
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

298

Data and Cost handling Techniques for Software Quality Prediction

 Through Clustering

Saifi Bawahir
1
, Mohsin Sheikh

2

M.E. (IT) M.I.T.M. Indore
1
, Assistant Professor M.I.T.M. Indore

2

Abstract

Analysis of Data quality is an important issue which

has been addressed as data warehousing, data

mining and information systems. It has been agreed

that poor data quality will impact the quality of

results of analyses and that it will therefore impact

on decisions made on the basis of these results. An

attempt to improve classification accuracy by pre-

clustering did not succeed. However, error rates

within clusters from training sets were strongly

correlated with error rates within the same clusters

on the test sets. This phenomenon could perhaps be

used to develop confidence levels for predictions.

The main and the common problem that the

software industry has to face is the maintenance

cost of industrial software systems. One of the main

reasons for the high cost of maintenance is the

inherent difficulty of understanding software

systems that are large, complex, inconsistent and

integrated. The main reason behind the above

phenomena is because of different size and level of

arrangements. Decomposing a software system into

smaller, more manageable subsystems can aid the

process of understanding it significantly. Different

algorithms construct different decompositions.

Therefore, it is important to have methods that

evaluate the quality of such automatic

decompositions. In our paper we present a brief

survey on software quality prediction through

clustering.

Keywords

Software quality, Clustering, Decomposition, Cost

handling.

1. Introduction

To finding the fault or fault prediction is the biggest

challenge in today’s scenario. There is several

research orientations in this direction. Despite the

amount of effort spent in the design and application

of fault prediction models, software fault prediction

research area still poses great challenges.

Unfortunately, none of the techniques which are

created in few years ago satisfies the applicability in

the software industry due to several reasons including

the lack of software tools to automate this prediction

process, the unwillingness to collect the fault data,

and the other practical problems. The traditional way

which is used from the beginning is to estimate

software quality by using software metrics and fault

data collected from previous system releases or

similar projects to construct a quality-prediction

or quality-classification model. Then engineers

use this model to predict the fault proneness of

software components in development. Previous

research [1] has shown that software quality

models based on software metrics can yield

predictions with useful accuracy. Such models

can be used to predict the response variable that

can either be the class of a component or a quality

factor for a component. The former is usually

referred to as classification models [2] while the

latter is usually referred to as prediction models

[3]. The focus of this paper is on the former, i.e.,

classification models. Quite often, predicting the

number of faults is not necessary.

The data is the crucial part for the software

engineering and in the same sense it is used for

predicts and discovers new strategies. They are

also used to indicate that new strategies are

working, or what impact new techniques have. It

is interesting to see then, that data quality in

empirical software engineering appears to be

somewhat neglected in publications and even in

data analyses. It is all the more astonishing since,

as De Vaux and Hand [4] Stated, 60-95% of the

effort of data analysis is making use for the

cleaning. The area of research like information

systems and data mining the impact of poor data

has been recognized as an issue which needs to be

addressed by database designers and data users

alike. Redman [5] for instance stated that poor

data quality is an issue which impacts on all

segments of the economy: companies,

governments, and academia and their customers",

and Wand and Wang [6] warned of the severe

impact of poor data quality on the effectiveness of

an organization. The remaining of this paper is

organized as follows. We discuss Clustering in

Section 2. In Section 3 we discuss about problem

domain. Literature Survey in section 4.In section

5 we discuss about software clustering. The

conclusions and future directions are given in

Section 6. Finally references are given.

2. Clustering

According to Shi Zhong [7] clustering is an

Unsupervised learning methods such as clustering

techniques are a natural choice for analyzing

software quality in the absence of fault proneness

labels. Clustering algorithms can group the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

299

software modules according to the values of their

software metrics. The underlying software-

engineering assumption is that fault-prone software

modules will have similar software measurements

and so will likely form clusters. Clustering is a

mechanism where it allows us to run applications on

several parallel servers. The distribution load is

distributed across different servers, and even if any of

the servers fails, the application is still accessible via

other cluster nodes. It is crucial for scalable enterprise

applications, as you can improve performance by

simply adding more nodes to the cluster by which it is

recognized by several well established connections

protocol. Basically cluster is a collection of network

club together to form an interface. It is partition and

the partitions contain several nodes which are

interconnected which are shown in figure 1.

