
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

55

Improved Tiled Bitmap Forensic Analysis Algorithm

C. D. Badgujar
1
, G. N. Dhanokar

2

G. H. Raisoni Institute of Engineering and Management Jalgaon

Abstract

In Computer network world, the needs for security

and proper systems of control are obvious and find

out the intruders who do the modification and

modified data. Nowadays Frauds that occurs in

companies are not only by outsiders but also by

insiders. Insider may perform illegal activity & try

to hide illegal activity. Companies would like to be

assured that such illegal activity i.e. tampering has

not occurred, or if it does, it should be quickly

discovered. Mechanisms now exist that detect

tampering of a database, through the use of

cryptographically-strong hash functions. This paper

contains a survey which explores the various beliefs

upon database forensics through different

methodologies using forensic algorithms and tools

for investigations. Forensic analysis algorithms are

used to determine who, when, and what data had

been tampered. Tiled Bitmap Algorithm introduces

the notion of a candidate set (all possible locations

of detected tampering(s)) and provides a complete

characterization of the candidate set and its

cardinality. Improved tiled bitmap algorithm will

cover come the drawbacks of existing tiled bitmap

algorithm.

Keywords

Temporal databases, EDNS, DBMS,

1. Introduction

This section summarizes the tamper detection

approach. There are several related ideas that in

concert allow tamper detection.

 The first insight is that the DBMS can

maintain the audit log in the background, by

rendering a specified relation as a

transaction-time table. This instructs the

DBMS to retain previous tuples during

update and deletion, along with their

insertion and deletion/update time (the start

and stop timestamps), in a manner

completely transparent to the user

application. An important property of all

data stored in the database is that it is

append-only: modifications only add

information; no information is ever deleted.

Hence, if old information is changed in any

way, then tampering has occurred. Oracle

supports transaction-time tables with its

workspace manager.

 The second insight is that the data modified

(inserted/ updated/deleted) by a transaction

can be cryptographically hashed to generate

a secure one-way hash of the transaction.

 The third insight is to digitally notarize this

hash value with an external notarization

service. So even if the intruder has full

access to the database itself, the DBMS, and

even the operating system and hardware, the

intruder cannot change the hash value. This

makes it exceedingly difficult to make a

series of changes to the audit log that

generates the same hash value.

Fig 1: Normal Operation and Audit Log

Validation

This basic approach differentiates two execution

phases: normal processing, in which transactions are

run and hash values are digitally notarized, and

validation, in which the hash values are recomputed

and compared with that previous notarized. It is

during validation that tampering is detected, when the

just-computed hash value doesn’t match those

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

56

previously notarized. Figure 1 illustrates these two

phases.

Initially database is running fine, processing many

transactions per second. Periodically, say every night

at midnight, it sends a hash value to the digital

notarization service, receiving back a notarization ID

that it inserts into the hash sequence. At some

validator will perform validation. The validator,

reports that our database has been tampered. The

DBA and forensic analysis is initiated.

The validator provides a vital piece of information,

that tampering has taken place, but doesn’t offer

much else. Since the hash value is the accumulation

of every transaction ever applied to the database,

validator can’t understand when the tampering

occurred, or what portion of the audit log was

corrupted. (Actually, the validator does provide a

very vague sense of when: sometime before now, and

where: somewhere in the data stored before now.)

2. System Architecture

System architecture along with the flow of

information during normal processing and tamper

detection are illustrated in Figure 2.

A user application performs transactions on the

monitored database, each of which insert, delete, and

update rows of the current state. Behind the scenes,

DBMS (an extension of DBMS with transaction-time

support) maintains the audit log by rendering a

specified relation as a transaction time table. On each

modification of a tuple, the DBMS is responsible for

hashing the tuples. (The flow of information

described is shown with pink arrows.) When a

transaction commits, the DBMS obtains a timestamp

and computes a cryptographically strong one-way

hash function of the tuple data and the timestamp.

The hash values obtained from the different

transactions are cumulatively hashed and thus linked

with each other in order to create a hash chain which

at each time instant represents all the data in the

database. This chain is termed the total hash chain.

