
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

458

Adaptive mapping for reducing power consumption on NoC-Based MPSoC

Lalit Tembhare
1
, Yogeshver khandagre

2
, Alok Dubey

3

Department of Electronic & Telecommunication, Trinity College of Engineering & Technology

Bhopal, India

Abstract

Intricacy of the S/W increased considerably

nowadays. It needs smart application specific

architectures as NoC based MPSoCs to achieve the

high data communication with computation

requirements. The design of these systems needs

efficient functionalities accumulating fragmenting

and mapping. In this manner, this paper makes

partitioning and mapping influence on energy

consumption of homogeneous NoC-Based MPSoC.

In addition it compares two strategies to get efficient

dynamic mappings. First one is, map tasks directly

on the processors. Second is, applies a previous

static task-partitioning and then use this

information to choose the dynamic task mapping.

Keywords

Partitioning, Mapping, MPSoC, NoC.

1. Introduction

Nowadays large quantity of applications, demanding

enormous computational power & large memory

sizes with reduced energy consumption and efficient

communication. All this needs boost the research and

development of specific architectures, like a NoC-

based MPSoC. In which the complete system

functionality is implemented into a single chip and

supports the heavy communication needs of multiple

processors with efficient energy consumption. By the

processing point of view, homogeneous MPSoCs are

composed by multiple processors of the same type

and heterogeneous MPSoCs are composed by

multiple processors with different architectures.

Heterogeneous MPSoCs can support a wide variety

of applications, since each processor has specific

computation and communication features, otherwise

homogeneous MPSoCs are easier to program &

increase the mapping and fragmenting possibilities,

and enable global load balancing through application-

task migration. Furthermore, the homogeneity may

minimize the global energy consumption and area

occupation for some set of applications [1]. This

work employs homogeneous NoC-based MPSoC as

target architecture, and presents a partial design flow

containing the application task partitioning into

groups of tasks, where each group is mapped onto

tiles of the target architecture. Here, tile is an area of

limited target architecture which is having processor,

router and local memory with auxiliary circuits.

Several works relate to task mapping onto NoC-based

architectures and some ones describe the tasks

partitioning into groups ([2 - 13]), but none evaluate

the effect of using static partitioning as a previous

step of the dynamic mapping. Here, we propose

comparison of two approaches: (i) the traditional one

that during the run time map tasks onto processors

and (ii) the other, which performs a previous analysis

of tasks affinity by a partitioning step and uses this

information to choose fast and efficient mappings.

Moreover, several works uses the same name

"mapping" to define both mapping and partitioning,

while the name "partitioning" is used only to explore

hardware/software division.

2. Methodology

The traditional flow associates tasks directly to tiles,

which is called here as task mapping. On the other

hand, our flow considers tasks affinity to generate

groups. The grouping of all application tasks, which

is the task partitioning activity, generates a partition.

The next step is to perform the selection of the best

place that each group of tasks will be associated,

which is the task-group mapping onto tiles activity.

To better understand the concepts of partitioning and

mapping of the proposed flow, Figure 1 exemplifies

the partitioning of a hypothetical application

composed by 22 tasks into 6 groups and the

corresponding mapping of these task groups onto

tiles of 2D-mesh NoC architecture. The application is

composed by a set of parallel communicating tasks

T = {t1, t2…… t22}. The tasks partitioning, which is

represented by continuous arrows, generates

groups G = {g1, g2…… g6} i.e. a set of task-groups.

Finally, task-groups mapping onto tiles is represented

by the dotted arrows. These one associates each

element of G to an element of the set of NoC tiles

Γ = { τ1, τ2, …, τ6}. In addition, each tile contains a

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

459

single element of the set of processors

P = {p1, p2, …, p6}.

Figure 1: Partitioning and mapping

understanding.

The task mapping onto tiles of the target architecture

adds the complexities of partitioning tasks across

groups and the mapping of these groups onto tiles. In

this case, the complexity is much higher because the

number of solutions to be explored with mapping

tasks onto tiles is much higher. Thus, even applying

good algorithms, the results obtained with this

activity tend to be worse, when compared to those

obtained with the flow proposed here, mainly in the

cases where it is done at run time, since the mapping

has a short time to be accomplished, requiring fast

but sometimes inefficient algorithms.

The partitioning and mapping have three main data

structures that are set out below:

Definition 1: A Task Communication Graph (TCG) is

a directed graph <T, V>. The set of vertices

T = {t1, t2….....m} represents the set of m

tasks in one parallel application. Assuming Vab is the

bits amount of all packets sent from a task

ta to a task tb, then the set of edges

V is {(ta, tb) | ta, tb T and Vab ≠ 0}, and each edge

is labelled with the value Vab. V represents all

communications between the application tasks.

