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Abstract  
 

Maximum Likelihood (ML) detection is the 

optimum method for decoding the received signal 

vector in communication systems. Its complexity 

increases with the number of antennas and the 

constellation size. Sphere Decoding (SD) is an 

alternate for ML detection. Although SD 

significantly reduces the complexity of MIMO-ML 

decoding, its complexity remains too high to apply it 

for practical systems. As the radius determines the 

volume of the hyper sphere, choosing a proper 

radius can be helpful in further reducing the 

complexity of SD. It provides optimal or suboptimal 

performance with reduced complexity, as it searches 

the points which are within the specified radius of 

the hypersphere. The complexity of the sphere 

decoder depends on the initial radius selection of 

the sphere to begin the search process and to update 

the radius, when no points are found in the 

specified radius. A look up table of initial search 

radius is generated using Radius Choice Algorithm. 

The SD uses this LUT to consider the initial search 

radius for further processing. The Increasing 

Radius Algorithm (IRA) is used for updating the 

radius.  The radii of spheres in which expected 

number of points are some predefined values are 

obtained. Then using these radii the search begins 

with IRA. The simulations are performed for 

constellation size of 4-QAM and 16-QAM with 

antenna size of 4X4 and 8X8 MIMO. It is shown 

that the average number of floating point operations 

are reduced by an amount of 35% at lower SNR 

values till 5 dB by reducing the number of nodes 

visited, without degrading the performance.  
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1. Introduction 
 

Because of the huge capacity on a scattering-rich 
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wireless channel [1], Multiple-Input Multiple Output 

(MIMO) system has been extensively researched in 

the communication community. It is known that ML 

decoding is the optimum decoding method, but its 

exponential complexity with the number of transmit 

antennas and the constellation size. The requirement 

of exhaustive full search makes it unrealizable in a 

practical system. Sphere decoding is one of the 

methods to reduce the complexity of MLD [2] 

without loss of performance. Although the SD 

algorithm offers computational efficiency in many 

communication scenarios [3], [4], it also requires 

exponential complexity [7] both from a worst-case 

and from an average point of view. Many algorithms 

have been proposed to further reduce the complexity 

of SD.  

 

One of them is tree pruning which sets different 

radius for different layers, such as increasing radii 

algorithm (IRA) [7] and probabilistic tree pruning 

sphere decoding (PTP-SD) [8] Algorithm. The 

number of visited nodes, which determines the 

complexity of SD, is reduced by removing the 

unlikely branches in early stage of sphere search 

based on the fact that the sphere constraint of the SD 

algorithm offers a loose necessary condition, 

especially in the early layers of search.  

 

However, in a large degree, the computational 

efficiency of those algorithms depends on the choice 

of initial radius, which determines the search space 

and influences the complexity of SD significantly. 

There are many methods to determine a radius for 

SD. [4] and [6] choose ∞ as the initial radius. In this 

situation, the first point obtained by SD is known as 

Babai point or zero-forcing decision feedback 

equalization (ZF-DFE) point. The radius can be 

updated as the distance between Babai point and the 

received point. [13] Uses minimum mean square 

error (MMSE) detection to obtain the initial point. 

The two methods can ensure that there is at least one 

point in the sphere, but the radii are often too large 

due to the poor performance of ZF-DFE and MMSE, 

which cause the complexity of SD not be 

significantly reduced. [5] sets the radius as the scaled 

value of the expected Euclidean norm of noise vector, 

but how to determine the scaled factor is also a 

problem. The paper proposes a new algorithm to 
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determine the radius for SD according to the 

expected number of points in the sphere. First get the 

radii of the spheres in which the expected numbers of 

points are some predefined values and then based on 

the radii an algorithm proposed.  

 

The MIMO systems have drawn attention because of 

high spectral efficiency and performance in a given 

bandwidth. The goal is to minimize BER for the 

given SNR. Linear detection techniques provide 

linear complexity but performance is suboptimal. 

