
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

223

Executable UML plug-in for Eclipse

A. M. Magar
1
, N. J. Uke

2

Abstract

MDA is a standard from OMG and is used by

industry as an approach to application design and

implementation. MDA is a way to manage and

organize enterprise architectures supported by

automated tools and services for defining the

models. MDA facilitates transformations between

different model types. In MDA PIM models are

directly transformed and executed. These PIM and

PSM models and meta-models are created using

UML and MOF. UML in its current state is not

directly executable. It lacks action semantics to

describe the steps executed by the system in

response to events. Existing executable UML lacks

a standardized Action Semantics. Executable UML

is an attempt to make UML directly translatable and

executable to 3rd or 4th generation programming

languages using eclipse plug-in. Using EMF and

GEF it is possible to create feature reach graphical

editor for UML. These graphical UML models are

stored in XMI format as models. Our proposed

Eclipse xUML plug-in is part of MDA which

provides rich UML class diagram editor along with

palette which contains all UML notations. Plug-in

combines Java perspective and class diagram

perspective. Plug-in allows developer to edit class

diagrams as models and it also adds action

semantics to the class diagram using Java. xUML

plugin makes use of existing features of eclipse to

execute the models as Java project.

Keywords

Executable UML, Eclipse Plug-in, AST

1. Introduction

MDA supports model driven engineering of software

system. MDA is providing a set of guidelines for

structuring specifications which are expressed as

models. Using MDA system functionality may be

first defined as PIM through appropriate DSL. PIM

may be then translated to PSM, for actual

A.M.Magar, Department of Information Technology, Sinhgad

College of Engineering, Pune-411041.

N. J. Uke, Department of Information Technology, Sinhgad

College of Engineering, Pune-411041.

implementation using general purpose languages like

java. The translations between PIM to PSM may be

performed using automated tools compliant to the

QVT standard[9].

Aim of the MDA is to separate design from

architecture. Even though QVT is a specific standard

for model transformation, xUML provides translative

approach for executing models. UML was extended

by semantics for actions. Earlier UML was not

executable; in newer version the action semantics

provides at a high level of abstraction a complete set

of actions. For example, actions are defined for

manipulating collections of objects directly, thus

avoiding the need for explicit programming of loops

and iterators. Executable UML relies on these new

actions to be complete.

In this paper we introduce Eclipse as a editor for

UML class diagram and execute it as a model by

using translative approach. Action semantics are

added directly using AST to the java code. Graphical

Class diagram Editor is created using GEF and EMF

frameworks. Java can be used as a action language to

define action semantics. Class diagrams created using

this approach can be easily stored in to XMI format.

2. Existing Methodology

There are already some related studies on application

of Executable UML. TextUML toolkit is a eclipse

plug-in which allows to create UML models at the

same speed we write code. Some approaches include

and exists for executable UML models is based on

using UML state machine to describe behavior of an

operation [3]. The direct execution of such state

machines would be still inefficient. Behavior in this

case is given in terms of action languages. These

actions are written in languages such as

 Action Language(OAL)

 Shlaer-Mellor Action Language

(SMALL),

 Action Specification Language(ASL)

 That Action Language (TALL)

 Starr's Concise Relational Action

Language(SCRALL)

 Platform-independent Action Language

(PAL)

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

224

 PathMATE Action Language (PAL)

In addition to this JAction and OCL4X are used for

defining actions to make UML models executable

[5][6].

3. Our Methodology

3.1. Architecture of Eclipse Plug-in

Eclipse provides development tools for different

languages like Java, C and C++. There are many

different plug-ins supported by Eclipse. Eclipse plug-

in architecture as shown in figure contains class

diagram editor and Java editor in common

perspective. These editors are dependent on EMF and

GEF frameworks from eclipse modelling.

Vcvx

Figure 1: Plug-in architecture

xUML Plug-in uses the tools UML2 toolkit which

provides different facilities and options for making

models. Our methodology uses Eclipse Modeling

Framework(EMF) for storing models in XMI format

and Graphical Editing Framework(GEF) for feature

rich graphical notations. xUML plug-in combines

UML perspective and Java perspective which allows

creating models graphically as well as generating

code behind in Java perspective. xUML plug-in

allows developer to work at very high level

abstraction. Our methodology will enhance Eclipse as

an MDA tool for which xUML plugin is needed for

executing models.

3.2 UML Class Diagram Editor

EMF was started as a MOF of the OMG

implementation. EMF is an enhancement of the

MOF2.0. EMF is open source implementation that

enhances the MOF 2.0 ECORE model and

restructures its design in a way that is easy for the

user[1]. The EMF is part of the Model Driven

Architecture (MDA). It is the implementation of a

part of the MDA in the Eclipse family tools. EMF

can be used to describe a model. Java code can be

generated by the addition of higher level Java code.

Once the model has been completed, by means of

EMF modeling or Java interface definition, we can

generate the corresponding code to implement it.

