
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

137

Automated Verification of Memory Consistencies of DSM System on

Unified Framework

 Pankaj Kumar
1
, Durgesh Kumar

2

 1
Assistant Professor, SRMCEM, Lucknow

 2
Research Scholar, CMJ University, Meghalaya

Abstract

The consistency model of a DSM system specifies

the ordering constraints on concurrent memory

accesses by multiple processors, and hence has

fundamental impact on DSM systems’

programming convenience and implementation

efficiency. We have proposed the structural model

for automated verification of memory

consistencies of DSM System. DSM allows

processes to assume a globally shared virtual

memory even though they execute on nodes that

do not physically share memory. The DSM

software provide the abstraction of a globally

shared memory in which each processor can

access any data item without the programmer

having to worry about where the data is or how to

obtain its value In contrast in the native

programming model on networks of workstations

message passing the programmer must decide

when a processor needs to communicate with

whom to communicate and what data to be send.

On a DSM system the programmer can focus on

algorithmic development rather than on

managing partitioned data sets and

communicating values. The programming

interfaces to DSM systems may differ in a variety

of respects. The memory model refers to how

updates to distributed shared memory are rejected

to the processes in the system. The most intuitive

model of distributed shared memory is that a read

should always return the last value written

unfortunately the notion of the last value written

is not well defined in a distributed system.

Keywords

Distributed Shared Memory (DSM) system, automated

verification of processor Consistency (PC)

1. Introduction

Despite the advances in processor design, users still

demand more and more performance. Eventually,

single CPU technologies must give way to multiple

processors parallel computers: it is less expensive

to run 10 inexpensive processors cooperatively

than it is to buy a new computer 10 times as fast.

This change is usual, and has been realized to some

extent in the specialization of subsystems like bus

mastering drive controllers. However, the need for

additional computational power has thus far rested

solely on advances in CPU technologies [2, 4, 9].

In parallel systems, there are two kinds of

fundamental models:

1. Shared memory

2. Distributed Memory.

From a programmer's perspective, shared memory

computers (symmetric multiprocessor), while easy

to program, are difficult to build and aren't scalable

to beyond a few processors. Distributed Memory

(Message passing) computers, while easy to build

and scale, are difficult to program. In some sense,

shared memory model and message passing model

are equivalent.

One of the solutions to parallel systems is

Distributed Shared Memory (DSM) whose memory

is physically distributed but logically shared. DSM

appears as shared memory to the applications

programmer, but relies on message passing

between independent CPUs to access the global

virtual address space. Both hardware and software

implementations of DSM have been proposed.

2. Related and Previous Works

A lot of work has been done to improve the system

performance and effectiveness of distributed shared

share memory and still work is under progress

some of the details are as given

A. Distributed Shared Memory

DSM is an architectural approach designed to

overcome the scaling limitations of symmetric

shared memory multiprocessors while retaining a

shared memory model for communication and

programming. DSM multiprocessors achieve this

by using a memory that is physically distributed

but logically implements a single shared address

space, allowing the processor to communicate

through, and share the contents of, the entire

memory [1, 3, 11]. DSM multiprocessors have the

same basic organization as the machines as shown

in the Figure 1. Sharing data is an essential

requirement of any distributed system. Distributed

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

138

system it stands for a multi-computer architecture

in which each node is an independent machine

connected to each other through a network. Sharing

data in a multi-processor architecture is relatively

easier, since all of the nodes share the same system

bus and hence have a uniform view of the physical

memory.

On the other hand a multi-computer system does

not enjoy such hardware privileges. So sharing data

becomes a problem which has to be tackled in the

software (either inside the Operating System or as a

user-level application) and not in hardware as in

multi-processor systems. Traditional methods of

data sharing viz. message passing via sockets are

not appealing from a programmer’s perspective, in

which he or she has to explicitly take care of the

networking issues. A DSM provides an abstraction

to the programmer of a uniform shared memory

located across different machines [5, 6, 8]. Since a

DSM system involves moving of data from one

node to another which are on typical networks,

performance is an important criterion in the design

of a DSM system. Just as is the case with multi-

processor systems, since same copies of data might

reside on different nodes, consistency between

these copies is also another major issue.

