
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

68

An Efficient load balancing using Genetic algorithm in

Hierarchical structured distributed system

Priyanka Gonnade
1
, Sonali Bodkhe

2

Mtech Student Dept. of CSE, Priyadarshini Instiute of Engineering and Technology, Nagpur, India
1

 Faculty Dept. of CSE, Priyadarshini Instiute of Engineering and Technology, Nagpur, India
2

Abstract

In this paper, a genetic algorithm based approach

for job scheduling in distributed system considering

dynamic load balancing is discussed. The

underlying distributed system has hierarchical

structure and job scheduling is done in two levels:

group level and node level. Scheduling in

distributed system involves deciding not only when

to execute a process, but also where to execute it. A

proper job scheduling will enhance the processor

utilization, reduces execution time and increases

system throughput. A power of Genetic algorithm

will give the optimal solution for scheduling of job.

The job scheduling is centralized at each node in a

hierarchy and genetic algorithm is applied to each

central node. This centralized job scheduling policy

considers load balancing to prevent the node

connected in the system from getting overloaded or

become idle ever(if possible).

Keywords

Heterogeneous distributed computing system (HDCS),

Genetic Algorithm, Global Load Balancer (GLB), Local

Load Balancer (LLB), and Designated Representative

(DR).

1. Introduction

Distributed heterogeneous computing is being widely

applied to a variety of large size computational

problems. These computational environments are

consists of multiple heterogeneous computing

modules, these modules interact with each other to

solve the problem [2,3]. In a Heterogeneous

distributed computing system (HDCS), processing

loads arrive from many users at random time instants.

A proper scheduling policy attempts to assign these

loads to available computing nodes so as to complete

the processing of all loads in the shortest possible

time. There are number of techniques and

methodologies for scheduling processes of a

distributed system. These are task assignment, load-

balancing, load-sharing approaches [4,5]. Due to

heterogeneity of computing nodes, jobs encounter

different execution times on different processors.

In task assignment approach, each process submitted

by a user for processing is viewed as a collection of

related tasks and these tasks are scheduled to suitable

nodes so as to improve performance. In load sharing

approach simply attempts to conserve the ability of

the system to perform work by assuring that no node

is idle while processes wait for being processed. In

load balancing approach, processes submitted by the

users are distributed among the nodes of the system

so as to equalize the workload among the nodes at

any point of time.

A Genetic Algorithm (GA) is a search algorithm

based on the principles of evolution and natural

genetics [1, 2, 7, 8, 9]. GA combines the exploitation

of past results with the exploration of new areas of

the search space. By using survival of the fittest

techniques combined with a structured yet

randomized information exchange, a GA can mimic

some of the innovative flair of a human search. A

generation is a collection of artificial creatures

(strings). In every new generation, a set of strings is

created using information from the previous ones.

The organization of this paper is as follows. After the

introduction in section 1, different load balancing

approaches has been elaborated in section 2. Problem

definition and system model is given in section 3.

Load balancing using GA has been proposed in

section 4. Finally, concluding remarks appear in

section 5.

2. Organization of Load Balancing

schemes

The load balancing algorithms in general purpose

distributed computing systems is presented and the

organization of the different load balancing schemes

is shown in Figure 2.1[4, 5, 7, 8, 9]

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

69

Figure 2.1: Load balancing schemes

2.1 Local vs. Global[4]
A distinction is drawn between local and global

scheduling at the top level. The local scheduling

discipline determines how the processes resident on a

single CPU is residing and executed. A global

scheduling policy uses information about the system

to allocate processes to multiple processors to

optimize a system-wide performance. Grid

scheduling falls into the global scheduling branch.

2.2 Static versus Dynamic[4,5,7]
The Static load balancing, also known as

deterministic distribution, assigns a given job to a

fixed resource. Every time the system is restarted, the

same binding task resource is used without

considering changes that may occur during the

system lifetime. In this approach, every task

comprising the application is assigned once to a

resource. So, the placement of an application is static,

and a firm estimate of the computation cost can be

made in advance of the actual execution.

