980.0μ

,2717.0μ ,0.7371μ,99680.μ

2x
1

x

3F2F1F





  

The result shows that the values of the objective 

functions as well as the membership values of the 

associated fuzzy are achieved on the basis of order of 

hierarchy introduced in the decision making context. 

Therefore, a satisfactory decision is achieved here 

from the view point of proper distribution of decision 

powers to the DMs in the decision making 

environment. 

Note 1: If the max- min fuzzy operator [14] is used to 

solve the problem (17) in the same decision making 

environment, where without defining membership 

goals, maximization of   in an objective function 

subject to all the defined membership functions „less 

than equal to‟ with 10   is considered, then 

the solution of the problem by using the Software 

LINGO (version 12.0) is found as: 

0.2753)0.4116,(0.3327,),,( 321 xxx
 
 

  with 26).4.959,4.10(3.6453,)F,F,(F 321   

The obtained membership values are  

0.5604.μand5623.0μ

,3866.0μ ,0.5166μ607,60.μ

2x
1

x

3F2F1F





 
    A diagrammatic presentation of the membership 

values achieved under the two different approaches is 

displayed in the Figure 1. 

 
 

Figure 1: Graphical representation of goal 

achievement under the two approaches. 

 

The results reflect that, although the hierarchical 

order of decision powers of the DMs is preserved for 

the use of max-min approach, the solution is inferior 

in comparison to the solution obtained by using the 

proposed FGP approach in terms of achieving a 

better decision of the leader in the decision making 

environment. Therefore, it may be claimed that the 

proposed approach is superior over a conventional 

one to solve problems of hierarchical decision 

organizations.    

 

5. Conclusion 
 

The main advantage of the proposed approach is that 

a compromise decision for achievement of aspired 

goal levels of the individual objectives individually in 

a hierarchical order can be made on the basis of 

relative weights of importance by satisfying their 

admissible tolerance values as defined in the decision 

making horizon. Further, the proposed FGP model is 

flexible enough to accommodate other different 

objectives as defined in the context of making 

decision, and that depends on the needs and desires 

of the DMs in an organizational system. Again, 

consideration of multiplicity of objectives at each 

decision level in a hierarchical decision system may 

be taken into account under the framework of the 

proposed model, which may be a problem in future 

study. 

 

However, it is expected that the approach presented 

here can contribute to future study in the field of real-

life multiobjective hierarchical decentralized decision 

problems in uncertain decision environment. 
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