
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

232

Interactive 3D Remote Visualization of Medical Volume Data in Distributed

Environment

Alok Pratap Singh
1
, Piyush Kumar

2
, Anupam Agrawal

 3

Abstract

Medical volume data is often large in size and

computationally intensive. It takes lot of memory

space for storage, retrieval purpose and also it needs

high computational environment. The objective of

this paper is to enable the user to work with

volumetric data without having specialized software

for visualization and without having large data on

its local machine. To perform slicing on volume

data Marching cube algorithm and for visualization

purpose we are using Ray casting algorithm. For

the further implementation of these techniques in

distributed systems we are using socket

programming along with VTK. This system has

used four types of volume datasets like .raw, .stl,

.ply, and .vtk available in public domain.

Keywords

Ray casting, Marching Cube, Volume Data, Distributed

Visualization.

1. Introduction

All The medical Data generated by currently

available 3D scanners and utilized in medical

applications is very large in size. Due to bandwidth

limitations and other networking constraints,

generally it is difficult to provide the facility to

interact with volume data.

It enables to find out useful visual information from

huge complex volumetric data created in various

engineering and scientific areas. In Fig. 1 human

abdomen has been visualized. Volume visualization

enables to find out useful visual information from

huge complex volumetric data [12] created in various

engineering and scientific areas [2].

Alok Pratap Singh, Dept. of Information Technology, IIIT

Allahabad, Allahabad, India.
Piyush Kumar, Dept. of Information Technology, IIIT

Allahabad, Allahabad, India.

Anupam Agrawal, Dept. of Information Technology, IIIT
Allahabad, Allahabad, India.

Fig. 1. Volume Data Visualization [1]

In many fields such as medical science, engineering,

fluid dynamics, space and earth, volume data is so

much of huge size. The size of the volume data ranges

from hundred megabytes to many gigabytes. So it

needs a lot of effort and care to work with such a

massive data. Many algorithms for storing,

manipulating and transmitting the volume data, have

been developed to make it easy to work with volume

data.

There are three ways a client can interact with volume

data in distributed environment: In the first method

the whole 3D volume data is transferred on client

side. It can perform any operation on the downloaded

medical volume data as per its needs. This method

requires that client must have complex software

installed on its machine. The serious problem

associated with this approach is that a client has to

download every dataset which it needs.

In the second method instead of sending every volume

data on the client side only small data are sent to the

client. If the client wants to perform some operations

on large data, the request is sent to the server. The

client specified operation is performed on the data

which is located at the server and the result is sent

back to the client. This approach is better than

previous one. But in this approach also, the client

needs to have specialized software to work with

volume data.

According to third approach server has all the

computing resources. All the processing is done at

server side. We have chosen third technique to assist

distributed volume rendering.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

233

This paper will go through some related work of

volume visualization in distributed system in next

section. The third section describes the proposed

methodology. A few interactive result snapshots and

performance analysis results are summarized in fourth

section. Finally we have concluded this entire work

with the future scope in fifth section.

2. Related Work

After Sanchez et al. [5] suggested the method for

compressing the medical data using optimized volume

of interest coding. Frey et al. [3] proposed an

approach i.e. considering load balancing for data

redundancy in distributed volume rendering [18].

Engel et al. [11] suggested a method in which the

capabilities of client and server were combined to

visualize large medical volume data. Remote

visualization has been done for the historical data

[21]. Markon et al. [14] gave a method for

visualization on floating images. These images can

be controlled using gesture recognizing devices.

Interaction with the volume data will be done with

the help of gesture recognizer. Liu et al. [15]

proposed a technique in which the whole data is

partitioned into buckets. For partition the data into

buckets, the octree method is used. Multimedia

medical data in Distributed environment for health

sytem have been developed [18]. Handling of large

scale dataset [16] is difficult for rendering in

distributed system. To implement platform

independence JavaView [9] has been used in Polthier

et al. [10]. Wei et al. [6] proposed a method to assist

distributed volume rendering using VTK [13], C++

libraries and using applet and servlet for

communication between client and server.

3. Methodology

The technique we have used for visualization and

working with 3D volumetric medical data is

discussed below. In our approach we have divided

the whole system into two parts-

1. Server

2. Client

Client has java installed on its system so that it could

connect to the server using socket programming.

Client - Server architecture has been followed.