The Dynamic load balancing takes into account the

fact that the system parameters may not be known

beforehand. That’s why we don’t use a fixed or static

scheme will eventually produce poor results .A

dynamic strategy gives good results rather then the

static. A dynamic strategy is usually executed several

times and may reassign a previously scheduled task

to a new resource based on the current state of system

environment.

The benefits of dynamic over static load balancing

are that the system needs not be aware of the run-time

behaviour of the application before execution. For

dynamic strategies, the main problem is how to

characterize the exact workload of a system, while it

changes in a continuous way. Dynamic strategies can

be applied both for homogeneous or heterogeneous

platforms with different degree of performances.

2.3 Optimal vs. Suboptimal[4,8,9]
All information regarding the state of resources and

the jobs is known, an optimal assignment could be

made based on some criterion function, such as

minimum makespan and maximum resource

utilization. Due to the NP-Complete nature of

scheduling algorithms and the difficulty in Grid

scenarios to make reasonable assumptions which are

usually required to prove the optimality of an

algorithm, current research tries to find suboptimal

solutions, which can be further divided into the

following two general categories[4].

1. Approximate and

2. Heuristic.

2.4 Approximate vs. Heuristic[7,8]
 The approximate algorithms used in formal

computational models, but instead of searching the

entire solution space for an optimal solution, they are

satisfied when a solution that is sufficiently good is

found. In the case where a metric is available for

evaluating a solution, this technique can be used to

reduce the time taken to find an acceptable schedule.

2.5 Distributed vs. Centralized[4,9]
The responsibility of dynamic load balancing is for

making global decisions may lie with one centralized

location, or be shared by multiple distributed

locations. The centralized strategy has the advantage

for the implementation, but suffers from the lack of

scalability, fault tolerance and the possibility of

becoming a performance bottleneck. In distributed

strategy, the state of resources is distributed among

the nodes that are responsible for managing their own

resources or allocating tasks residing in their queues

to other nodes.

2.6 Cooperative vs. Non-cooperative[7,9]
 If a distributed load balancing mode is adopted then

the next issue that should be considered is whether

the nodes involved in job balancing are working

independently or cooperatively. In the

noncooperative case, an individual system load

balancing acts as alone as autonomous entities and

make the decisions regarding their own objectives

independently of these decisions effects about the rest

of the system.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

70

3. Problem definition and system

model

3.1 Heterogeneous distributed computing

system

Heterogeneous distributed computing system

(HDCS)[10,11,13] utilizes a distributed suite of

different high-performance machines, interconnected

with high-speed links, to perform different

computationally intensive applications that have

diverse computational requirements. Distributed

computing provides the capability for the utilization

of remote computing resources and allows for

increased levels of flexibility, reliability, and

modularity. In heterogeneous distributed computing

system the computational power of the computing

entities are possibly different for each processor as

shown in figure 3.1.

Figure 3.1: Heterogeneous distributed system

A large heterogeneous distributed computing system

(HDCS) consists of potentially millions of

heterogeneous computing nodes connected by the

global Internet. The applicability and strength of

HDCS are derived from their ability to meet

computing needs to appropriate resources. Resource

management sub systems of the HDCS are

designated to schedule the execution of the tasks that

arrive for the service. HDCS environments are well

suited to meet the computational demands of large,

diverse groups of tasks. The problem of optimally

mapping also defined as matching and scheduling.

3.2 Hierarchical structure

In this paper, it is supposed that underlying

distributed system has hierarchical structure. Fig.3.2

shows this structure[6,10]. In the designed structure,

load balancing is done in two levels: group level,

which is done by Global Load Balancer (GLB) and

node level, that is done by Local Load

Balancer(LLB). This case cause significantly lower

communication overheads that aroused from

collecting of the state information. Several nodes

make one group. In any group, there is one node as

designated representative (DR). DRs do local load

balancing and communicate with the GLB. Nodes of

each group are connected only to their group’s DR.

Task that is allocated to any group and node is

processed in that group and node, and there is no

other replacement. There is no connection between

groups. GLB is connected to each group’s DR. Load

balancing mechanism is centralized in both levels.

