
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

381

Defining Uniform Distributed Shared Memory Consistency

Models on Unified Framework

 Pankaj Kumar
1
, Krishna Kumar

2

1
Assistant Professor, SRMCEM Lucknow

2
Research Scholar, CMJ University, Meghalaya

Abstract

Distributed Shared Memory (DSM) is an

architectural approach that allows processors to

support a single shared address space that is

implemented with physically distributed memory.

The consistency model of a DSM system specifies

the ordering constraints on concurrent memory

accesses by multiple processors. Lots of Consistency

Model are defined by a wide variety of source

including architecture system, application

programmer etc. Firstly the paper reviews and

discusses the main Distributed Shared Memory

Consistency Models and presents a Unified

Framework and then defines each model separately

on the basis of unified framework. This paper

considers only the 'read' and 'write' memory

operation to define the memory models.

Keywords

DSM, MCM, Uniform Memory Consistency model,

Unified Framework.

1. Introduction

A Distributed Shared Memory (DSM) system

provides application programmers the illusion of

shared memory on top of massage passing

distributed system, which facilitates the task of

parallel programming in distributed system. DSM is

technique for making multicomputers easier to

program by simulating a shared address space on

them. In simple way we can say that DSM represents

a successful hybrid of two parallel computer classes

i.e. shared memory and distributed memory. It

provides the shared memory abstraction in system

with physically distributed memories and

consequently combine the advantages of both

approaches [3, 4, 6, 9, 16]. A memory consistency

model, or memory model, for a multiprocessor

specifies how memory behaves with respect to read

and write operations from multiple processors [3, 5].

With respect to the programmer’s point of view, the

model enables correct reasoning about the memory

operations in a program. From the system designer’s

point of view, the model specifies acceptable

memory behaviors for the system. As such, the

memory consistency model influences many aspects

of system design, including the design of

programming languages, compilers, and the

underlying hardware. In order to enhance

performance, multiprocessors tend to implement

sophisticated memory structures. These memories

may replicate data through constructs such as caches

and write buffers. Furthermore, the time required to

access a data object may vary between processes and

between objects. Any of these architectural features

allow processes to have inconsistent views of

memory, which, in turn, can result in unexpected

program outcomes [5, 10, 15].

A memory consistency model is a set of guarantees

describing constraints on the outcome of sequences

of interleaved and simultaneous operations. Fewer

guarantees allow more performance optimizations

but yield machines that are very complex to

understand and program. It is thus essential to

provide multiprocessor programmers with a precise

description of the memory model of the underlying

machine. Several memory consistency models have

been described in the literature. These descriptions

arise from a wide variety of sources including

architecture, system, and database designers,

application programmers, and theoreticians. These

descriptions use different types and degrees of

formalism and hence are difficult to compare. Others

are informal and sometimes ambiguous. There is no

single unified formalization that describes the

memory models addressed in the literature or

provided by several existing machines.

2. Memory Consistency in DSM

The consistency model of a DSM system specifies

the ordering constraints on concurrent memory

accesses by multiple processors, and hence has

fundamental impact on DSM systems’ programming

convenience and implementation efficiency [18].

DSM allows processes to assume a globally shared

virtual memory even though they execute on nodes

that do not physically share memory. The DSM

software provide the abstraction of a globally shared

memory in which each processor can access any data

item without the programmer having to worry about

where the data is or how to obtain its value In

contrast in the native programming model on

networks of workstations message passing the

programmer must decide when a processor needs to

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

382

communicate with whom to communicate and what

data to be send. For programs with complex data

structures and sophisticated parallelization strategies

this can become a daunting task [7, 19].

On a DSM system the programmer can focus on

algorithmic development rather than on managing

partitioned data sets and communicating values. The

programming interfaces to DSM systems may differ

in a variety of respects. The memory model refers to

how updates to distributed shared memory are

rejected to the processes in the system. The most

intuitive model of distributed shared memory is that

a read should always return the last value written

unfortunately the notion of the last value written is

not well defined in a distributed system. [3, 18, 19].