Fig. 1 Distributed Shared Memory

DSM systems can be classified into three broad

categories.

 Page-based DSM – in which the unit of

data sharing is a memory page.

 Shared variable based DSM – in which the

unit of data sharing is a variable.

 An object based DSM – in which the unit

of data sharing is an object.

The choice of objects as units of granularity over a

page or shared variables is because of the

modularity and flexibility offered by objects.

Moreover, objects eliminate false sharing. Another

reason is that integration of object based DSM with

the object oriented languages is easy to achieve.

The design also provides flexibility in terms of

consistency models used by allowing the user

applications to specify under what consistency

scheme they want a particular object to be shared.

B. Issues in DSM Design

Any DSM system has to rely on the message

passing technique across the network for data

exchange between two computers. The DSM has to

present a uniform global view of the entire address

space (consisting of physical memories of all the

machines in the network) to a program executing

on any machine. A DSM manager on a particular

machine would capture all the remote data accesses

made by any process running on that machine[7,

10]. A design of a DSM would involve making

following choices

 Where, with respect to the Virtual

Memory Manager does the DSM operate?

 What kind of consistency model should

the system provide?

 What should be the granularity of the

shared data?

 What kind of naming scheme has to be

used to access remote data?

3. Unified Framework of Memory

Consistency

A. DSM Consistency Model
The consistency model of a DSM system specifies

the ordering constraints on concurrent memory

accesses by multiple processors, and hence has

fundamental impact on DSM systems’

programming convenience and implementation

efficiency. DSM allows processes to assume a

globally shared virtual memory even though they

execute on nodes that do not physically share

memory. The DSM software provide the

abstraction of a globally shared memory in which

each processor can access any data item without

the programmer having to worry about where the

data is or how to obtain its value In contrast in the

native programming model on networks of

workstations message passing the programmer

must decide when a processor needs to

communicate with whom to communicate and what

data to be send. For programs with complex data

structures and sophisticated parallelization

strategies this can become a daunting task. On a

DSM system the programmer can focus on

algorithmic development rather than on managing

partitioned data sets and communicating values.

The programming interfaces to DSM systems may

differ in a variety of respects. The memory model

refers to how updates to distributed shared memory

are rejected to the processes in the system. The

most intuitive model of distributed shared memory

is that a read should always return the last value

written unfortunately the notion of the last value

written is not well defined in a distributed system.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

139

The memory consistency model can be categorized

into parts one which is based on read and write

memory operation called as uniform model and the

other which is based on synchronization operation

also called hybrid model. The synchronization

operations are mapped to corresponding operations

provided by concurrency control. Parallel

computers can be classified by various aspects of

their architecture. Mainly parallel computers are

distinguished by the way the processors are

connected with the memory. Parallel computer

architecture may be designed using shared memory

or distributed memory. Shared memory

architecture is very much authentic in parallel

computers due to ease of its programming.

Programming a shared memory computer is very

convenient due to the fact that all data are

accessible by all processors, such that there is no

need to copy data. Furthermore the programmer

does not have to care for synchronization, since this

is carried out by the system automatically.

However, it is very difficult to obtain high levels of

parallelism with shared memory machines; most

systems do not have more than 64 processors. This

limitation stems from the fact, that a centralized

memory and the interconnection network are both

difficult to scale once built. This can be improving

by using distributed memory architecture in which

each processor has its own memory. There is no

common address space, i.e. the processors can

access only their own memories. Communication

and synchronization between the processors is done

by exchanging messages over the interconnection

network .To combine the advantages of the

architectures described above, ease of

programming on the one hand, and high scalability

on the other hand, a third kind of architecture has

been established virtual shared memory (VSM).

Here, each processor has its own local memory,

but, contrary to the distributed memory

architecture, all memory modules form one

common address space, i.e. each memory cell has a

system-wide unique address. In order to avoid the

disadvantage of shared memory computers, namely

the low scalability, each processor uses a cache,

which keeps the number of memory access

conflicts and the network contention low. Besides

being referred to as Virtual Shared Memory, such

architectures have also been referred to as

Distributed Shared Memory (DSM), Shared Virtual

Memory (SVM), and Distributed Virtual Shared

Memory (DVSM) and so on. Arbitrary use of such

terms can cause confusion, so an attempt will be

made to define the commonly used terms more

precisely to characterize different types of

architectures by using shared memory abstraction.