Figure 3.2: the underlying system

3.3 Dynamic load distribution algorithms

A dynamic load distribution algorithm must be

general, adaptive, stable, fault tolerant and

transparent to applications. Load balancing

algorithms can be classified as (i) global vs. local, (ii)

centralized vs. decentralized, (iii) Non-cooperative

vs. cooperative, and (iv) adaptive vs. non adaptive

[7,13]. In this paper we have used centralized load

balancing algorithm, a central node collects the load

information from the other computing nodes in

HDCS. Central node communicates the assimilated

information to all individual computing nodes, so that

the nodes get updated about the system state. This

updated information enables the nodes to decide

whether to migrate their process or accept new

process for computation. The computing nodes may

depend upon the information available with central

node for all allocation decision.

Scheduling of tasks in a load balancing distributed

system involves deciding not only when to execute a

process, but also where to execute it. Accordingly,

scheduling in a distributed system is accomplished by

two components [4]: the allocator and the scheduler.

The allocator decides where a job will execute and

the scheduler decides when a job gets its share of the

computing resource at the node.

4. Load balancing using Genetic

algorithm

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

71

In this section, an algorithm which utilizes GA for

load balancing in HDCS is given. Genetic algorithms

work with a population of the potential solutions of

the candidate problem represented in the form of

chromosomes. Each chromosome is composed of

variables called genes. Each chromosome (genotype)

maps to a fitness value (phenotype) on the basis of

the objective function of the candidate problem. Jobs

arrive at unknown intervals for processing and are

placed in the Global central scheduler queue of

unscheduled tasks from which tasks are assigned to

processors. Each task is having a task number and a

size. GA follows the concept of solution evolution by

stochastically developing generations of solution

populations using a given fitness statistic. They are

particularly applicable to problems which are large,

nonlinear and possibly discrete in nature, features that

traditionally add to the degree of complexity of

solution. Due to the probabilistic development of the

solution, GA does not guarantee optimality even

when it may be reached. However, they are likely to

be close to the global optimum. This probabilistic

nature of the solution is also the reason they are not

contained by local optima. The proposed algorithm

for load balancing is presented in figure 4.1.

Figure 4.1: Load balancing algorithm

4.1 Genotype

In the GA-Based algorithm each chromosome

corresponds to a solution to the problem. The genetic

representation of individuals is called Genotype.

4.2 Initial Population

This will initialize a population of possible solutions.

This can be achieved using the sliding window

technique. The window size is fixed, with the number

of elements in each string equal to the size of the

window.

4.3 Fitness Function

The main objective of GA is to find a node with

optimal cost for load-balancing. The fitness function

will have a fitter node where the task should be

transferred such that it has less execution time, less

communication cost, higher processor utilization and

maximum system throughput.

The objective is derived on the basis of the load

deviation that occurs in each node at each level. In

ideal case i.e. when the load is evenly distributed

among the nodes, load deviation is zero. But often it

may not be possible. Therefore, load deviation is

minimized to its fullest possible extent. In order to

calculate the load deviation amongst the nodes, we

have to calculate the total load of the node connected

in the system. The mean can be computed using total

load and number of nodes (m) in the network.

The calculations are as follows:

At any node i, load at a node is obtained by using the

equation.

 ∑ []

where r is the numbers of jobs allocated to the node i

and p,q,r are the number of pending, queued or

running jobs.

 ∑ []

Mean load of a node is obtained as-

Thus, objective function for the load deviation of a

node is given as –

 (√

∑ ()

)

where Lj is the load at the node j, Lmean is the

average load and m is the number of nodes Equation

(4) depicts the overall load deviation at each level in

a distributed system. In this, objective is to minimize

this value to get the optimal load distribution.

4.4 Selection

The selection process used here is based on spinning

the roulette wheel, which each chromosome in the

population has a slot sized in proportion to its fitness.

Each time we require an offspring, a simple spin of

the weighted roulette wheel gives a parent

chromosome.

4.5 Crossover

Crossover is generally used to exchange portions

between strings. A Single-Point Crossover operator

randomly selects a point, called Crossover point, on

the selected chromosomes, then swaps the bottom

halves after crossover point, including the gene at the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

72

crossover point and generates two new chromosomes

called children.