The memory consistency model can be categorized

into parts one which is based on read and write

memory operation called as uniform model and the

other which is based on synchronization operation

also called hybrid model. The synchronization

operations are mapped to corresponding operations

provided by concurrency control [2, 6, 12].

3. Proposed Unified Framework

The main component of our framework is the

consistency models which considers only read &

write memory operation to define consistency

condition. We identify the characteristics that are

inherent to all memory consistency models and the

characteristics that are model-specific.

The framework is the combination of strong &

relaxed memory model which proposes a simple and

general definition of memory consistency models.

The proposed framework is based on the models

which come in to the category of uniform model.

The unified framework is categorized by four

properties, order of access; concurrency; atomicity

and scope. The order of access defines the sequence

in which accesses are seen by interested parties. The

concurrency of access defines if nodes can

concurrently access the data and the modes in which

they can access it. The scope determines the set of

data that is to be kept consistent and atomicity

defines whether the propagation of updates is done

on per access basis or whether several local updates

can be done before a batched update is sent out [2].

Figure 1: Structure of uniform Frameworks

We have taken Atomic consistency (AC), Sequential

consistency (SC), Causal consistency (CC),

Processor consistency (PC), PRAM, Cache

consistency and Slow memory consistency models

for our unified framework which is shown in figure 1

The first two AC & SC is the strong consistency

whereas the other one are relaxed consistency.

Atomic Consistency is the strict consistency among

all the models of framework. If we follow the path

from Top to Bottom, The sequential consistency is

evolved from the atomic consistency so it inherits

some property of atomic consistency. The processor

consistency and the causal consistency i.e. defined

by the sequential consistency. The PRAM model is

evolved by combining the processor consistency as

well as causal consistency. The cache consistency is

defined by processor consistency and based on cache

coherency. Slow memory model is the combination

of PRAM and Cache Consistency. But if follow the

path from Bottom to Top, the Sequential Consistency

is the combination of Processor and Causal

consistency and Processor Consistency is the

combination of Pram and Cache consistency.

4. Defining Memory Consistency

Model

To describe memory models in unified way, we

propose a history-based system model that is related

to unified framework. In our model, a parallel

program is executed by a system. A system is a finite

set of processors. Each processor executes a process

that issues a set of operations on the distributed

Atomic

Consistency

Sequential

Consistency

Processor

Consistency

Causal

Consistency

Slow Memory

PRAM

Cache

Consistency

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

383

shared global memory Μ. The distributed shared

global memory M is an abstract entity composed by

all addresses that can be accessed by a program.

Each processor Pi has its own local memory Mi.

Each local memory Mi caches all memory addresses

of M. A memory operation OPi(x)v is executed by

processor Pi on memory address x with the value v.

There are two basic types of operations on M: Read

(r) and Write (w). The execution history Ħ of a

process Pi is an ordered sequence of memory

operation issued by the process Pi. Figure 2 shows

the execution history of processor P1 and P2.

P1 W(x)2 W(x)1 W(y)1

P2 R(y)1 R(x)2

Figure 2: Execution History of P1 and P2

A read operation RPi(x)v is performed when a write

operation on the same location x cannot modify the

value v returned to Pi. Read operations of Pi are

always done on the local memory Mi. A write

operation WPi(x)v is in fact a set of memory

operations  vxWS
1n

0i

Pi




 where n is the number

of processors. A write operation WPi(x)v is

performed with respect to processor Pi when the

value v is written to the address x on the local

memory Mi of Pi. A write operation WPi(x)v is

performed when it is performed with respect to all

processors that compose the system.