Different methods have been proposed to limit the 

complexity of the sphere decoding algorithm. Most 

of them still have a variable complexity depending on 

the channel conditions. They can be classified in 

different ways. The first is to modify in the existing 

algorithm to marginally reduce the complexity 

associated with additional operations. The second is 

to simplify the algorithm for specific constellation 

types. The basic concept is to search N-dimensional 

hyper sphere of some predefined radius R within the 

code space.  

 

The recent analysis in [10] has shown that the 

complexity of sphere decoding algorithm at high 

SNR for 16-QAM (Quadrature Amplitude 

Modulation) and 64-QAM modulations can be 

reasonably implemented with current processors. The 

minmax approach in [11] utilizes partial information 

about CSI errors and formulates a worst case, robust 

decoding scheme. A fast searching algorithm based 

on List Sphere Decoding (LSD) is proposed in [12]. 

This algorithm is considered for signals transmitted 

on multiple antennas. In [13] results show that by 

applying Phost Enumeration(PE) method with some 

initial radius is more efficient than by applying 

Schnor Euchner enumeration.  
 

Well-known soft input soft output (SISO) decoders 

for MIMO are LSDs. A large stack has to be 

maintained to calculate the soft outputs. Hence it is 

most complex and the decoding throughput is less. In 

[14] a modified K-best Schnor Euchner algorithm is 

used. In [15] a new technique is introduced which 

reduces the complexity of sphere decoder 

substantially. This reduction is accomplished by 

deconstructing the decoding metric to reduce the 

number of computations to their minimum and 

exploiting the structure of lattice representation. The 

complexity of sphere decoder is measured by number 

of operations required per visited node multiplied by 

the number of visited node throughout the search 

procedure [16]. The complexity can be reduced by  

either reducing the number of visited node or the 

number of operations to be carried out or both of 

them. A judicial choice of initial radius is made to 

start the algorithm and this is considered in [17, 18].  

 

The section 2 presents the system model and review 

the classic SD algorithm. SD algorithm is presented 

in section 3. The simulation results are provided in 

section 4 and conclusion is put in section 5  

 

2. System model 
 

Consider MIMO systems with M transmit antennas 

and N receive antennas. The discrete time received 

signal can be expressed as, 

                                                                   (1) 

Where H denotes the channel matrix, x denotes the 

vector of transmitted symbols, n is the vector of 

independent and identically distributed noise and y is 

the vector of received symbols. Sphere decoding is a 

method for solving the integer least squares problem: 

   
    

‖    ‖                  
 

                              (2)          

Where,         and       . Note that while x is 

an integer vector, both the matrix H and vector y are 

real. As the standard way of solving least squares 

problems, assuming the matrix H is of full column 

rank, H is first reduced into an upper triangular 

matrix using orthogonal transformations, such as the 

Householder transformation, to obtain the QR 

decomposition: 

   [
 
 
]                                                (3) 

Where,        is orthogonal and           is 

upper triangular. Partitioning Q = [Q1 Q2], where 

Q1 is     and Q2 is        , we get 
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Note that the second term in above equation is 

independent of x. Denoting  ŷ as   
   , the integer 

least squares problem  is then reduced to following 

triangular integer least squares problem: 

 

   
    

‖    ‖                  
 

                                              (6) 

Sphere decoding solves the above triangular integer 

least squares problem arising from communication 

applications. It searches a solution in a predetermined 

hyper sphere centered at ŷ. 
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2.1 Sphere Decoder 

Sphere decoding, introduced originally by Finke and 

Pohst in 1985, enumerates all lattice points in a hyper 

sphere centered at a given vector. It searches a lattice 

point in a hyper sphere of radius r and centered at ŷ, 

that is closest, in Euclidean distance, to the center. 

Therefore, by restricting the search area, it can reduce 

the computational complexity of solving the 

triangular integer least squares problem. Fig.1 

illustrates a hypersphere centered at a vector 

represented by the hollow point. 

 

 
Figure 1: Geometric interpretation of hyper 

sphere in a lattice space. 

 

The sphere radius of d and centered at y can be 

defined as, 

  {   ‖    ‖   }                           (7) 

condition is equivalent to, 

‖    ̂‖ 
                                 (8) 

Where,   ̂     ‖  
  ‖ 

  

Since R is upper triangular, so rewriting the above 

condition, in entry wise as, 

 ̂  (∑ (∑          ̂
 
   ) 

   )
 
           (9) 

Where     , j ≥ i denotes the (i, j)
th

 entry of R. The 

above equation is expanded to get the equations. 