Figure 1: Cluster and Server Nodes

The stub object is generated by the server and it

implements the business interface of the service. The

client then makes local method calls against the stub

object. The call is automatically routed across the

network and invoked against service objects managed

in the server. In a clustering environment, the server-

generated stub object is also called intermediate by

which the basic call is generated through the object

stub for the process call which is shown in figure 2.

Figure 2: Class dynamically downloaded from the

node

The clients use any web browser and send

information to the server and send a request by using

certain communication protocols. In this case, a load

balancer is required to process all requests and

dispatch them to server nodes in the cluster.

Figure 3: Load Balancing Architecture

3. Problem Statement

According to Mark Shtern [8] there are several

issues which is facing by the researchers. Most of

the researchers perform their work on a small set

of data or a software system. The applicability is

always a question mark when we apply the same

process for the big database. Therefore, it is not

possible to generalize the evaluation results to

other software systems. The source code is no

longer supported and it is not feasible for all other

resources. Compatibility is the greater issue. Fault

detection is also an issue. Data Quality defines as

“fitness for purpose" [9][10]. Since this purpose is

subjective and important to consider, data

quality's characteristics or dimensions are

subjective and cannot be assessed independent of

the people who use the data .This means that the

domain the data are used in has to be an important

consideration. Redman [11] lists more than 10

dimensions. Redman [11] made the trenchant

observation that his list cannot be comprehensive

since as indicated above data quality dimension

depend on the user's view of the data, pointing

towards a reason for this lack of consensus about

data quality dimensions. Redman categorized his

dimensions into four groups:

(i) Dimensions related to the data model,

(ii) Dimensions related to the data values,

(iii) Dimensions related to data presentation

and

(iv) Dimensions related to information

technology.

Manago and Kodrato [12] stated that noise is

present when a knowledge base does not truly

reflect the environment we want to learn from".

They are indicating that the causes of noise lead

analysts to build inaccurate models. According to

their definition, noise is wrong information, lack

of information or unreliable information. The

term unreliable information is interesting, since

the information is not incorrect, but unreliable. So

we also concentrate on the issue of noise.

4. Literature Survey

In 2004, Shi Zhong et al. [13] describe an

exploratory analysis method that addresses two

challenges and that is built with clustering and the

help of a software engineering expert. It is an

unsupervised method since labeled training data

are not required to predict the fault-proneness of

software modules. They present two real-world

case studies to verify the effectiveness of the

clustering- and expert-based approach in

predicting both the fault-proneness of software

modules and potential noisy for e.g., mislabeled

modules.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

300

In 2009, Mark Shtern[8] discuss about several

software clustering algorithms Most of these

algorithms have been applied to particular software

systems with considerable success. However, the

question of how to select a software clustering

algorithm that is best suited for a specific software

system remains unanswered. They introduce a

method for the selection of a software clustering

algorithm for specific needs. The proposed method is

based on a newly introduced formal description

template for software clustering algorithms. Using the

same template, we also introduce a method for

software clustering algorithm improvement.

In 2007, Mark Shtern[14] introduce UpMoJo, a

novel comparison method for software

decompositions that can be applied to both nested and

flat decompositions. The benefits of utilizing this

method are presented in both analytical and

experimental fashion. We also compare UpMoJo to

the END framework, the only other existing method

for nested decomposition comparison.

In 2010, Ramandeep S. Sidhu [15] uses subtractive

clustering based fuzzy inference system approach

which is used for early detection of faults in the

function oriented software systems. This approach

has been tested with real time defect datasets of

NASA software projects named as PC1 and CM1.

Both the code based model and joined model of the

datasets are used for training and testing of the

proposed approach. The performance of the models is

recorded in terms of Accuracy, MAE and RMSE

values. The performance of the proposed approach is

better in case of Joined Model. As evidenced from the

results obtained it can be concluded that Clustering

and fuzzy logic together provide a simple yet

powerful means to model the earlier detection of

faults in the function oriented software systems.