The GEF allows us to easily develop graphical

representations for existing XMI models. It is

possible to develop feature rich graphical editors

using GEF[1]. All graphical visualization is done via

the Draw2D framework based on SWT. The editing

possibilities of the GEF allow us to build graphical

editors for nearly every XMI model. With these

editors, it is possible to do simple modifications to

your model, e.g. changing element properties or

complex operations like changing the structure of

your model at the same time. GEF assumes we have a

model we would like to display and edit graphically.

To do this, GEF provides viewers (of the type

EditPartViewer) that can be used anywhere in the

Eclipse workbench. Like JFace and GEF viewers are

adapters on an SWT Control. GEF viewers are based

on a MVC architecture. The controllers are to bridge

the view and model[1].

EditParts are the central elements for the GEF

applications[1]. They act as controllers that specify

how model elements are mapped to visual figures and

how these figures behave in different situations.

Usually we will have to create an EditPart class for

every model element class so we will have likely the

same class hierarchy for the EditParts as we have for

our model. EditParts are defined using the interface

which can be referenced as org.eclipse.gef.EditPart

[1]. Model is not manipulated directly when the user

interacts with EditParts. Instead, a Command is

created that will encapsulate the change. Commands

are usually used to validate the user's interaction, and

to provide undo and redo support. A GEF application

is an editor for drawing diagrams. A diagram can be

modeled as some UML notations. A shape might

have properties for location, color, etc., and group

structure of multiple shapes.

3.3 XMI Model

XML Metadata Interchange (XMI) is a standard that

enables us to express our objects using Extensible

Markup Language (XML) which is the universal

format for representing data on the World Wide

Web[2]. XMI is more than a set of serialization rules

though. XMI is closely related to modeling standards

from OMG, enabling us to employ modeling

effectively in your XML efforts. In our project XMI

2.0 specifies how to create XML schemas from

models. Following is the sample XMI model created

using UML class diagram editor.

<?xml version="1.0" encoding="UTF-8"?>

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

225

<uml:Model xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML"

xmi:id="_bbgqINRZEeKQp_kHw-tZdg" name="temp">

 <packagedElement xmi:type="uml:Package"

xmi:id="_bbgqIdRZEeKQp_kHw-tZdg" name="pack"/>

 <packagedElement xmi:type="uml:Package"

xmi:id="_bbgqItRZEeKQp_kHw-tZdg"

name="package2">

 <packagedElement xmi:type="uml:Class"

xmi:id="_bbgqI9RZEeKQp_kHw-tZdg" name="Class">

 <ownedOperation xmi:id="_bbgqJNRZEeKQp_kHw-

tZdg" name="operation" visibility="public"/>

 </packagedElement>

 </packagedElement>

</uml:Model>

Figure 2: Sample XMI model

3.4 Abstract syntax tree

The AST can be used as detailed tree representation

of the Java source code. The AST can be used to

define API to modify, create, read and delete source

code[10]. The Eclipse JDT provide APIs to access

and manipulate Java source code. JDT allows to

access the existing projects in the workspace, create

new projects and modify and read existing projects.

JDT also allows launching Java programs. JDT

allows us to access Java source code via two different

means. First is Java Model and second the Abstract

Syntax Tree (AST) which is a Document Object

Model similar to the XML DOM. Each Java project

is internally represented as Java model in Eclipse.

The Eclipse Java model is a light-weight

representation of the Java project.

Our methodology is based on adding action

semantics to the class diagram. Translation from

class diagram model will be done simultaneously

using AST Parser. As UML class diagram editor and

Java editor are in same perspective it allows us to

execute the project directly as Java Project. This will

raise abstraction level as action semantics are written

in Java itself. Methods can be added easily along

with action semantics directly to the Java source

code. Models created using UML class diagram can

be executed by simultaneously translating code in

Java Editor. Figure 3 shows sample code which adds

a method with action semantics to the Java

perspective.

try{

IWorkspace workspace =

ResourcesPlugin.getWorkspace();

IWorkspaceRoot root = workspace.getRoot();

// Get all projects in the workspace

IProject project = root.getProject("anand");

 IJavaProject javaProject = JavaCore.create(project);

IType iType;

org.eclipse.jdt.core.ICompilationUnit iCompilationUnit;

 boolean processMeths=false;

iType = javaProject.findType("pack.Class");

IMethod[] meths=iType.getMethods();

 if(meths.length==0)

 {

 processMeths=true;

 }else if(meths.length>0)

 {

 for(int i=0;i<meths.length;i++)

 {

if((meths[i].getElementName().trim().equals(name.tri

m())))

 {

 processMeths=false;

 break;

 }

else
 processMeths=true;

 }

 }

if(processMeths==true)

{

iCompilationUnit = iType.getCompilationUnit();

Document document =

new Doc ument(iCompilationUnit.getSource());

ASTParser parser =

ASTParser.newParser(AST.JLS3);

parser.setSource(document.get().toCharArray());

CompilationUnit cu = (CompilationUnit)

parser.createAST(null);

AST ast = cu.getAST();