Shared memory machines are convenient for

programming but do not scale beyond tens of

processors.

The Data Diffusion Machine (DDM) overcomes

this problem by providing a shared memory

abstraction on top of a distributed memory

machine. A DDM appears to the user as a

conventional shared memory machine but is

implemented using distributed memory

architecture. In designing a parallel machine to

support virtual shared memory, an important

consideration is whether the main memory should

be conventional or (set-) associative. This is the

main distinction between so-called CCNUMA and

COMA architectures. A related issue is what

additional caches are needed in the memory

hierarchy.

Parallel architectures are commonly classified

according to their control organization as either

MIMD (Multiple Instructions & Multiple Data

Stream) or SIMD (Single Instruction & Multiple

Data Stream). MIMD machines have a distributed

control organization, with every PE having a

control unit capable of sequencing an independent

computation. In contrast, SIMD machines have a

centralized control organization, where the PEs

shares a control stream broadcast by a single

control unit. The SIMD model has a number of

disadvantages that have caused it to be viewed as a

special purpose, and even obsolete, model for

general purpose parallel computation. Chief among

these disadvantages is the inflexible control

organization. A model, called shared control,

overcomes the inefficiency of SIMD machines on

control parallel applications by sharing the control

organization at a fundamentally different level the

instruction (or function) level. Thus, all the PEs

executing the same instruction, but not necessarily

the same control thread, receives their control from

the same control unit concurrently.

Now it is clear that in parallel computer

architecture memory plays a great role whether it is

SIMD or MIMD parallel computer. Memory

architecture in parallel computer can be

implemented by shared memory, distributed

memory or using the combination of both i.e.

distributed shared memory. We have proposed the

structural model for automated verification of

memory consistencies of DSM System. Two type

of memory consistency model are there:

The STRUCTURAL UNIFORM MODEL consider

only read & write memory operation to define

consistency condition. It is the combination of

strong & relaxed memory model. The following

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

140

memory consistency models have been taken for

the proposed structural uniform model:

 Atomic consistency (AC)

 Sequential consistency (SC)

 Causal consistency (CC)

 Processor consistency (PC)

 PRAM

 Cache consistency

 Slow memory

The first two AC & SC is the strong model whereas

the other one are relaxed consistency. The PRAM

model is evolved by combining the processor

consistency as well as causal consistency and slow

memory model is the combination of PRAM and

Cache Coherence. If we follow the path from Top

to Bottom, The sequential consistency is evolved

from the atomic consistency so it inherits some

property of atomic consistency.

The processor consistency and the causal

consistency i.e. defined by the sequential

consistency. The PRAM model is evolved by

combining the processor consistency as well as

causal consistency. The cache consistency is

defined by processor consistency and based on

cache coherency. Slow memory model is the

combination of PRAM and Cache Consistency.

Fig. 2: Structural Uniform Model

4. Verifying DSM Consistency

We frequently read of incidents where some failure

occurred due to error in a hardware or software

system. For reliable systems, it is very important to

develop methods for correctness of such systems.

The principal validation methods for complex

systems are simulation, testing, deductive

verification, and model checking .Simulation is

performed on an abstraction or a model of the

system, testing is performed on the actual product.

In both cases, we will give certain inputs and

observe corresponding outputs. Deductive

verification consists of axioms and proof rules to

prove the correctness of systems. The importance

of deductive verification is widely recognized by

computer scientists. Deductive verification is a

time consuming process that can be performed only

by experts who are educated in logical reasoning

and have considerable experience. Consequently,

use of deductive verification is rare. An advantage

of deductive verification is that it can be used for

reasoning about infinite state systems. Model

checking is a technique for verifying finite state

concurrent systems. One benefit of this restriction

is that verification can be performed automatically.