In 2010, Mark Shtern [16] introduces and quantifies

the notion of clustering algorithm comparability. It is

based on the concept that algorithms with different

objectives should not be directly compared. Not

surprisingly, we find that several of the published

algorithms in the literature are not comparable to each

other.

In 2012, Deepak Gupta et al. [17] discusses about

Clustering which is the unsupervised classification of

patterns into groups. A clustering algorithm partitions

a data set into several groups such that similarity

within a group is larger than among groups The

clustering problem has been addressed in many

contexts and by researchers in many disciplines; this

reflects its broad appeal and usefulness as one of the

steps in exploratory data analysis.. There is need to

develop some methods to build the software fault

prediction model based on unsupervised learning

which can help to predict the fault –proneness of a

program modules when fault labels for modules

are not present. One of the methods is use of

clustering techniques. They present a case study

of different clustering techniques and analyze

their performance.

5. Software Clustering

Cluster analysis is a group of multivariate

techniques whose primary purpose is to group

entities based on their attributes. They are

classified according to the criteria which is

predefined. The objective of any clustering

algorithm is to sort entities into groups, so that the

variation between clusters is maximized relative

to variation within clusters.

The stages of cluster analysis techniques are

1. Fact Extraction

2. Filtering

3. Similarity Computation

4. Cluster Creation

5. Results Visualization

6. User Feedback Collection

Before applying clustering to a software system,

the set of entities to cluster needs to be identified.

Entity selection depends on the objective of the

method. An attribute is a set of values. An

attribute is usually a software artefact, such as a

package, a file, a function, a line of code, a

database query, a piece of documentation, or a

test case. Attributes may also be high level

concepts that encompass software artefacts, such

as a design pattern.

Selecting an appropriate set of attributes for a

given clustering task is crucial for its success
Source Code Source code is the most popular

input for fact extraction.

There are two conceptual approaches to extracting

facts from source code: syntactic and semantic.

The syntactic which is structure-based approaches

focus on the static relationships among entities.

The exported facts include variable and class

references, procedure calls, use of packages,

association and inheritance relationships among

classes etc.

Some approaches work with the information

available in binary modules. Depending on

compilation and linkage parameters, the binary

code may contain information, such as a symbol

table that allows efficient fact extraction. This

approach has three advantages:

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

301

1. It is language independent

2. Binary modules are the most accurate and

reliable information, source code may have

been lost or mismatched to a product version

of binary modules. Source mismatch

situations occur because of human mistakes,

patches, intermediate/unreleased versions

that are working in the production

environment etc.

3. Module dependency information is easy to

extract from binary modules Linkage

information contains module dependency

relations.

The main drawbacks of this approach are that binary

meta-data information depends on building

parameters, and that the implementation of the

approach is compiler/hardware dependent. Also,

binary code analysis cannot always discover all

relationships.

Static information is often insufficient for recovering

lost knowledge since it only provides limited insight

into the runtime nature of the analyzed software; to

understand Behavioural system properties, dynamic

information is more relevant.

During the run-time of a software system, dynamic

information is collected. The collected information

may include:

1. Object construction and destruction

2. Exceptions/errors

3. Method entry and exit

4. Component interface invocation

5. Dynamic type information

6. Dynamic component names

Performance Counters and Statistics

(a) Number of threads

(b) Size of buffers

(c) Number of Network Connections

(d) CPU and Memory Usage

(e) Number of Component Instances

(f) Average, Maximum and Minimum Response

Time

There are various ways of collecting dynamic

information, such as instrumentation methods or third

party tools (debuggers, performance monitors etc).

Instrumentation techniques are based on introducing

new pieces of code in many places to detect and log

all collected events. Such techniques are language

dependent, and not trivial to apply. After the

extraction process is finished, a altering step may take

place to ensure that irrelevant facts are removed, and

the gathered facts are prepared for the clustering

algorithm. According to shi Zhong [4]there are three

different approaches to effective noise handling in

data analysis exist designing robust algorithms that

are insensitive to noise, filtering out noise, and

correcting noise. Most robust algorithms have a

complexity control mechanism so that the

resulting models don’t over fit training data and

generalize well to future unseen data. Cross-

validation, minimum description length, and

structural risk minimization are some commonly

used model selection principles.