Definition 2: A Communication Weighted Graph

(CWG) is a directed graph <P, W>, similar to the

TCG. However, the set of vertices

P = {p1, p2...… pn} represents the set of processors

in one application. The quantity of processors n is

equal to the total quantity of tiles, since each tile has

a single processor. Furthermore, wab is the total

quantity of bits sent from a processor pa to a

processor pb. Then the set of edges W is

{(pa, pb) | pa, pb € P and wab ≠ 0}, and each edge is

labelled with the value Wab. W represents all

communications between the MPSoC processors,

while CWG reveals information of application’s

relative communication volume. The mapping is

performed regarding to a 2D mesh NoC using

wormhole and deterministic XY routing algorithm.

The communication resource graph stated below

captures the NoC topology.

Definition 3: A Communication Resource Graph

(CRG) is a directed graph <Γ, L>, where the vertex

set is the set of tiles Γ = { τ1, τ2, …, τn} and the edge

set L = {(τi, τj), τi, τj € Γ} gives the set of paths

from τi to τj. The value n is again the total quantity of

tiles and is equal to the product of NoC lines and

columns. CRG edges and vertices represent physical

links and routers of the target architecture,

respectively. Both, processors (with the whole

memory hierarchy) and communication architecture

originate energy consumption. The sum of the energy

consumed by the execution of all tasks grouped on a

processor enable estimating its energy consumption.

This value is used, together with the communication

volume between tasks, to choose good partitions. On

the other hand, the amount of bits transmitted

between tasks grouped and mapped onto different

processors contributes to estimate the energy

consumption used to choose good mappings. The

approach used here to model the NoC’s energy

consumption is similar to those shown in [13] and

[14]. Dynamic energy consumption is proportional to

switching activity, arising from packets moving

across the NoC, consuming energy on the links and

inside of each router. The concept of bit energy EBit

is used to estimate the dynamic energy consumption

of each bit, when this flips its polarity from a

previous value. EBit is split into three components:

(i) bit dynamic energy consumed by the router (wires,

buffers and logic gates) (ERbit); (ii) bit dynamic

energy consumed on horizontal (ELHbit) and vertical

(ELVbit) links between tiles; and (iii) bit dynamic

energy consumed on the links between the router and

the local processor (ECbit). Equation (1) expresses

the relationship between these quantities, which

computes the dynamic energy consumption of a bit

passing through a router, a vertical or horizontal link

and a local link.

EBit = ERbit + (ELHbit or ELVbit) + ECbit (1)

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

460

ERbit depends on the buffer structure and technology

to estimate how many bit-flips occur to write, to read

and to preserve the information. ELbit is directly

proportional to the tile dimension. For regular

2D-mesh NoCs with square tiles, it is reasonable to

consider that ELHbit and ELVbit have the same

value. Therefore, the next equation uses ELbit as a

simplified representation of ELHbit and ELVbit.

Equation (2) computes the dynamic energy consumed

by a single bit traversing a NoC, from tile τi to tile

τj, where η corresponds to the number of routers

through where this bit passes.

EBitij = η × ERbit + (η - 1) × ELbit + 2 × ECbit

 (2)

Let τi and τj be the tiles to which pa and pb are

respectively mapped. Then, the dynamic energy

consumed by a pa → pb communication is given by

EBitab = wab × EBitij. Equation (3) gives the total

amount of NoC’s dynamic energy consumption

(ENoC) that is computed for all bits of all

communications between processors (|W|) [10].

(3)

3. Proposed methodology

Figure 2 illustrates the design flow description, which

is implemented inside CAFES [2], a framework for

MPSoC design. The task mapping flow is represented

by dashed arrows, while the proposed one is

symbolized by continuous arrows. In addition, dotted

arrows represent input information for mapping

and / or partitioning. Task partitioning into groups

has as entries: (i) application description, which has

all tasks and their communications; (ii) Processors

list, which has the name and quantity of processors

enabling to compute the quantity of task groups; (iii)

Processor use that is a constraint to limit the quantity

of task grouped into the same processor; and (iv)

NoC energy parameters that is used to compute the

energy consumption of a given partition.

The partitioning cost function takes into account the

minimization of the overall communication volume.

The algorithm tries to achieve a minimum cost,

which implies to cluster into the same processor high

communicating tasks. In addition, the algorithm tries

to balance the processor use through fair distribution

of tasks over the available processors, respecting

processor use constraint. In other words, tasks that

communicate most are grouped as far as they do not

compromise more than the maximum processor use

for each processor a parameter set according to the

application requirements. The processor use

constraint is neglected only in cases where there are

no other available processors, i.e. the task association

to every processor always implies more than the

maximum processor use. The partitioning tool

generates a CWG description (Section 2) that

contains all processor tasks associations.