The procedure normally uses an exhaustive search

of the state space of the system to determine if

some specification is true or not. The procedure

will always terminate with yes/no answer. Model

checking consists of modeling, specification and

verification steps. An exciting new research

direction attempts to integrate deductive

verification and model checking, so that the finite

states of complex systems can be verified

automatically. As the need for more computing

power demanded by new applications constantly

increases, systems with multiple processors are

becoming a necessity. The gap between processor

and memory speed is apparently widening, and that

is why the memory system organization becomes

one of the most critical design decisions to be made

by computer architects. According to the memory

system organization, systems with multiple

processors can be classified into two large groups:

shared memory systems and distributed memory

systems. In a shared memory system (SMS) (often

called a tightly-coupled multiprocessor), a single

global physical memory is equally accessible to all

processors. The advantage of SMS is very simple

and easy to program. However, they typically

suffer from increased contention in accessing the

shared memory, especially in single bus topology,

which limits their scalability.

In addition to that, the design of the memory

system tends to be more complex. A distributed

memory system (often called a multicomputer)

consists of a collection of autonomous processing

nodes, having an independent flow of control and

local memory modules. Communication between

Atomic

Consistency

Sequential

Consistency

Processor

Consistency

Causal

Consistency

Slow Memory

PRAM

Cache

Consistency

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

141

processes residing on different nodes is achieved

through a message passing model, via a general

interconnection network. Such a programming

model imposes significant burden on the

programmer, and induces considerable software

overhead. On the other hand, these systems are

claimed to have better scalability and cost-

effectiveness. A distributed shared memory (DSM)

tries to combine the better of these two approaches.

A DSM system logically implements shared

memory model on a physically distributed memory

system. This approach hides the mechanism of

communication between remote sites from the

application writer, so the ease of programming and

the portability typical for shared memory systems,

as well as the scalability and cost effectiveness of

distributed memory systems, can be achieved with

less engineering effort. In this work, we formally

verified some of the weak consistency properties of

distributed shared memory model.

5. Automated Dynamic

Verification

Based on the definitions there is need to devise a

framework that breaks the verification process into

three invariants that correspond to the three steps

necessary for processing a memory operation. First,

memory operations are read from the instruction

stream in program order and executed by the

processor. At this point, operations impact micro

architectural state but not committed architectural

state. Second, operations access the (highest level)

cache in a possibly different order.

Consistency models that permit reordering of cache

accesses enable hardware optimizations such as

write buffers. Sometime after accessing the cache,

operations perform and become visible in the

globally shared memory. This occurs when the

affected data is written back to memory or accessed

by another processor. At the global memory, cache

orders from all processors are combined into one

global memory order. The basic idea of the

presented framework is to automatically verify an

invariant for every step to guarantee it is done

correctly and thus verify that the processing of the

operation as a whole is error-free. The three

invariants (Uniprocessor Ordering, Allowable

Reordering, and Cache Coherence) described

below are sufficient to guarantee memory

consistency.

•for X and Y of type OPx and OPy, it is true that if

X <p Y and there exists an ordering constraint

between OPx and OPy, then X <m Y, and

•a load Y receives the value from the most recent of

all stores that precede Y in either the global order

<m or the program order <p.

Uniprocessor Ordering: On a single-threaded

system, a program expects that the value returned

by a load equals the value of the most recent store

in program order to the same memory location. In a

multithreaded system, obeying Uniprocessor

Ordering means that every processor should behave

like a uniprocessor system unless a shared memory

location is accessed by another processor.

Allowable Reordering: To improve performance,

microprocessors often do not perform memory

opera operations in program order. The consistency

model specifies which reordering between program

order and global order are legal. For example,

SPARC’s Total Store Order allows a load to be

performed before a store to a different address that

precedes it in program order, while this reordering

would violate SC. In our framework, legal

reordering is specified in the ordering tab.

Cache Coherence: Coherence defines the behavior

of reads and writes to the same memory location.

In DSM systems however there are two or more

processors working at the same time, so there is the

possibility that the processors will all want to

process the same value at the same time. Provided

none of the processors updates the value then they

can share it indefinitely, but as soon as one updates

the value, the others will be working on an out-of-

date copy. Some scheme is required to notify all

processors of changes to shared values; such a

scheme is known as a "memory coherence

protocol. There are two type coherence protocols

one is write-invalidate and other is write-update.

