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Abstract 
 

In this paper, a genetic algorithm based approach 

for job scheduling in distributed system considering 

dynamic load balancing is discussed. The 

underlying distributed system has hierarchical 

structure and job scheduling is done in two levels: 

group level and node level. Scheduling in 

distributed system involves deciding not only when 

to execute a process, but also where to execute it. A 

proper job scheduling will enhance the processor 

utilization, reduces execution time and increases 

system throughput. A power of Genetic algorithm 

will give the optimal solution for scheduling of job. 

The job scheduling is centralized at each node in a 

hierarchy and genetic algorithm is applied to each 

central node. This centralized job scheduling policy 

considers load balancing to prevent the node 

connected in the system from getting overloaded or 

become idle ever(if possible). 
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1. Introduction 
 

Distributed heterogeneous computing is being widely 

applied to a variety of large size computational 

problems. These computational environments are 

consists of multiple heterogeneous computing 

modules, these modules interact with each other to 

solve the problem [2,3]. In a Heterogeneous 

distributed computing system (HDCS), processing 

loads arrive from many users at random time instants. 

A proper scheduling policy attempts to assign these 

loads to available computing nodes so as to complete 

the processing of all loads in the shortest possible 

time. There are number of techniques and 

methodologies for scheduling processes of a 

distributed system. These are task assignment, load-

balancing, load-sharing approaches [4,5]. Due to 

heterogeneity of computing nodes, jobs encounter 

different execution times on different processors. 

In task assignment approach, each process submitted 

by a user for processing is viewed as a collection of 

related tasks and these tasks are scheduled to suitable 

nodes so as to improve performance. In load sharing 

approach simply attempts to conserve the ability of 

the system to perform work by assuring that no node 

is idle while processes wait for being processed. In 

load balancing approach, processes submitted by the 

users are distributed among the nodes of the system 

so as to equalize the workload among the nodes at 

any point of time. 

 

A Genetic Algorithm (GA) is a search algorithm 

based on the principles of evolution and natural 

genetics [1, 2, 7, 8, 9]. GA combines the exploitation 

of past results with the exploration of new areas of 

the search space. By using survival of the fittest 

techniques combined with a structured yet 

randomized information exchange, a GA can mimic 

some of the innovative flair of a human search. A 

generation is a collection of artificial creatures 

(strings). In every new generation, a set of strings is 

created using information from the previous ones. 

 

The organization of this paper is as follows. After the 

introduction in section 1, different load balancing 

approaches has been elaborated in section 2. Problem 

definition and system model is given in section 3. 

Load balancing using GA has been proposed in 

section 4.  Finally, concluding remarks appear in 

section 5.  

 

2. Organization of Load Balancing 

schemes  
 

The load balancing algorithms in general purpose 

distributed computing systems is presented and the 

organization of the different load balancing schemes 

is shown in Figure 2.1[4, 5, 7, 8, 9] 
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Figure 2.1: Load balancing schemes  

 

2.1 Local vs. Global[4]  
A distinction is drawn between local and global 

scheduling at the top level. The local scheduling 

discipline determines how the processes resident on a 

single CPU is residing and executed. A global 

scheduling policy uses information about the system 

to allocate processes to multiple processors to 

optimize a system-wide performance. Grid 

scheduling falls into the global scheduling branch. 

 

2.2 Static versus Dynamic[4,5,7]  
The Static load balancing, also known as 

deterministic distribution, assigns a given job to a 

fixed resource. Every time the system is restarted, the 

same binding task resource is used without 

considering changes that may occur during the 

system lifetime. In this approach, every task 

comprising the application is assigned once to a 

resource. So, the placement of an application is static, 

and a firm estimate of the computation cost can be 

made in advance of the actual execution. 

The Dynamic load balancing takes into account the 

fact that the system parameters may not be known 

beforehand. That’s why we don’t use a fixed or static 

scheme will eventually produce poor results .A 

dynamic strategy gives good results rather then the 

static. A dynamic strategy is usually executed several 

times and may reassign a previously scheduled task 

to a new resource based on the current state of system 

environment. 

The benefits of dynamic over static load balancing 

are that the system needs not be aware of the run-time 

behaviour of the application before execution. For 

dynamic strategies, the main problem is how to 

characterize the exact workload of a system, while it 

changes in a continuous way. Dynamic strategies can 

be applied both for homogeneous or heterogeneous 

platforms with different degree of performances. 