6. Conclusion

Traditional software engineering has neglected

the issue of data quality to some extent. This fact

poses the question of how researchers in empirical

software engineering can trust their results

without addressing the quality of the analyzed

data. In this paper we present a discussion as well

as some insight on the problem faces in software

quality prediction which will be achieved by

clustering.

References

[1] Khoshgoftaar, T. M., Allen, E. B., Jones, W.

D., and Hudepohl, J. P. Accuracy of software

quality models over multiple releases, in

Annals of Software Engineering 9(1–4): 103–

116.

[2] Khoshgoftaar, T. M., Allen, E. B., and Deng,

J. Controlling overfitting in software quality

models: experiments withregression trees and

classification, in Proceedings: 7th

International Software Metrics Symposium.

London UK, 190–198. 2001.

[3] Gokhale, S. S., and Lyu, M. R. Regression

tree modeling for the prediction of software

quality, in H. Pham (ed.): Proceedings: 3rd

International Conference on Reliability and

Quality in Design. Anaheim, California,

USA, 31–36.1997.

[4] Richard D. De Veaux and David J. Hand.

How to lie with bad data. Statistical Science,

20(3):231{238, 2005.

[5] Lesley Pickard, Barbara Kitchenham, and

Stephen G. Linkman. Using simulated data

sets to compare data analysis techniques used

for software cost modelling. IEE Proceedings

- Software, 148(6):165{174, 2001.

[6] Andres Folleco, Taghi Khoshgoftaar, Jason

Van Hulse, and Lofton A. Bullard. Software

quality modeling: The impact of class noise

on the random forest classifier. In

Proceedings of the IEEE Congress on

Evolutionary Computation, CEC 2008, June

1-6, 2008, Hong Kong, China, pages

3853{3859. IEEE, 2008.

[7] Shi Zhong, Taghi M. Khoshgoftaar, and

Naeem Seliya, “Analyzing Software

Measurement Data with Clustering

Techniques” , IEEE 2004.

[8] Mark Shtern and Vassilios Tzerpos,”

Methods for Selecting and Improving

Software Clustering Algorithms”, IEEE 2009.

[9] Michael Gertz, M. Tamer Ozsu, Gunter

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

302

Saake, and Kai-Uwe Sattler. Report on the

Dagstuhl seminar: Data quality on the web".

SIGMOD Record, 33(1):127{132, 2004.

[10] Rossane Prince and Graeme G. Shanks. A

semiotic information quality framework. In

Proceedings of IFIP International Conference on

Decision Support Systems (DSS2004): Decision

Support in an Uncertain and Complex World,

2004.

[11] Thomas C. Redman. Data Quality for the

Information Age. Artech House, Inc., Norwood,

MA, USA, 1996. ISBN 0890068836. Foreword

By-A. Blanton Godfrey.

[12] Michel Manago and Yves Kodrato

 Noise and knowledge acquisition. In Proceedings

of the 10th International Joint Conference on

Artificial Intelligence, pages 348{354, 1987.

[13] Shi Zhong, Taghi M. Khoshgoftaar, and Naeem

Seliya, “Expert-Based Software Measurement

Data Analysis with Clustering Techniques”,

Accepted to IEEE Intelligent Systems, Special

Issue on Data and Information Cleaning and

Preprocessing. 2004.

[14] Mark Shtern and Vassilios Tzerpos ,

“Lossless Comparison of Nested Software

Decompositions”, Working Conference on

Reverse Engineering, Vancouver, BC,

October 2007, pp. 249-258.

[15] Ramandeep S. Sidhu, Sunil Khullar,

Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir

Kaur, “A Subtractive Clustering Based

Approach for Early Prediction of Fault

Proneness in Software Modules”, World

Academy of Science, Engineering and

Technology,2010.

[16] Mark Shtern and Vassilios Tzerpos “On the

Comparability of Software Clustering

Algorithms” Proceedings of the 18th IEEE

International Conference on Program

Comprehension, Braga, Minho, June-July

2010, pp. 64-67.