An order relation that is used in the definition of all

memory consistency models proposed is program

order (PO
). An operation O1 is related to an

operation O2 by program-order  2

PO

1 OO  if:

1. Both operations are issued by the same

processor Pi and O1 immediately precedes

O2 in the code of Pi or

2. O3 such that  3

PO

1 OO  and

 2

PO

3 OO 

A. Atomic Consistency (AC)

This is the strictest of all consistency models. With

atomic consistency, operations take effect at some

point in an operation interval. It is easiest to think of

operation intervals as dividing time into non-

overlapping, consecutive slots [12, 18]. AC,

operations can take effect at any point in the

operation interval; as long as the resulting history is

equivalent to some serial execution. Atomic

consistency is often used as a base model when

evaluating the performance of an MCM.

Definition: A history ĦĦ is atomically consistent if

there is a legal linear sequence of ĦĦ that respects the

order AT
 which is defined as follows:

2
AT

12
PO

121 OOenthOOif:O,O  and

     

2
AT

1

2121

OOthen

OissuegtOperformedgtif:O,O





In above definition relation AT
 shows the order

relation where all processors must perceive the same

execution order of all shared memory accesses.

B. Sequential Consistency (SC)

Sequential consistency was first defined by Lamport

in 1979. He defined a memory system to be

sequentially consistent if the result of any execution

is the same as if the operations of all the processors

were executed in some sequential order, and the

operations of each individual processor appear in this

sequence in the order specified by its program [1].

This is equivalent to the one-copy serializability

concept found in work on concurrency control for

database systems. In a sequentially consistent

system, all processors must agree on the order of

observed effects. Figure.3 shows a legal execution

history for SC:

P1 W(x)1

P2 W(y)2

P3 R(y)2 R(x)0 R(x)1

Figure 3: Execution history of P1, P2, and P3 for

SC

Note that R(y)2 by processor P3 reads a value that

has not been written yet! Of course, this is not

possible in any real physical system. However, it

shows a surprising flexibility of the SC model.

Another reason why this is not a legal history for

atomic consistency is that the write operations W(x)1

and W(y)2 appear commuted at processor P3.

Sequential consistency has been the canonical

memory consistency model for a long time.

Definition: A history ĦĦ is sequentially consistent if

there is a legal linear sequence of ĦĦ that respects the

order 
SC

 which is defined as follows:

2
SC

12
PO

121 OOenthOOif:O,O 

Like Dynamic Atomic Consistency, SC requires a

total order on ĦĦ. The only difference between these

two models is that preserving real-time order is no

longer necessary in sequential consistency.

C. Causal Consistency (CC)

Causal Consistency means that all processor see all

causally related shared access in the same order [6].

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

384

Mosberger describes Causal consistency as “A

memory is causally consistent if all machines agree

on the order of causally related events. Causally

unrelated events (concurrent events) can be observed

in different orders” [18]. A memory is causally

consistent if all processors agree on the order of

causally related events. Causally unrelated events

(concurrent events) can be observed in different

orders [1, 6, 10].

For example: the following is a legal execution

history under CC but not under SC, Note that W(x)1

and W(x)2 are causally related as P2 observed the

first write by P1.

P1 W(x)1 W(x)3

P2 R(x)1 W(x)2

P3 R(x)1 R(x)3 R(x)2

P4 R(x)1 R(x)2 R(x)3

Furthermore, P3 and P4 observe the accesses W(x)2

and W(x)3 in different orders, which would not be

legal under SC.

Sufficient Conditions for CC

A history ĦĦ is causally consistent if there is a legal

linear sequence of ĦĦppii++ww that respects the order

CC
which is defined for each processor pi

follows the following condition:

1. S

atisfy the program order (po)

2
AC

12
PO

121 OOenthOOif:O,O 

2. S

atisfy the read by order (rb)

2
AC

12
rb

121 OOenthOOif:O,O 

3. Satisfy the transtivity relation

3O
CC

1Othen3O
CC

2O and2O
CC

1Oif:2O,1O    

D. Processor Consistency (PC)

Processor Consistency is perhaps the clearest

example of the problem that can arise if it is not

defined the consistency model in formal way. In fact

it is a family of memory consistency models that are

based on the same idea but have small difference.