A module called a notarizer periodically sends that

hash value, as a digital document, to an external

digital notarization service (EDNS) such as Surety

(www.surety.com), which notarizes the hash and

returns a notary ID. The notary ID along with the

initially computed hash values is stored in a separate

smaller MySQL-managed database. (The flow of

information described is shown with red arrows.)

This database, termed the secure master database, is

assumed to exist in a secure site which is in a

different physical location from the monitored

database.

Fig 2: System Architecture for Normal Processing

Figure 2 also shows how tamper detection is

achieved. At a later point in time an application

called the validator initiates a scan of the entire

database and hashes the scanned data along with the

timestamp of each tuple. The validator retrieves the

previously stored (during notarization) notary ID

from the secure master database and sends the

information to the EDNS (information flow shown

with blue arrows). The EDNS then locates the

notarized document/hash using the provided notary

ID and checks if the old and the new hash values are

consistent. If not, then the monitored database has

been compromised. The validator stores the

validation result in the secure master database

(information flow shown with green arrows). The

computation of the total chain, together with the

periodic notarizations and validations comprise the

normal processing execution phase of the system.

3. Tiled Bitmap Algorithm

Validation provides a single bit of information: has

the database been tampered with? To provide more

information about when and what, we must hash the

data of various sequences of transactions during

validation. The database transactions are hashed in

commit order creating a hash chain. Then, during

forensic analysis of a subsequent validation that

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

57

detected tampering, those chains can be rehashed to

provide a sequence of truth values (success or

failure), which can be used to narrow down “what.”

Fig 3: Corruption diagram for the Tiled Bitmap

Algorithm

Table 1: Description of symbols

The Tiled Bitmap algorithm uses a logarithmic

number of chains for each “tile” of duration IN. The

spatial resolution in this case can thus be arbitrarily

shrunk with the addition of a logarithmic number of

chains in the group. More specifically, the number of

chains which constitute a tile is 1 +lg(IN / Rs). It is

denoted by the ratio IN / Rs by N, the notarization

factor. Value of N is required to be a power of 2. This

implies that for all the algorithms, IN = N・Rs and Rt

= V・IN = V・N・Rs. Also, because of the fact that

Rs can vary so define D to be the number of Rs units

in time interval from the start until tFVF, D = tFVF / Rs.

Tiled Bitmap Algorithm may handle multiple CEs

but it potentially overestimates the degree of

corruption by returning the candidate set with

granules which may or may not have suffered

corruption (false positives). Figure 3 shows that the

Tiled Bitmap Algorithm will produce a candidate set

with the following granules: 19, 20, 23, 24, 27, 28,

31, 32. The corruptions occur on granules 19, 20 and

27 while the rest are false positives.

4. Example

Fig 4: The Bitmap of a Single Tile

Let us turn to an example involving a corruption.

Consider CE1 in Figure 3. When the first tile is found

in which a corruption has occurred via binary search

in order to locate tRVS. In this figure CE1 has tl = 19

and a relative position within the second IN of 2. If

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

58

validator validate the hash chains of the tile in which

the CE transpired then validator get the string 00010

(most significant bit corresponds to the chain which

covers all the units in IN), termed the target bit

pattern. The numerical value of the target string

00010 is 2 which is exactly the relative position of

the granule within the second IN.

Now, let’s see what happens if a timestamp

corruption occurs and both tl and tp are within the

same tile. Figure 3 also shows a postdating CE2 with

tl = 20 and tp = 27 which are both in the second tile

(IN = 16). If each of these were to appear on their own

the target bit patterns produced by the tile validation

would be 0011 (3rd granule within N) and 1010 (10th

granule within N). However, since both occur at the

same time within the same IN and the hash chains are

linked together, then the bit patterns given above are

ANDed and the target 0010 is the actual result of the

validation, as shown in Figure 4. This target

corresponds to the existence of the two suspect days tl

and tp without being able to distinguish between the

two.

