
International Journal of Advanced Computer Research (ISSN (print): 2249-7277   ISSN (online): 2277-7970)  

Volume-2 Number-4 Issue-6 December-2012 

55 

 

Improved Tiled Bitmap Forensic Analysis Algorithm 
 

C. D. Badgujar
1
, G. N. Dhanokar

2
 

G. H. Raisoni Institute of Engineering and Management Jalgaon  

  

Abstract 
 

In Computer network world, the needs for security 

and proper systems of control are obvious and find 

out the intruders who do the modification and 

modified data. Nowadays Frauds that occurs in 

companies are not only by outsiders but also by 

insiders.  Insider may perform illegal activity & try 

to hide illegal activity. Companies would like to be 

assured that such illegal activity i.e. tampering has 

not occurred, or if it does, it should be quickly 

discovered. Mechanisms now exist that detect 

tampering of a database, through the use of 

cryptographically-strong hash functions. This paper 

contains a survey which explores the various beliefs 

upon database forensics through different 

methodologies using forensic algorithms and tools 

for investigations. Forensic analysis algorithms are 

used to determine who, when, and what data had 

been tampered.  Tiled Bitmap Algorithm introduces 

the notion of a candidate set (all possible locations 

of detected tampering(s)) and provides a complete 

characterization of the candidate set and its 

cardinality. Improved tiled bitmap algorithm will 

cover come the drawbacks of existing tiled bitmap 

algorithm. 
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1. Introduction 
 

This section summarizes the tamper detection 

approach. There are several related ideas that in 

concert allow tamper detection. 

 

 The first insight is that the DBMS can 

maintain the audit log in the background, by 

rendering a specified relation as a 

transaction-time table. This instructs the 

DBMS to retain previous tuples during 

update and deletion, along with their 

insertion and deletion/update time (the start 

and stop timestamps), in a manner 

completely transparent to the user 

application. An important property of all 

data stored in the database is that it is 

append-only: modifications only add 

information; no information is ever deleted. 

Hence, if old information is changed in any 

way, then tampering has occurred. Oracle 

supports transaction-time tables with its 

workspace manager.  

 The second insight is that the data modified 

(inserted/ updated/deleted) by a transaction 

can be cryptographically hashed to generate 

a secure one-way hash of the transaction.   

 The third insight is to digitally notarize this 

hash value with an external notarization 

service. So even if the intruder has full 

access to the database itself, the DBMS, and 

even the operating system and hardware, the 

intruder cannot change the hash value. This 

makes it exceedingly difficult to make a 

series of changes to the audit log that 

generates the same hash value.  

 

 
 

Fig 1:  Normal Operation and Audit Log 

Validation 

 

This basic approach differentiates two execution 

phases: normal processing, in which transactions are 

run and hash values are digitally notarized, and 

validation, in which the hash values are recomputed 

and compared with that previous notarized. It is 

during validation that tampering is detected, when the 

just-computed hash value doesn’t match those 
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previously notarized. Figure 1 illustrates these two 

phases. 

 

Initially database is running fine, processing many 

transactions per second. Periodically, say every night 

at midnight, it sends a hash value to the digital 

notarization service, receiving back a notarization ID 

that it inserts into the hash sequence. At some 

validator will perform validation. The validator, 

reports that our database has been tampered. The 

DBA and forensic analysis is initiated.  

 

The validator provides a vital piece of information, 

that tampering has taken place, but doesn’t offer 

much else. Since the hash value is the accumulation 

of every transaction ever applied to the database, 

validator can’t understand when the tampering 

occurred, or what portion of the audit log was 

corrupted. (Actually, the validator does provide a 

very vague sense of when: sometime before now, and 

where: somewhere in the data stored before now.)  

 

2. System Architecture  
 

System architecture along with the flow of 

information during normal processing and tamper 

detection are illustrated in Figure 2. 