These differences led to different memory behavior

and consequently to different memory consistency

models. The basic idea of these memory consistency

models is to relax some conditions imposed by

sequential consistency and to require only that write

operation issued by the same processor are observed

by all processor in the order they were issued [12].

Memory sub-operations must execute in a sequential

order that satisfies the following conditions:

a) Sub-operations appear in this sequence in the

order specified by the program order requirement

as shown in the figure 5.5 and

2OPC
1Oenth2OPO

1Oif:2O,1O   

b) The order among sub-operations satisfies the

write-update coherence (WUC) requirement, and

2O
PC
1Othen2O

WUC
1O and2O

PO
1Oif:2O,1O    

c) A read sub-operation issued by R(i) returns the

value of either the last write sub-operation W(i)

to the same location that appears before the read

in this sequence or the last write sub-operation to

the location that is before the read in program

order, whichever occurs later in the execution

sequence.

A processor consistent DSM system with write-

update coherence protocol and data replication

consists of several processors each with their own

copy of the entire memory. By modeling memory as

being replicated at every processing node, we can

capture the non-atomic effects that arise due to

presence of multiple copies of a single memory

location. Since the memory no longer behaves as a

single logical copy, we need to extend the notion of

read and write memory operations to deal with the

presence of multiple copies. Write operations no

longer appear atomic, however.

E. Pipelined RAM (PRAM)

The acronym PRAM is often used as a shorthand for

Parallel Random Access Machine which has nothing

in common with the Pipelined RAM consistency

model. The reasoning that led to this model was as

follows: consider a multi-processor where each

processor has a local copy of the shared memory.

Mosberger describes PRAM consistency is

consistency in which “.all processors (machines)

observe the writes from a single processor (machine)

in the same order while they may disagree on the

writes by different processors (machines)” [18].

For the memory to be scalable, an access should be

independent of the time it takes to access the other

processors’ memories. On a read, a PRAM would

simply return the value stored in the local copy of the

memory. On a write, it would update the local copy

first and broadcast the new value to the other

processors [6, 12, 18].

Definition: A history ĦĦ is PRAM consistent if there

is a legal linear sequence of ĦĦppii++ww that respects the

order  
PRAM

which is defined for each processor

pi follows:

2OPRAM
1Oenth2OPO

1Oif:2O,1O   

For the memory to be scalable, an access should be

independent of the time it takes to access the other

processors’ memories. On a read, a PRAM would

simply return the value stored in the local copy of the

memory. On a write, it would update the local copy

first and broadcast the new value to the other

processors.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

385

Assuming a constant time for initiating a broadcast

operation, the goal of making the cost for a read or

write constant is thus achieved. In terms of ordering

constraints, this is equivalent to requiring that all

processors observe the writes from a single processor

in the same order while they may disagree on the

order of writes by different processors. For example

P1 W(x)1 W(x)3

P2 R(x)1 W(x)2

P3 R(x)1 R(x)2

P4 R(x)2 R(x)1

P3 and P4 observe the writes by P1 and P2 in

different orders, although W(x)1 and W(x)2 are

potentially causally related.

F. Cache Consistency (Coherence)
Cache consistency and coherence are synonymous.

Coherence is a location-relative weakening of SC.

Recall that under SC, all processors have to agree on

some sequential order of execution for all accesses.

Coherence only requires that accesses are

sequentially consistent on a per-location basis.

Clearly, SC implies coherence but not vice versa.

Thus, coherence is strictly weaker than SC [3, 6, 17,

18]. The example below is a history that is coherent

but not sequentially consistent:

P1 W(x)1 R(y)0

P2 W(y)1 R(x)0

Clearly, any serial execution that respects program

order starts with writing 1 into either x or y. It is

therefore impossible that both read accesses return 0.

However, the accesses to x can be linearized into

R(x)0, W(x)1 and so can the accesses to y: R(y)0,

W(y)1. The history is therefore coherent, but not SC.