Server has two modules, one module to handle client

request such as accepting the connection of the client

sending response in the form of images and receiving

input from client in the form of events, generated at

client side.

Server
The flow chart of the server is shown in Fig. 2.

Fig. 2. Server Flow Chart

Client

Client Flow chart is shown in Fig. 3. The first step is

to connect to the server for this client gives the server

IP and the port number. After connecting to the

server the client sends the parameters of the operation

to be performed with the id of the volume data to the

server. When client receive first response from server

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

234

in the form of image it work on the image and sends

back the click event to the server. Server receives

these events and sends back the series of resultant

images.

Fig. 3. Client Flow Chart

Communication

Client-server communication diagram is shown in Fig.

4. First server is started which waits for the client

request. When a user runs the client code, server id

and port of the server will be asked. IP address and

Port No. can unequally identify any process in any

network. Now the request will go to the server. Server

initially sits idle and waits for the client. As soon as a

client is connected to the server, the server determines

the need of the client and accordingly chooses the

medical data and operations to be performed on the

data. The server socket is created and the graphics

environment of the server is sent to the client using

graphics environment class. Now the Screen Capture

class is invoked.

Screen capture class actually captures the image that

is drawn in VTK Render Window. There is a class in

VTK libraries VTKCaptureScreen() [13], this class

takes the snapshots of the VTK Render window and

saves in some location. These snapshots will be sent

to the client. So that user gets a series of images

continuously and feels that actually he is working on

data interactively.

At the server there is a delegate class, this class

inherits the Scanner class. Scanner class actually

recognizes the mouse and keyboard events those are

happening at client side. For mouse up, mouse down

and other mouse positions and keyboard events, there

is a unique integer number generated at client side,

which is recognized by the server so that server can

understand which operation client wants to perform,

such as rotating and panning of the objects, changing

the skin transparency and color of human body. As

soon as client fires any mouse event or any keyboard

event on the image that it has received from the

server, the event is passed to the server using delegate

class and server recognizes the event that has been

fired by client and acts accordingly.

Fig. 4. Communication Diagram

VTK(Visualization Tool Kit)

VTK include C++ libraries, these libraries are used

for volume data processing. VTK include libraries for

performing various scalar tensor vector operations on

volume data. VTK pipeline involves stages as shown

in Fig. 5.

Fig. 5. Vtk Pipeline

Some of the libraries those are used in

implementation of the proposed system are given

below- vtkPiecewiseFunction

vtkColorTransferFunction

Sources Filters Mappers

Actors
Renderer Sand

windows

User Interface

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

235

vtkVolumeProperty

vtkRayCastCompositeFunction

vtkRayCastMIPFunction

vtkBoxWidget

vtkConeSource

vtkCubeSource

vtkPlaneSource

Ray casting

In ray casting algorithm parallel rays are casted from

the view point to the viewing volume. Attenuation

which is caused by particle field is computed for

every point which is in the path of the ray. The light

scattered from the scene toward the viewing point is

also calculated for each point along the ray. These

values are combined together and single brightness is

calculated for every ray.

In Fig. 6 given below there is a volume of density

D(x, y, z) which is penetrated by a ray R. The density

function is given as

D(x(t),y(t),z(t))=D(t)

Whereas Illumination can be given as-

I(t) = I(x(t), y(t), z(t)) (1)

Illumination scattered will be given as-

I(t)D(t)P(cosϴ)

Where ϴ is angle between R and L

If there are many light sources, illumination scattered

will be calculated as follows-

∑ In (t)D(t)P(cosϴn)

Attenuation due to the density function along a ray is

calculated using the formula given below –

Where ƭ is a constant.

There are many algorithms for implementing ray

casting method for the purpose of visualization of

volume algorithms. Volume data is represented in the

form of voxels. Voxel is the unit of the volume data.

Each volume data is devided into number of voxels.

In visualization pipeline voxels are shaded. The

pipeline outputs the intensity C(X) for each voxel.

As shown in Fig. 6 every voxel in the volume data has

two associated values-

C (X) shade calculated using local gradient α(X)

opacity derived from CT (Computed Tomography).

Now the next step is to combine the value of C(X) and

α(X) and to produce two dimensional projections

using these values. These values are combined to give

the final intensity for each pixel. The transparency

formula for every pixel along a ray can be calculated

as-

Cout=Ci(1-α(X))+C(X)α(X) (2)

Where:

Cout is the colour for voxel X along a Ray.