StringBuffer program=new

StringBuffer(document.get());

int offset=0;

for(int i=0;i<program.length();i++)

{

if(program.charAt(i)=='{')

{

offset=i+2;

break;

}

}

program.insert(offset,"public void

"+name+"()\n{}\n");

 document = new Document(program.toString());

ASTRewrite rewriter = ASTRewrite.create(ast);

TextEdit edits =

rewriter.rewriteAST(document,

iCompilationUnit.getJavaProject().getOptions(true));

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

226

edits.apply(document);

iCompilationUnit.getBuffer().setContents(document.

get());

iCompilationUnit.save(null, true);

}

Figure 3: AST for java source code

This sample AST adds a method to java source in

eclipse. Action semantics can be added easily just by

modifying AST. As mentioned earlier we can thus

prepare class diagram as well as execute it using

translative approach.

4. Conclusion

MDA is gaining more focus in many organizations.

MDA has the benefits of modelling at various levels

of abstraction. With MDA we first build object

model, which differentiates from the traditional

approach of server side development. We create

Models after modelling completion, after

development of software and systems is enabled.

MDA can be achieved by using UML, DSL, or other

modelling solutions. Eclipse Graphical Modelling

Framework (GMF) used to develop graphical editors

based on Eclipse Modelling Framework (EMF) and

Graphical Editing Framework (GEF). It helps us for

defining the domain model, their relationships and

properties among them. xUML models help in

creating PIM to PSM mapping. Our project helps

creating such models for java project by generating

the code and executing it. Even with the help of

reverse engineering the models can be obtained from

the code available.

References

[1] Eric Clayberg, Dan Rubel “Eclipse: Building

Commercial Quality Plug-ins (2nd Edition)”,

Addison Wesley Professional, 2006, ISBN-10: 0-

321-42672-X.

[2] Timothy J. Grose, Gary C. Doney, Stephen A.

“Mastering XMI: Java Programming with XMI,

XML, and UML”, John Wiley & Sons; ISBN:

0471384291.

[3] Burden, H. ; Heldal, R. ; Siljamaki, T.

“Executable and Translatable UML -- How

Difficult Can it Be?”, Software Engineering

Conference (APSEC), 2011 18th Asia Pacific,

Digital Object Identifier:

10.1109/APSEC.2011.37.

[4] Dos Santos, O.M. ; Woodcock, Jim ; Paige, R.

“Using Model Transformation to Generate

Graphical Counter-Examples for the Formal

Analysis of xUML Models”, Engineering of

Complex Computer Systems (ICECCS), 2011,

Digital Object Identifier:

10.1109/ICECCS.2011.1.

[5] Diggins, C. ; Hamou-Lhadj, A. JAction: “A

High-Level Surface Syntax for UML Action

Semantics Computational Intelligence for

Modeling Control & Automation”, 2008, Digital

Object Identifier: 10.1109/CIMCA.2008.142.

[6] Ke Jiang ; Lei Zhang ; Miyake, S. “An

Executable UML with OCL-based Action

Semantics Language” Software Engineering

Conference, 2007. APSEC 2007. 14th Asia-

Pacific Digital Object Identifier:

10.1109/ASPEC.2007.21.

[7] Schattkowsky, T. ; Muller, W. “Transformation

of UML state machines for direct execution

Visual Languages and Human-Centric

Computing”, 2005, Digital Object Identifier:

10.1109/VLHCC.2005.64.

[8] Mellor, S.J., Balcer, M.J.: “Executable UML – A

Foundation for Model-Driven Architecture”

Addison-Wesley, 2002.

[9] OMG, “MDA,” Accessed January 2013.

[Online]. Available: http://www.omg.org/mda/.

[10] Fischer, G. ; Lusiardi, J. ; von Gudenberg, J.W.

“Abstract Syntax Trees - and their Role in Model

Driven Software Development”, Software

Engineering Advances, 2007. ICSEA 2007

Digital Object dentifier:

10.1109/ICSEA.2007.12.

[11] Enrico Biermann ; KarstenEhrig ; Claudia Ermel

; Jonas Hurrelmann; “Generation of Simulation

Views for Domain-Specific Modeling Languages

based on the Eclipse Modeling Framework” ,

2009 IEEE/ACM, International conference on

Automates Software Engineering. No: 978-0-

7695-4061-0/10.

[12] A.M. Magar.; M.J. Chouhan; “Executable UML

(xUML) and MDA”, International Conference

GIT-2010 “Green-IT & Open Source”

Conference Proceedings. No: 978-93-80043-89-

0/13.

[13] Feiler P.H.; de Niz D; Raistrick C; Lewis B.A.;

“From PIMs to PSMs”, Engineering Complex

Computer Systems, 2007, 12th IEEE

International Conference.

A. M. Magar

Place: Pune, DOB:7/3/1975, ME(IT)

appeared, life time member of ISTE,

working as assistant professor in sinhgad

academy of engineering.

 N. J. Uke

Place: Pune, ME(CSE), associate

professor in sinhgad college of

engineering.

http://www.omg.org/mda/