Write-invalidate protocol invalidates all write

operation if any processor wants to writes. Write-

update protocol updates all writes to all processor if

any processor wants to write.

6. Uniprocessor Ordering Checker

Uniprocessor Ordering is trivially satisfied when

all operations execute sequentially in program

order. Thus, Uniprocessor Ordering can be

dynamically verified by comparing all load results

obtained during the original out-of-order execution

to the load results obtained during a subsequent

sequential execution of the same program. Because

instructions commit in program order, results of

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

142

sequential execution can be obtained by replaying

all memory operations when they commit. Replay

of memory accesses occurs during the verification

stage, which we add to the pipeline before the

retirement stage. During replay, stores are still

speculative and thus must not modify architectural

state. Instead they write to a dedicated verification

cache (VC). Replayed loads first access the VC

and, on a miss, access the highest level of the cache

hierarchy (bypassing the write buffer). The load

value from the original execution resides in a

separate structure, but could also reside in the

register file. In case of a mismatch between the

replayed load value and the original load value, a

Uniprocessor Ordering violation is signaled. Such

a violation can be resolved by a simple pipeline

flush, because all operations are still speculative

prior to verification. Multiple operations can be

replayed in parallel, independent of register

dependencies, as long as they do not access the

same address.

In consistency models that require loads to be

ordered (i.e., loads appear to have executed only

after all older loads performed), the system

speculatively reorders loads and detects load-order

mis-speculation by tracking writes to speculatively

loaded addresses. This mechanism allows stores

from other processors to change any load value

until the load passes the verification stage, and thus

loads are considered to perform only after passing

verification. To prevent stalls in the verification

stage, the VC must be big enough to hold all stores

that have been verified but not yet performed.

In a model that allows loads to be reordered, such

as RMO, no speculation occurs and the value of a

load cannot be affected by any store after it passes

the execution stage. Therefore a load is considered

to perform after the execution stage in these

models, and replay strictly serves the purpose of

verifying Uniprocessor Ordering. Since load

ordering does not have to be enforced, load values

can reside in the VC after execution and be used

during replay as long as they are correctly updated

by local stores. This optimization, which has been

used in automated verification of single-threaded

execution, prevents cache misses during

verification and reduces the pressure on the cache.

7. Allowable Reordering Checker

DVMC verifies Allowable Reordering by checking

all reordering between program order and cache

access order against the restrictions defined by the

ordering table. The position in program order is

obtained by labeling every instruction X with a

sequence number, seqX, that is stored in the ROB

during decode. seqX equals X’s rank in program

order. The rank in perform order is implicitly

known, because we verify Allowable Reordering

when an operation performs. The Allowable

Reordering checker uses the sequence numbers to

find reordering and check them against the ordering

table. For this purpose, the checker maintains a

counter register for every operation type OPx (e.g.,

load or store) in the ordering table. This counter,

max {OPx}, contains the greatest sequence number

of an operation of type OPx that has already

performed. When operation X of type OPx

performs, the checker verifies that seqX > max

{OPy} for all operation types OPy that have an

ordering relation OPx<cOPy according to the

ordering table. If all checks pass, the checker

updates max {OPx}. Otherwise an error has been

detected.

It is crucial for the checker that all committed

operations perform eventually. The checker can

detect lost operations by checking outstanding

operations of all operation types OPx, with an

ordering requirement OPx<cOPy, when an

operation Y of type OPy performs. If an operation

of type OPx older than Y is still outstanding, it was

lost and an error is detected. In our implementation,

we check outstanding operations before Member

instructions by comparing counters of committed

and performed memory accesses. To prevent long

error detection latencies, artificial Members are

injected periodically. Member injection does not

affect correctness and has negligible performance

impact. The implementation of an Allowable

Reordering checker requires three small additions

to support architecture specific features: dynamic

switching of consistency models, a FIFO queue to

maintain the perform order of loads until

verification, and computation of member ordering

requirements from a bitmask.