 

2.3 Optimal vs. Suboptimal[4,8,9] 
All information regarding the state of resources and 

the jobs is known, an optimal assignment could be 

made based on some criterion function, such as 

minimum makespan and maximum resource 

utilization. Due to the NP-Complete nature of 

scheduling algorithms and the difficulty in Grid 

scenarios to make reasonable assumptions which are 

usually required to prove the optimality of an 

algorithm, current research tries to find suboptimal 

solutions, which can be further divided into the 

following two general categories[4].  

1. Approximate and  

2. Heuristic.  

 

2.4 Approximate vs. Heuristic[7,8] 
 The approximate algorithms used in formal 

computational models, but instead of searching the 

entire solution space for an optimal solution, they are 

satisfied when a solution that is sufficiently good is 

found. In the case where a metric is available for 

evaluating a solution, this technique can be used to 

reduce the time taken to find an acceptable schedule. 

 

2.5 Distributed vs. Centralized[4,9] 
The responsibility of dynamic load balancing is for 

making global decisions may lie with one centralized 

location, or be shared by multiple distributed 

locations. The centralized strategy has the advantage 

for the implementation, but suffers from the lack of 

scalability, fault tolerance and the possibility of 

becoming a performance bottleneck. In distributed 

strategy, the state of resources is distributed among 

the nodes that are responsible for managing their own 

resources or allocating tasks residing in their queues 

to other nodes. 

 

2.6 Cooperative vs. Non-cooperative[7,9] 
 If a distributed load balancing mode is adopted then 

the next issue that should be considered is whether 

the nodes involved in job balancing are working 

independently or cooperatively. In the 

noncooperative case, an individual system load 

balancing acts as alone as autonomous entities and 

make the decisions regarding their own objectives 

independently of these decisions effects about the rest 

of the system. 
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3. Problem definition and system 

model 
 

3.1 Heterogeneous distributed computing 

system  

Heterogeneous distributed computing system 

(HDCS)[10,11,13] utilizes a distributed suite of 

different high-performance machines, interconnected 

with high-speed links, to perform different 

computationally intensive applications that have 

diverse computational requirements. Distributed 

computing provides the capability for the utilization 

of remote computing resources and allows for 

increased levels of flexibility, reliability, and 

modularity. In heterogeneous distributed computing 

system the computational power of the computing 

entities are possibly different for each processor as 

shown in figure 3.1.  

 

  
 

Figure 3.1: Heterogeneous distributed system  

 

A large heterogeneous distributed computing system 

(HDCS) consists of potentially millions of 

heterogeneous computing nodes connected by the 

global Internet. The applicability and strength of 

HDCS are derived from their ability to meet 

computing needs to appropriate resources. Resource 

management sub systems of the HDCS are 

designated to schedule the execution of the tasks that 

arrive for the service. HDCS environments are well 

suited to meet the computational demands of large, 

diverse groups of tasks. The problem of optimally 

mapping also defined as matching and scheduling. 

 

3.2 Hierarchical structure 

In this paper, it is supposed that underlying 

distributed system has hierarchical structure. Fig.3.2 

shows this structure[6,10]. In the designed structure, 

load balancing is done in two levels: group level, 

which is done by Global Load Balancer (GLB) and 

node level, that is done by Local Load 

Balancer(LLB). This case cause significantly lower 

communication overheads that aroused from 

collecting of the state information. Several nodes 

make one group. In any group, there is one node as 

designated representative (DR). DRs do local load 

balancing and communicate with the GLB. Nodes of 

each group are connected only to their group’s DR. 

Task that is allocated to any group and node is 

processed in that group and node, and there is no 

other replacement. There is no connection between 

groups. GLB is connected to each group’s DR. Load 

balancing mechanism is centralized in both levels. 

 

 

Figure 3.2: the underlying system 

 

3.3 Dynamic load distribution algorithms 

A dynamic load distribution algorithm must be 

general, adaptive, stable, fault tolerant and 

transparent to applications. Load balancing 

algorithms can be classified as (i) global vs. local, (ii) 

centralized vs. decentralized, (iii) Non-cooperative 

vs. cooperative, and (iv) adaptive vs. non adaptive 

[7,13]. In this paper we have used centralized load 

balancing algorithm, a central node collects the load 

information from the other computing nodes in 

HDCS. Central node communicates the assimilated 

information to all individual computing nodes, so that 

the nodes get updated about the system state. This 

updated information enables the nodes to decide 

whether to migrate their process or accept new 

process for computation. The computing nodes may 

depend upon the information available with central 

node for all allocation decision. 

 

Scheduling of tasks in a load balancing distributed 

system involves deciding not only when to execute a 

process, but also where to execute it. Accordingly, 

scheduling in a distributed system is accomplished by 

two components [4]: the allocator and the scheduler. 