4.6 Mutation

Mutation is used to change the genes in a

chromosome. Mutation replaces the value of a gene

with a new value from defined domain for that gene.

Mutation is not always affected, the invocation of the

Mutation depend on the probability of the Mutation

Pm.

5. Conclusion

This paper deals with the load balancing in

hierarchical structured distributed system with

emphasis on the observation of load deviation and

load distribution among the nodes. Load balancing in

distributed operating systems has a significant role in

overall system performance and throughput. The

scheduling in distributed systems is known as an NP-

complete problem even in the best conditions. We

have presented and evaluated a GA-Based method to

solve this problem. This algorithm considers

multiobjectives in its solution evaluation and

provides a node with a load that protects node from

being overloaded or idle which will simultaneously

minimizes maxspan, communication cost and

maximizes average processor utilization.

References

[1] Kashani, M.H.; Jamei, M.; Akbari, M.; Tayebi,

R.M. Utilizing Bee Colony to Solve Task

Scheduling Problem in Distributed Systems Third

International Conference on Computational

Intelligence, Communication Systems and

Networks (CICSyN), 2011.

[2] Page, A.J., Keane, T.M. and Naughton, T.J.

Multi-heuristic dynamic task allocation using

genetic algorithms in a heterogeneous distributed

system. Journal of Parallel and Distributed

Computing, 2010 Vol. 70, 758-766.

[3] Ahwaz, Iran Mortazavi, S.S.; Rahmani, A.M.

Two Hierarchical Dynamic Load Balancing

Algorithms in Distributed Systems, 2009. AH-ICI

2009.

[4] Bibhudatta Sahoo, Sudipta Mohapatra, and

Sanjay Kumar Jena. A Genetic Algorithm Based

Dynamic Load Balancing Scheme for

Heterogeneous Distributed Systems Proceedings

of the International Conference on Parallel and

Distributed Processing Techniques and

Applications, PDPTA 2008, Las Vegas, Nevada,

USA, July 14-17, 2008, 2 Volumes. CSREA

Press 2008, ISBN 1-60132-084-1.

[5] Nikravan, M. and Kashani, M.H. A Genetic

Algorithm For Process Scheduling In Distributed

Operating Systems Considering Load balancing

in Proceedings of the 21th European Conference

on Modeling and Simulation, 645-650, 2007.

[6] Gamal Attiya & Yskandar Hamam. Two phase

algorithm for load balancing in heterogeneous

distributed systems. Proc. 12th IEEE

EUROMICRO conference on Parallel,

Distributed and Network-based processing,

Coruna, Spain 2004, 434-439.

[7] A. Y. Zomaya, & Y. H. The. Observations on

using genetic algorithms for dynamic

loadbalancing. IEEE Transactions on Parallel and

Distributed Systems, 12(9), 2001, 899-911.

[8] A. Y. Zomaya, C. Ward, & B. Macey. Genetic

Scheduling for Parallel Processor Systems.

Comparative Studies and Performance Issues,

IEEE Transaction Parallel and Distributed

Systems, 10(8), 1999, 795-812.

[9] Seong-hoon Lee, Tae-won Kang, Myung-sook

KO, Gwang-sik Chung, Joon-min Gil and Chong-

sun Hwang. A Genetic Algorithm Me hod for

Sender-based Dynamic Load Balancing

Algorithm in Distributed Systems. First

Intemational Conference on Knowledge-Based

Intelligent, 1997.

[10] Iman Barazandeh,S.S. Mortazavi,A.M. Rahmani.

Two New Biasing Load Balancing Algorithms in

Distributed Systems .IEEE conference on

distributed computing, 2009.

[11] F. Bonomi, & A. Kumar. Adaptive Optimal

Load-Balancing in a Heterogeneous Multiserver

System with a Central Job Scheduler. IEEE

Trans. on Computers, 39(10) 1990, 1232-1250.

[12] E.S.H.Hou, N.Ansari, & H.Ren. A Genetic

Algorithm for Multiprocessor Scheduling. IEEE

Trans. On Parallel and Distributed Systems, 5(2),

1994, 113-120.