8. Conclusion

The main focus of our paper is on the memory

architecture of parallel computer. In parallel

computer architecture where lots of operations are

performed simultaneously, so it become necessary

that memory operation must be ordered. All

processor having its own local memory like

distributed memory architecture that is accessible

only to that processor, requires very less memory

ordering. But system like distributed Shared

Memory system where processors have common

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

143

memory with single address space, allows all

processor to access entire memory.

As DSM system allows multiple processors to

access memory location simultaneously, so it

requires an abstract model for memory operations

that allow using memory location correctly and

maintaining memory consistency. The memory

consistency plays important role in DSM system

because it specifies order of memory operation.

The paper has addressed several important issues

for distributed shared memory system. But it

mainly concentrates on designing of distributed

shared memory framework for memory consistency

maintenance. The framework is designed with the

help of memory consistency model and memory

coherence.

References

[1] Paul Krzyzanowski "Distributed Shared

Memory and Memory Consistency Models"

Rutgers University – CS 417: Distributed

Systems ©1998, 2001.

[2] Lisa Higham, Jalal Kawash and Nathaly

Verwaal, "Define and Comparing Memory

Consistency Model" ©1997 ISCA, Proceeding

of PDCS'97.

[3] Abdelfatah Aref Yahya and Rana Mohamad

Idrees Bader "Distributed Shared Memory

Consistency Object-based Model", Journal of

Computer Science 3 (1): 57-61, 2007

ISSN1549-3636© 2007 Science Publications.

[4] Changhun Lee "Distributed Shared Memory"

Proceedings on the 15th CISL Winter

Workshop Kushu, Japan ¢ February 2002.

[5] Sarita V. Adve, Member, IEEE, Vijay S. Pai,

Student Member, IEEE, and Parthasarathy

Ranganathan, Student Member, IEEE "Recent

Advances in Memory Consistency Models for

Hardware Shared Memory Systems"

proceedings Of The Ieee, Vol. 87, No. 3,

March 1999.

[6] Albert Meixner and Daniel J. Sorin "Dynamic

Verification of Memory Consistency in Cache-

Coherent Multithreaded Computer

Architectures" Duke University, Department of

Electrical and Computer Engineering,

Technical Report #2006-1, April 18, 2006.

[7] Alba Cristina Magalhães Alves de Melo

"Defining Uniform and Hybrid Memory

Consistency Models on a Unified Framework"

Proceedings of the 32nd Hawaii International

Conference on System Sciences -1999 IEEE.

[8] Jason F. Cantin, Student Member, IEEE,

Mikko H. Lipasti, Member, IEEE, and James

E. Smith, Member, IEEE "The Complexity of

Verifying Memory Coherence and

Consistency" IEEE Transactions On Parallel

And Distributed Systems, Vol. 16, No. 7, July

2005.

[9] Robert C. Steinke and Gary J. Nutt "A Unified

Theory of Shared Memory Consistency"

Journal of the ACM, Vol. V, No. N, Month

20YY, Pages 1–47 2002.

[10] Jalal Y. Kawash" Limitations and Capabilities

of Weak Memory Consistency Systems" Ph.D.

Thesis Calgary, Alberta January, 2000.

[11] Benny Wang-Leung Cheung, Cho-Li Wang

and Francis Chimoon Lau, “Migrating-Home

Protocol for Software Distributed Shared

Memory”, Journal of Information Science and

Engineering, 2000.

Durgesh kumar is a research

scholar in computer science in CMJ

University Meghalaya. He has done

MCA from UPTU Lucknow.

Currently he is working in Aditya

Birla Group.

Dr. Pankaj Kumar is currently

working as Assistant Professor in Sri

Ramswaroop college of engineering

& Management Lucknow. He

received his PhD. Degree in

computer application in 2011 and

MCA degree in 2001.His research

interests are Parallel Computing, Memory Architecture

of Parallel Computer and Distributed Computing. Many

of the valuable research papers of Mr. Pankaj Kumar

have been published in various national/international

journals and IEEE proceeding publication in the area of

“Parallel Computing”. He is life member of Computer

Society of India (CSI) and professional member of

International Association of Engineers (IAENG),

International Association of Computer Science and

Information Technology (IACSIT) and Internet Society

(ISOC).