 ̂  ( ̂        )
 
 ( ̂             

            )
 
                                              (10) 

The first term in the right side of above equation 

depends only on the m
th 

entry    of lattice point s, 

the second term depends on the entries    and   

    , and so on. By solving, we get, 

[
  ̂  ̂ 

    
]     [

 ̂  ̂ 

    
]                                     (11) 

Following the above procedure, obtain the intervals 

for     ,     , and so on until                . Then 

it is able to determine all the lattice points in the 

hyper sphere of radius. 

 

3. Sphere decoder algorithm 

Inputs:  R, where R is upper triangular matrix,  ̂, 

where  ̂ is the y reduced by the QR decomposition. d,  

radius of sphere. 

Output:  x or null. 

Step 1:  set k=m,   
      ‖  

  ‖ ,   ̂ |       .   

Step 2: (Bounds for   ), set        
    ̂ |   

    
,  

         
     ̂ |   

    
 

Step 3: (Increase   )          

If                 , go to step 5; else go to step 4. 

Step 4: (Increase k) k=k+1 

If k=m+1, terminate algorithm, else go to step 3. 

Step 5: (Decrease k) if k=1, go to Step 6; else  

            k=k  ,   ̂ |     ̂  ∑       
 
        

              
      

  ( ̂   |                )
 
  

           and go to step 2. 

Step 6: solution found. Save x and its distance from         

y, 

              
    

  (         )
 
 and go to step 3. 

 

3.1 Increasing Radius Algorithm 

Using a schedule of radii and by choosing a smaller 

radius for the lower dimensions and gradually 

increasing it, the search space is cut down much 

earlier than with the sphere decoder. This will reduce 

the number of points in the search region at the lower 

dimensions. To reduce the complexity, naturally try 

to reduce the number of points. However, because of 

the asymmetry of the region it is possible that the 

lattice point closest to x does not lie in the search 

space. For the sphere decoder, the closest point to x 

inside the hyper sphere is the closest point to x in the 

entire lattice. For the IRA, however the closest point 

to x in D is not necessarily the closest point to in the 

entire lattice. Thus, unlike the sphere decoder, we are 

not doing ML decoding and are, potentially, incurring 

a greater BER. Reduced computational complexity is 

obtained. By the increase in the asymmetry of the 

search region the computation involved decreased, 

but simultaneously incur an increased BER. 

 

Algorithm is as follows: 

 

Function DECODE (x, H, r) 

Step 1:    [
 
 
]  

Step 2: t = Q x, y= [t1,………, tM] 

 

Step 3: D=Ф, y”=r’=s=0MX1 

 

Step 4: While D=   

 

r = GETNEWSCHEDULE 
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D = DECREASE (N, y, R, r, y", r’, s, D) 

Step 5: s*=          ‖    ‖
  

Step 6:  output s* 

function DECREASE (k, y, R, r, y”, r ', s, D) 

Step 1: if k=0 

D=D  { } 
return 

Step 2.elseif k=N  

r'k =r
1
, y"k = y1 

 

Step 3.else 

y"k=    ∑      
 
        

    (           
        

   

 (  
   

             )
 
)
   

 

Step 4: LB = max ([((r' k + y" k) / rk, k)   0.5] + 0.5, 

              0.5 (L-1)) 

UB = min ([((r'k + y"k)/rk, k) + 0.5]   0.5, 0.5 (L-1)) 

 

Step 5: for n=LB: UB 

sk = n 

D = DECREASE (k-1, y, R, r, y", r ', s, D) 

Step 6: return 

 

3.2 Radius Choice Algorithm 

In Radius Choice algorithm [1], the initial radius can 

be obtained corresponding to the expected number of 

points for particular values of SNR. 

 

Expected Number of Points in a Sphere 

The received symbol vector is denoted as  ̃ and the 

actual transmitted symbol vector as  . Then,  

    ̃         ̃       ̃         

Where      ̃  is the error symbol vector. 