A user application performs transactions on the 

monitored database, each of which insert, delete, and 

update rows of the current state. Behind the scenes, 

DBMS (an extension of DBMS with transaction-time 

support) maintains the audit log by rendering a 

specified relation as a transaction time table. On each 

modification of a tuple, the DBMS is responsible for 

hashing the tuples. (The flow of information 

described is shown with pink arrows.) When a 

transaction commits, the DBMS obtains a timestamp 

and computes a cryptographically strong one-way 

hash function of the tuple data and the timestamp. 

The hash values obtained from the different 

transactions are cumulatively hashed and thus linked 

with each other in order to create a hash chain which 

at each time instant represents all the data in the 

database. This chain is termed the total hash chain. 

A module called a notarizer periodically sends that 

hash value, as a digital document, to an external 

digital notarization service (EDNS) such as Surety 

(www.surety.com), which notarizes the hash and 

returns a notary ID. The notary ID along with the 

initially computed hash values is stored in a separate 

smaller MySQL-managed database. (The flow of 

information described is shown with red arrows.) 

This database, termed the secure master database, is 

assumed to exist in a secure site which is in a 

different physical location from the monitored 

database. 

 
 

Fig 2: System Architecture for Normal Processing 

 

Figure 2 also shows how tamper detection is 

achieved. At a later point in time an application 

called the validator initiates a scan of the entire 

database and hashes the scanned data along with the 

timestamp of each tuple. The validator retrieves the 

previously stored (during notarization) notary ID 

from the secure master database and sends the 

information to the EDNS (information flow shown 

with blue arrows). The EDNS then locates the 

notarized document/hash using the provided notary 

ID and checks if the old and the new hash values are 

consistent. If not, then the monitored database has 

been compromised. The validator stores the 

validation result in the secure master database 

(information flow shown with green arrows). The 

computation of the total chain, together with the 

periodic notarizations and validations comprise the 

normal processing execution phase of the system. 

 

3. Tiled Bitmap Algorithm 
 

Validation provides a single bit of information: has 

the database been tampered with? To provide more 

information about when and what, we must hash the 

data of various sequences of transactions during 

validation. The database transactions are hashed in 

commit order creating a hash chain. Then, during 

forensic analysis of a subsequent validation that 
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detected tampering, those chains can be rehashed to 

provide a sequence of truth values (success or 

failure), which can be used to narrow down “what.” 

 

 
Fig 3: Corruption diagram for the Tiled Bitmap 

Algorithm 

 

Table 1: Description of symbols 

 

 
 

The Tiled Bitmap algorithm uses a logarithmic 

number of chains for each “tile” of duration IN. The 

spatial resolution in this case can thus be arbitrarily 

shrunk with the addition of a logarithmic number of 

chains in the group. More specifically, the number of 

chains which constitute a tile is 1 +lg(IN / Rs). It is 

denoted by the ratio IN / Rs by N, the notarization 

factor. Value of N is required to be a power of 2. This 

implies that for all the algorithms, IN = N・Rs and Rt 

= V・IN = V・N・Rs. Also, because of the fact that 

Rs can vary so define D to be the number of Rs units 

in time interval from the start until tFVF, D = tFVF / Rs. 

Tiled Bitmap Algorithm may handle multiple CEs 

but it potentially overestimates the degree of 

corruption by returning the candidate set with 

granules which may or may not have suffered 

corruption (false positives). Figure 3 shows that the 

Tiled Bitmap Algorithm will produce a candidate set 

with the following granules: 19, 20, 23, 24, 27, 28, 

31, 32. The corruptions occur on granules 19, 20 and 

27 while the rest are false positives.  

 

4. Example 
 

 
Fig 4: The Bitmap of a Single Tile 

 

Let us turn to an example involving a corruption. 