Fig 5: CEs resulting in the same target bit pattern

In reality the situation is more involved: when

dealing with multiple CEs there might be many

combinations of bit patterns which when ANDed can

yield the target bit pattern computed during forensic

analysis. Thus even in the simple case where a single

post/backdating CE does not have its endpoints in

different tiles can introduce ambiguity. For example,

analyzer can’t distinguish between the two scenarios

shown in Figure 5 because in both cases the target bit

pattern is the same. In the first case, both CE2 and

CE3 produce the target bit pattern 0010 because the

AND operation is commutative: 0011 ∧ 1010 = 1010

∧ 0011. For this reason analyzer cannot distinguish

between CE2 and CE3. Moreover, distinguishing

between CE2, CE3 and CE4, CE5 is also impossible

because CE4 and CE5 also produce the same target

bit pattern as before. More specifically, CE4

produces the bit pattern 0010 ∧ 0111 = 0010 and CE5

produces again 0110 ∧ 1010 = 0010.

5. Proposed Work

Existing Tiled bitmap algorithm can simply find out

the possible combination of candidate set which

contains false positives. So it is unclear to get exact

information about tampering. Our improved tiled

bitmap algorithm will be able to find out the exact

information about the tampering of data as shown in

figure 6. When we project CE on X-axis it should

provide the commit time and when we project CE on

Y-axis it should provide exact clock time.

Fig 6: Improved Tiled Bitmap Algorithm

The partial hash chains within a tile are denoted by

C0(T), C1(T),…. Clg(Iv)(T) ; with Ci(T) denoting the i
th

hash chain of the tile which starts at time instant T.

On line 4, the algorithm iterates through the different

tiles and checks if the longest partial chain C0(T)

evaluates to FALSE. If not, it moves on to the next

tile. If the chain evaluates to FALSE (line 5), the

algorithm iterates through the rest of the partial

chains in the tile (line 7) and “concatenates” the result

of each validation to form the target number (line 8).

Then, the candidate Set function is called (line 9) to

compute the entire candidate set elements from the

target number. On lines 10–12, the candidate

granules are renumbered to reflect their global

position. The function renumber() on line 11 uses Rs

to find the global position of r, computing g as a

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

59

single granule, or group of granules if Rs > 1. Once

the Cset is reported, the administrator can exactly

pinpoint the corrupted tuples.

Fig 7: Tiled Bitmap Algorithm

6. Conclusion

We have seen that the existence of multi-locus CEs

can be better handled by summarizing the sites of

corruption via candidate sets, instead of trying to find

their precise nature. We proceed now to develop a

new algorithm that avoids the limitations of all the

previous algorithms and at the same time handles the

existence of multi-locus CEs successfully.

References

[1] Kyriacos E. Pavlou and Richard T. Snodgrass,

“The Tiled Bitmap Forensic Analysis

Algorithm,” IEEE transaction on knowledge and

data engineering, Vol. 22, pp no.590-601, April

2010.

[2] Nina Godbole and Sunit Belapure, “Cyber

Security, Understanding Computer Forensics and

Legal Perspectives”, Wiley-India, 2011.

[3] Harmeet Kaur Khanuja and D.S.Adane,

“Database Security Threats and Challenges in

Database Forensic: A Survey,” International

Conference on Advancements in Information

Technology With workshop of ICBMG 2011.

[4] Jayshree T. Agale & Shefali .P.Sonavane, “Hash

Based Intrusion Detection and Forensic Analysis

of Tampered Database,” ICCSIT-10th June,

2012.

[5] Kyriacos E. Pavlou and Richard T. Snodgrass,

“Forensic Analysis of Database Tampering,”

ACM Transactions on Database Systems,

September 2008.

[6] By Aaron C. Newman, CTO & Founder,

“Security Auditing In Microsoft SQL Server”,

Application Security, Inc, 2005.

[7] Richard T. Snodgrass, Shilong Stanley Yao and

Christian Collberg, “Tamper Detection in Audit

Logs,” Proceedings of the 30th VLDB

Conference, Toronto, Canada, 2004.

Chandrashekhar Badgujar received

the ME degree in CSE from NMIMS,

Shirpur. He is currently working as

Assistant Professor, Department of

CSE, G. H. Raisoni Institute of

Engineering And Management Jalgaon.

Ganesh Dhanokar received the BE

degree in IT from Amravati University

in 2010. He is currently pursuing PG

under the guidance of Mr. C. D.

Badgujar from North Maharashtra

University.