Therefore, the components of      ̃are i.i.d.  

 ̅         
  | |  random variables and |     ̃|  

is a scaled chi-squared distribution with m degrees of 

freedom, where   
  is the variance of the component 

of H. When the decoding is perfect,  ̃  equals to   so 

y  Hx = n is Gaussian random vector whose 

component is  ̅         random variable. With a 

definite radius C given, obtain the probability that the 

lattice point  ̃ is in the sphere, 

 

  ̃   

 ∫      ⁄     ⁄   ⁄ (   ⁄   )    ⁄   
(        

  | |  )

 

 

      

                                    (12) 

  ̃               
  | |  ⁄                             (13) 

 

Where,    is the co-variance and   
  is the co-

variance of component of channel matrix H. 

 

            ⁄                                      (14) 

Where, L
2
 is the QAM constellation, Ґ (.) is the 

Gamma function and Ф (.) is the Cumulative 

Distributive Function (CDF) of chi-square 

distribution. A table of initial radius value for any 

expected number of lattice points for a given value of 

SNR is formed. A sequence of number of points such 

as D1, D2, D3 and so on is formed with constant 

incremental steps. Then the radius values C1, C2, C3 

and so on respectively are formed using the following 

equations (12), (13)  and (15)for the given value of 

SNR. For 4-QAM, the equation for the expected 

number of points is given by, 

 

     ∑ ( 
 
) 

      ̃             (15) 

 

For 16-QAM, the equation for the expected number 

of points is given by, 

         ⁄  ∑ ∑ ( 
 
) 

             ̃           (16) 

Where        is the co-efficient of   in the 

polynomial (1+x+x
4
+x

9
)

l 
(1+2x+x

4
)

k-l
. Similar results 

can be obtained for 64-QAM and other 

constellations. The initial radius C1 is chosen such 

that it should eliminate the too-large and the too-

small conditions. The too-large condition implies that 

there are many points within the sphere. Hence, the 

complexity cannot be reduced effectively. The too-

small condition implies that there is no lattice point 

within the sphere which leads to repetitive search and 

hence, increases the complexity. If the search fails 

with C1, then start the new search with C2 as the 

initial radius. If there is only one lattice point then the 

solution will be the ML solution. 

 

4. Simulation Results 
 

The simulations are performed for a set of MIMO 

configurations and two modulation techniques. Fig. 2 

is a plot of number of FLOPS vs. SNR for IRA with 

and without Radius Choice Algorithm. The 

simulations are carried out for a 4   4 MIMO and for 

the constellation size of 4-QAM. The figure shows 

that there is reduction in the number of FLOPS by 

35% at lower SNR region i.e. from zero till 5dB. At 

higher SNR i.e. above 5 dB the number of FLOPS 

required remains almost the same. 
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Figure 2: Plot of average number of Floating point 

operations versus SNR in dB for 4X4 MIMO and               

4-QAM 

 

Fig. 3 is a plot number of FLOPS vs. SNR for IRA 

with and without Radius Choice Algorithm. The 

simulations are carried out for an 8    MIMO and 

for the constellation size of 4-QAM. The figure 

shows that there is reduction in the average number 

of FLOPS by 39 % at lower SNR region i.e. from 

zero till 5dB. At higher SNR i.e. above 5 dB the 

number of FLOPS required remains almost the same. 

The simulations are carried for about 50 times and 

the average is considered for the plotting of the 

graph. 

 

 
 

Figure 3: Plot of average number of Floating point 

operations versus SNR in dB for 8X8 MIMO and     

4-QAM 

 

Table 1 is the look up table for initial radius for the 

combination of expected number of points and the 

given value of SNR. These tables are generated using 

the expression (15) and (16). Here D1 is much less 

than D2 especially when SNR is high while the 

difference between two adjacent   
    for i >1 is very 

small at the entire SNR regime. Here it can be 

observed that, as the SNR increases the initial radius, 

from where the search has to be started, decreases. It 

can also be seen that the initial search radius 

increases with number of antennas. 