Consider CE1 in Figure 3. When the first tile is found 

in which a corruption has occurred via binary search 

in order to locate tRVS. In this figure CE1 has tl = 19 

and a relative position within the second IN of 2. If 
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validator validate the hash chains of the tile in which 

the CE transpired then validator get the string 00010 

(most significant bit corresponds to the chain which 

covers all the units in IN), termed the target bit 

pattern. The numerical value of the target string 

00010 is 2 which is exactly the relative position of 

the granule within the second IN. 

 

Now, let’s see what happens if a timestamp 

corruption occurs and both tl and tp are within the 

same tile. Figure 3 also shows a postdating CE2 with 

tl = 20 and tp = 27 which are both in the second tile 

(IN = 16). If each of these were to appear on their own 

the target bit patterns produced by the tile validation 

would be 0011 (3rd granule within N) and 1010 (10th 

granule within N). However, since both occur at the 

same time within the same IN and the hash chains are 

linked together, then the bit patterns given above are 

ANDed and the target 0010 is the actual result of the 

validation, as shown in Figure 4. This target 

corresponds to the existence of the two suspect days tl 

and tp without being able to distinguish between the 

two. 

 
 

Fig 5: CEs resulting in the same target bit pattern 

 

In reality the situation is more involved: when 

dealing with multiple CEs there might be many 

combinations of bit patterns which when ANDed can 

yield the target bit pattern computed during forensic 

analysis. Thus even in the simple case where a single 

post/backdating CE does not have its endpoints in 

different tiles can introduce ambiguity. For example, 

analyzer can’t distinguish between the two scenarios 

shown in Figure 5 because in both cases the target bit 

pattern is the same. In the first case, both CE2 and 

CE3 produce the target bit pattern 0010 because the 

AND operation is commutative: 0011 ∧ 1010 = 1010 

∧ 0011. For this reason analyzer cannot distinguish 

between CE2 and CE3. Moreover, distinguishing 

between CE2, CE3 and CE4, CE5 is also impossible 

because CE4 and CE5 also produce the same target 

bit pattern as before. More specifically, CE4 

produces the bit pattern 0010 ∧ 0111 = 0010 and CE5 

produces again 0110 ∧ 1010 = 0010. 

 

5. Proposed Work 

 
Existing Tiled bitmap algorithm can simply find out 

the possible combination of candidate set which 

contains false positives. So it is unclear to get exact 

information about tampering. Our improved tiled 

bitmap algorithm will be able to find out the exact 

information about the tampering of data as shown in 

figure 6. When we project CE on X-axis it should 

provide the commit time and when we project CE on 

Y-axis it should provide exact clock time.  

 
 

Fig 6:  Improved Tiled Bitmap Algorithm 

 

The partial hash chains within a tile are denoted by 

C0(T), C1(T),…. Clg(Iv)(T) ; with Ci(T) denoting the i
th

 

hash chain of the tile which starts at time instant T. 

On line 4, the algorithm iterates through the different 

tiles and checks if the longest partial chain C0(T) 

evaluates to FALSE. If not, it moves on to the next 

tile. If the chain evaluates to FALSE (line 5), the 

algorithm iterates through the rest of the partial 

chains in the tile (line 7) and “concatenates” the result 

of each validation to form the target number (line 8). 

Then, the candidate Set function is called (line 9) to 

compute the entire candidate set elements from the 

target number. On lines 10–12, the candidate 

granules are renumbered to reflect their global 

position. The function renumber( ) on line 11 uses Rs 

to find the global position of r, computing g as a 
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single granule, or group of granules if Rs > 1. Once 

the Cset is reported, the administrator can exactly 

pinpoint the corrupted tuples.  

 

 
 

Fig 7:  Tiled Bitmap Algorithm 

 

6. Conclusion 
 

We have seen that the existence of multi-locus CEs 

can be better handled by summarizing the sites of 

corruption via candidate sets, instead of trying to find 

their precise nature. We proceed now to develop a 

new algorithm that avoids the limitations of all the 

previous algorithms and at the same time handles the 

existence of multi-locus CEs successfully. 
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