The allocator decides where a job will execute and 

the scheduler decides when a job gets its share of the 

computing resource at the node. 

 

4. Load balancing using Genetic 

algorithm 
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In this section, an algorithm which utilizes GA for 

load balancing in HDCS is given. Genetic algorithms 

work with a population of the potential solutions of 

the candidate problem represented in the form of 

chromosomes. Each chromosome is composed of 

variables called genes. Each chromosome (genotype) 

maps to a fitness value (phenotype) on the basis of 

the objective function of the candidate problem. Jobs 

arrive at unknown intervals for processing and are 

placed in the Global central scheduler queue of 

unscheduled tasks from which tasks are assigned to 

processors. Each task is having a task number and a 

size. GA follows the concept of solution evolution by 

stochastically developing generations of solution 

populations using a given fitness statistic. They are 

particularly applicable to problems which are large, 

nonlinear and possibly discrete in nature, features that 

traditionally add to the degree of complexity of 

solution. Due to the probabilistic development of the 

solution, GA does not guarantee optimality even 

when it may be reached. However, they are likely to 

be close to the global optimum. This probabilistic 

nature of the solution is also the reason they are not 

contained by local optima. The proposed algorithm 

for load balancing is presented in figure 4.1. 

Figure 4.1: Load balancing algorithm 

 

4.1 Genotype 

In the GA-Based algorithm each chromosome 

corresponds to a solution to the problem. The genetic 

representation of individuals is called Genotype.  

 

4.2 Initial Population  

This will initialize a population of possible solutions. 

This can be achieved using the sliding window 

technique. The window size is fixed, with the number 

of elements in each string equal to the size of the 

window. 

 

4.3 Fitness Function  

The main objective of GA is to find a node with 

optimal cost for load-balancing. The fitness function 

will have a fitter node where the task should be 

transferred such that it has less execution time, less 

communication cost, higher processor utilization and 

maximum system throughput. 

The objective is derived on the basis of the load 

deviation that occurs in each node at each level. In 

ideal case i.e. when the load is evenly distributed 

among the nodes, load deviation is zero. But often it 

may not be possible. Therefore, load deviation is 

minimized to its fullest possible extent. In order to 

calculate the load deviation amongst the nodes, we 

have to calculate the total load of the node connected 

in the system. The mean can be computed using total 

load and number of nodes (m) in the network.  

The calculations are as follows: 

 

At any node i, load at a node is obtained by using the 

equation.  

 

               ∑ [          ]                                  

where r is the numbers of jobs allocated to the node i 

and p,q,r are the number of pending, queued or  

running jobs. 

                    ∑ [  ]
 
   

                                           

Mean load of a node is obtained as- 

               
      

      
 

                                        
        

Thus, objective function for the load deviation of a 

node is given as – 

       (√
 

 
∑ (         )

  
    )                      

where Lj is the load at the node j, Lmean is the 

average load and m is the number of nodes Equation 

(4) depicts the overall load deviation at each level in 

a distributed system. In this, objective is to minimize 

this value to get the optimal load distribution.  

 

4.4 Selection  

The selection process used here is based on spinning 

the roulette wheel, which each chromosome in the 

population has a slot sized in proportion to its fitness. 

Each time we require an offspring, a simple spin of 

the weighted roulette wheel gives a parent 

chromosome.  

 

4.5 Crossover  

Crossover is generally used to exchange portions 

between strings. A Single-Point Crossover operator 

randomly selects a point, called Crossover point, on 

the selected chromosomes, then swaps the bottom 

halves after crossover point, including the gene at the 
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crossover point and generates two new chromosomes 

called children.  

 

4.6 Mutation  

Mutation is used to change the genes in a 

chromosome. Mutation replaces the value of a gene 

with a new value from defined domain for that gene. 

Mutation is not always affected, the invocation of the 

Mutation depend on the probability of the Mutation 

Pm. 

 

5. Conclusion 
 

This paper deals with the load balancing in 

hierarchical structured distributed system with 

emphasis on the observation of load deviation and 

load distribution among the nodes. Load balancing in 

distributed operating systems has a significant role in 

overall system performance and throughput. The 

scheduling in distributed systems is known as an NP-

complete problem even in the best conditions. We 

have presented and evaluated a GA-Based method to 

solve this problem. This algorithm considers 

multiobjectives in its solution evaluation and 

provides a node with a load that protects node from 

being overloaded or idle which will simultaneously 

minimizes maxspan, communication cost and 

maximizes average processor utilization.   
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