In essence, coherence removes the ordering

constraints that program order imposes on accesses

to different memory locations.

G. Slow Memory

Slow memory is a location relative weakening of

PRAM. It requires that all processors agree on the

order of observed writes to each location by a single

processor. Furthermore, local writes must be visible

immediately (as in the PRAM model). The name for

this model was chosen because writes propagate

slowly through the system. Slow memory is probably

one of the weakest uniform consistency models that

can still be used for intercrosses communication. m.

However, this algorithm guarantees physical

exclusion only. There is no guarantee of logical

exclusion [6,18].

Definition: A history ĦĦ is Slow consistent if there is

a legal linear sequence of ĦĦppii++ww that respects the

order 
SL

 which is defined for each processor pi

follows:

1. All processors must agree about the processor

write order on the same memory location

2O
SL

1Othen2O
PO

1Oandip2Oprocessor1Oprocessorif:2O,1O   










 

 and

2. All processors must eventually see all write

operations issued by all processors since the

order is defined on

2OSL
1Othen2OPO

1Oand

2Oaddress1Oaddress and ip2Oprocessor1Oprocessorif:2O,1O

  
























 

For example, after two processes P1 and P2 were

subsequently granted access to a critical section and

both wrote two variables a and b, then a third

processP3may enter the critical region and read the

value of as written by P1 and the value of b as

written by P2. Thus, for P3 it looks like P1 and P2

had had simultaneous access to the critical section.

This problem is inherent to slow memory because

the knowledge that an access to one location has

performed cannot be used to infer that accesses to

other locations have also performed. Slow memory

does not appear to be of any practical significance.

5. Conclusion

In this paper we presented a Unified Framework to

describe different memory consistency models.

The proposed framework considered only the read

and write operation and it is not depend upon the

synchronization operation so the models taken for

defining the framework shows the uniformity

property. The Atomic Consistency and Sequential

Consistency is the strong consistency. The Atomic

Consistency is also the strict consistency.

Relations between different consistency models

are also defined. A framework can also be

designed by using the read and write memory

operation as well as synchronization operation.

Reference

[1] L. Lamport, ''How to Make a Multiprocessor

Computer That Correctly Executes Multiprocess

Programs", IEEE Transaction Computers, vol. C-

28, no. 9, pp. 690-691 September 1979.

[2] S. Weber, P.A. Nixon and B Tangney," A

flexible Frame work for Consistency

Management in Object Oriented Distributed

Shared Memory", Department of Computer

Science, Trinity College, Ireland, Oct. 13, 1998.

[3] Paul Krzyzanowski "Distributed Shared Memory

and Memory Consistency Models" Rutgers

University – CS 417: Distributed Systems

©1998, 2001.

[4] Z. Huang, C. Sun and M. Purvis ”Selection-

based Weak Sequential Consistency Models for

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

386

Distributed Shared Memory" Departments of

Computer & Information Science University of

Otago, Dunedin, New Zealand , School of

Computing & Information Technology Griffith

University, Brisbane, Australia.

[5] Lisa Higham, Jalal Kawash and Nathaly

Verwaal, "Define and Comparing Memory

Consistency Model" ©1997 ISCA, Proceeding of

PDCS'97.

[6] Abdelfatah Aref Yahya and Rana Mohamad

Idrees Bader "Distributed Shared Memory

Consistency Object-based Model", Journal of

Computer Science 3 (1): 57-61, 2007 ISSN1549-

3636© 2007 Science Publications.

[7] J. Silcock "A Consistency Model for Distributed

Shared Memory on RHODOS among Shared

Memory Consistency Models" Deakin

University, 1997.

[8] John B.Carter, John K. Bennett and Willy

Zwaenepoel "Techniques for Reducing

Consistency-Related Communication in

Distributed Shared Memory Systems"Rice

University, TOCS95.

[9] Changhun Lee "Distributed Shared Memory"

Proceedings on the 15th CISL Winter Workshop

Kushu, Japan ¢ February 2002.