Figure 2: Design flow showing the partitioning

and mapping

The SA algorithm [13] achieves good results for

static partitioning problem, since the designer has

much time to perform it. On the other hand, dynamic

mapping requires fast decisions to not postpone the

application execution implying a simpler but efficient

algorithm.

This work implements two mapping algorithms: (i)

one that has as input the TCG description, which

maps the most communicating tasks onto the same

processor, while the maximum processor use is not

reached. When it happens a new neighbour tile is

searched using a mapping cost function; and (ii) the

second one that has as input the CWG description.

This algorithm searches in the set of task groups for

the tile where at least one other task of the same

group had been previously mapped. If no previous

task was mapped, the algorithm uses the same

mapping cost function of the previous algorithm to

search the new target tile.

The mapping cost function takes into account the

communication volume between processors and the

NoC energy parameters to compute the energy

consumed on a given mapping. Considering a given

pair of communicating processors, together with

CRG and NoC parameters, the energy consumption is

computed through the energy model described on

Section 2. The energy consumption achieved by task

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

461

running on processor is used only to compute the

total energy consumption, but does not affect the

mapping choice. For both flows, the mapping

generates a file containing all processor tile

associations that implies a minimum energy

consumption of all evaluated maps.Partitioning and

mapping cost functions use the same NoC energy

parameters stated by Equation (2). However, while

mapping specifies the exact processor place into the

NoC, the partitioning only explores the

communication needs, but the number of hops there

is between two communicating processors is

unknown. In these sense, partitioning cost function

uses the concept of average of hops that enables to

compute the average energy consumption of all

possible paths.

4. Conclusion

The mapping on the tiles of the specific architecture

is an NP-complete design activity, and then

accomplished at runtime may not get good results,

due to the sparse time and to explore the large

number of solutions. This work proposes application

of fragmentation of tasks into fragments before the

mapping. Once fragmented, the search space of the

mapping is reduced, that allows achieving efficient

dynamic mapping algorithm that may performs an

ideal mapping in a small period of time.

Consequently multiple applications requirement can

be fulfilled splendidly.

References

[1] Jalier C etal, “Heterogeneous vs. homogeneous

MPSoC approaches for a Mobile LTE modem”,

DATE, pp.184-189, 2010.

[2] Le Beux, S etal, “Combining mapping and

partitioning exploration for NoC-based embedded

systems”, JSA, Vol.56(7), pp.223-232, 2010.

[3] Sahu P etal, “A new application mapping

algorithm for mesh based Network-on-Chip

design”, INDICON, pp.1-4, 2010.

[4] Bo Yang etal, “Multi-application multi-step

mapping method for many-core

Network-on-Chips”, NORCHIP, pp.1-6, 2010.

[5] Carvalho, E.; Calazans, N.; Moraes, F.,

“Dynamic Task Mapping for MPSoCs”, IEEE

Design & Test, v.27(5), pp. 26-35, 2010.

[6] Leupers, R., Castrillon, J., “MPSoC

programming using the MAPS compiler”, ASP-

DAC, pp.897-902, 2010.

[7] Guang S. etal, “Energy-aware run-time mapping

for homogeneous NoC-SoC”, pp.8-11, 2010.

[8] Nedjah N., Silva M., Mourelle L., “Customized

computer-aided application mapping on NoC

infrastructure using multi-objective

optimization”, JSA, v.57(1), pp.79-94, 2011.

[9] Tsai K. etal, “Design of low latency on-chip

communication based on hybrid NoC

architecture” NEWCAS, pp.257-260, 2010.

[10] Youness H. etal,“A high performance algorithm

for scheduling and hardware-software

partitioning on MPSoCs” DTIS, pp.71-76, 2009.

[11] Go_hringer, D. etal, “A Design Methodology for

Application Partitioning and Architecture

Development of Reconfigurable Multiprocessor

Systems-on-Chip”, FCCM, pp.259-262, 2010.

[12] Marcon, C. etal, “CAFES: A framework for

intrachip application modeling and

communication architecture design”, JPDC,

v.71(5), pp.714-728, 2011.

[13] Bononi, L. etal, “NoC Topologies Exploration

based on Mapping and Simulation Models”,

DSD, pp.543-546, 2007.

[14] Chen-Ling C., Marculescu R., “Contention-aware

application mapping for Network-on-Chip

communication architectures”, ICCD, pp.164-

169, 2008.

I am Lalit N Tembhare from Nagpur

Maharashtra, studding in Trinity

College of Engineering & Technology,

Bhopal (M.P.). I am 25 Years old

pursing M. Tech. in VLSI.