 

Fig.4 and Fig.5 are plotted for 8 8 MIMO 

configurations for the constellation size of 4-QAM 

and 16-QAM. The figures reveal the same 

performance from zero till 5dB. At higher SNR i.e. 

above 5 dB the number of FLOPS required remains 

almost the same. Fig.6 is plot of average number of 

nodes visited versus SNR in dB for 4 4, 8 8 MIMO 

with 4-QAM, 16-QAM constellations. The graphs 

revealed that the proposed technique of using the 

radius choice algorithm for updating the sphere 
radius has reduced the average number of visited 

nodes. This in turn has reduced the complexity 

without degrading the performance. 

 

 
 

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10A
ve

ra
ge

 n
u

m
b

e
r 

o
f 

fl
o

at
in

g 
p

o
in

t 
o

p
e

ra
ti

o
n

s 

Signal To Noise Ratio in dB 

For 4X4 MIMO and 4-QAM 

IRA

IRA+Radius Choice

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 n
u

m
b

e
r 

o
f 

fl
o

at
in

g 
p

o
in

t 
o

p
e

ra
ti

o
n

s 

Signal To Noise ratio in dB 

For 8X8 MIMO and 4-QAM 

IRA

IRA+Radius Choice

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r 

o
f 

Fl
o

at
in

g 
p

o
in

t 
o

p
e

ra
ti

o
n

s 

Signal to Noise ratio in dB 

For 4X4 MIMO and 16-QAM 

IRA

IRA+Radius Choice



International Journal of Advanced Computer Research (ISSN (print): 2249-7277   ISSN (online): 2277-7970)  

Volume-3 Number-3 Issue-11 September-2013 

103 

 

Figure 4: Plot of average number of Floating point 

operations versus SNR in dB for 8X8 MIMO and     

4-QAM 

 

 

 

 

 

 

 
 

Figure 5: Plot of average number of Floating point operations versus SNR in dB for 8X8 MIMO and   16-QAM 

 

Table 1: Initial radius Look Up Table for 4 X 4 MIMO with 16-QAM when D=1, 2 ...and 8. 

 

5. Conclusion and Future Work 
 

Although Sphere Decoding (SD) is proposed as an 

alternative for ML decoding, its complexity is still too 

high to apply it into practical systems. Because the 

radius determines the volume of the hyper sphere, 

choosing a proper radius can be very helpful in further 

reducing the complexity of SD. The proposed idea to 

consider Choice Algorithm has reduced the 

complexity. This is achieved in turn by reducing the. 

The number of nodes visited. The simulations are 

performed for the initial radius for the search process 

from the Look Up Table (LUT) generated by using 

the Radius constellation size of 4-QAM and 16-QAM 

and antenna size of 4   4 and 8   8 MIMO. It is 

shown that the number of floating point operations 

reduced significantly by an amount of 35% at lower 

SNR values till 6 dB by reducing then the number of 

nodes visited without degrading the performance. 
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SNR D=1 D=2 D=3 D=4 D=5 D=6 D=7 D=8 

1 4.038472 0.069118 0.076905 0.082987 0.088056 0.092442 0.096332 0.099843 

2 2.023659 0.063823 0.071013 0.076630 0.081310 0.085360 0.088952 0.092194 

3 1.349106 0.062058 0.069049 0.074511 0.079062 0.082999 0.086492 0.089645 

4 1.009618 0.061176 0.068067 0.073451 0.077937 0.081819 0.085262 0.088370 

5 0.804156 0.060646 0.067478 0.072815 0.077263 0.081111 0.084524 0.087605 

6 0.665707 0.060293 0.067086 0.072392 0.076813 0.080639 0.084032 0.087095 

7 0.565551 0.060041 0.066805 0.072089 0.076492 0.080302 0.083681 0.086731 

8 0.489329 0.059852 0.066595 0.071862 0.076251 0.080049 0.083417 0.086458 

9 0.429062 0.059705 0.066431 0.071685 0.076063 0.079852 0.083212 0.086245 

10 0.379964 0.059587 0.066300 0.071544 0.075914 0.079695 0.083048 0.086075 
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Figure 6: Plot of average number of nodes visited versus SNR in dB for 4X4, 8X8 MIMO and 4-QAM,  

16-QAM constellations
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