[10] Sarita V. Adve, Member, IEEE, Vijay S. Pai,

Student Member, IEEE, and Parthasarathy

Ranganathan, Student Member, IEEE "Recent

Advances in Memory Consistency Models for

Hardware Shared Memory Systems"

proceedings Of The Ieee, Vol. 87, No. 3, March

1999.

[11] Albert Meixner and Daniel J. Sorin "Dynamic

Verification of Memory Consistency in Cache-

Coherent Multithreaded Computer

Architectures" Duke University, Department of

Electrical and Computer Engineering, Technical

Report #2006-1, April 18, 2006.

[12] Alba Cristina Magalhães Alves de Melo

"Defining Uniform and Hybrid Memory

Consistency Models on a Unified Framework"

Proceedings of the 32nd Hawaii International

Conference on System Sciences -1999 IEEE.

[13] Jason F. Cantin, Student Member, IEEE, Mikko

H. Lipasti, Member, IEEE, and James E. Smith,

Member, IEEE "The Complexity of Verifying

Memory Coherence and Consistency" IEEE

Transactions On Parallel And Distributed

Systems, Vol. 16, No. 7, July 2005.

[14] Robert C. Steinke and Gary J. Nutt "A Unified

Theory of Shared Memory Consistency" Journal

of the ACM, Vol. V, No. N, Month 20YY, Pages

1–47 2002.

[15] Z. Huang, C. Sun and M. Purvis "A View-based

Consistency Model based on Transparent Data

Selection in Distributed Shared Memory"

Technical Report OUCS-2004-03.

[16] Ing. Thomes Seidmann," Distributed Shared

memory in Modern Operating System" Ph.D.

Thesis, Slovak University of Technology,

January, 2004.

[17] Jalal Y. Kawash" Limitations and Capabilities of

Weak Memory Consistency Systems" Ph.D.

Thesis Calgary, Alberta January, 2000.

[18] D. Mosberger: “Memory consistency models”,

Operating Systems Review, 17(1):18-26, Jan.

1993.

[19] Benny Wang-Leung Cheung, Cho-Li Wang and

Francis Chimoon Lau, “Migrating-Home

Protocol for Software Distributed Shared

Memory”, Journal of Information Science and

Engineering, 2000.

[20] Jerzy Brzezinski, Michal Szychowick,

“Replication of Checkpoints in Recoverable

DSM System”, Proceedings of 21 IASTED, Feb

2003.

Dr. Pankaj Kumar is currently

working as Assistant Professor in Sri

Ramswaroop college of engineering &

Management Lucknow. He received his

PhD. degree in computer application in

2011 and MCA degree in 2001.His

research interests are Parallel

Computing, Memory Architecture of

Parallel Computer and Distributed Computing. Many of

the valuable research papers of Mr. Pankaj Kumar have

been published in various national/international journals

and IEEE proceeding publication in the area of “Parallel

Computing”. He is life member of Computer Society of

India (CSI) and professional member of International

Association of Engineers (IAENG), International

Association of Computer Science and Information

Technology (IACSIT) and Internet Society (ISOC).

Krishna Kumar (June 4th , 1974) is a

research student in the Department of

Computer Science & Engineering,

CMJ University, Shillong, Meghalaya,

India. He has got his Master Degree in

Computer Applications (M.C.A.) in

1999 from Madan Mohan Malaviya

Engineering Colloge, Gorakhpur which

is affiliated to D.D.U. Gorakhpur University, Gorakhpur

Uttar Pradesh, INDIA. He has more than 10 years teaching

experience and 03 years research experience in the field of

Memory Management & Software Engineering. Currently

he is actively engaged in the research work on Designing

and Defining of Memory Models of DSM System on

Unified Framework. He has produced several outstanding

publications on various research problems related to the

Memory Models. He has published more than 04

International and National publications.

Auth’s Photo

AuthPhoto