Cin incoming intensity for voxel.

Interpolation between voxels will be done to find out

the values which lie along a ray.

The intensity for a group of voxels intercepted by a

ray is given as

Fig. 6. Ray Casting through Voxels [4]

Where:

(R, k) is kth voxel

The illumination (I(t)), shading of local gradient

(Cout), and calculating ray of local gradient (C(R)) are

shown in equation (1), equation (2) and equation (3)

respectively.

4. Result and Analysis

To analyze the performance of the proposed algorithm

five different volumetric data sets have been used.

The sizes of the data sets are 256*256*512 [19],

128*128*129 [8], 512*512*360 [7], 128*128*204 [8]

and 128*128*64 [20].

In Fig. 7 given below, whole body of female has been

shown. Three parts of female data those are head,

abdomen and leg have been visualized at different

clients. The visualization of human feet has been done

in Fig.8.

C(R,k)

α(R,k)

R

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

236

Fig. 7. Female Body and Partitioning of the

Female Body into Three Parts

Fig. 8. Snapshot of Leg Data at Different Skin

Levels

There are three images showing the human leg. In Fig.

8(a) skin transparency is fifty percent that is why both

bone and skin are visible. In Fig. 8(b) skin

transparency has been decreased to zero percent so

bones are not visible. In Fig. 8(c) skin transparency

has been increased to hundred percent that is why

bones are clearly visible. So the skin level can be

changed to visualize the internal part of the volume

data.

Visualization of human head has been done. Fig. 9

(a), (b) and (c) shows the head data at 50, 0 and 100

percent skin transparency respectively.

(a) (b) (c)

Fig. 9. Snapshot of Head Data at Different Skin

Levels

Slicing is done on human head using a slicing plane. It

enables user to see the internal structure of the head.

For slicing purpose marching cube [4] method has

been applied. Fig. 10(a) shows the head data and Fig.

10(b) shows slicing done using slicing plane.

(a) (b)

Fig. 10. Snapshot Of Head Data And Its Slicing

.Ply (Polygon File Format) data has also been

visualized as depicted in Fig. 11. It shows human head

visualized from two different viewpoints.

In our approach instead of sending of volumetric data,

the rendered image is transferred to the client and only

those images for which there is a change in the

previous image are transferred. Subtraction of

consecutive images is done to find out the location of

the pixels for which the intensity has been changed.

After finding out the location of the pixels for which

there is a change in the intensity value, the location

and corresponding intensity values are transferred to

the client. Intensity values are updated at client side.

As only those pixel locations and intensities are

transferred for which there a change in intensity level,

so it will reduce communication cost thus saving

network bandwidth. So a thin client having less

capability in terms of hardware and software can also

work with volume data using the proposed algorithm

The overall effectiveness of the system will depend

upon the server processing power.

(a) (b)

Fig. 11. Snapshots of .Ply Head data

Comparison between rendering time on standalone

system and on distributed system using our approach

is shown in table 1.

Table. 1. Input Output Performance of system

with two different configurations (Standalone

System /Distributed System)

Data Name Data

Form

at

Data Size

(MB)

RenderingTim

e

(Seconds)

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

237

SS DS

Female.raw

[19]

.RAW 256*256*512 0.1 0.2

Body.stl [8] .STL 128*128*129 0.5 0.65

Male.ply [7] .PLY 512*512*360 2 2.2

Head.stl [8] .STL 128*128*204 0.7 1

Mummy.vtk

[20]

.VTK 128*128*64 0.2 .33

 Here SS stands for Standalone System while DS

stands for Distributed System. The Graph

corresponding to above given table is shown in Fig.

12. In the graph X axis shows the sizes of the data sets

in form of grids and Y axis shows the rendering time

of different datasets in seconds on standalone system

and on distributed system.

From the graph it is evident that if the capability of

server is increased the capability of the clients also

increases. So instead of having many thick clients our

approach requires one thick server supporting many

thin clients.

Fig. 12. Chart showing the rendering time

Difference between standalone system and

distributed system

5. Conclusion and future work

The developed system provides the facility to the user

to visualize and perform slicing operation on 3D

volume data stored at server side. The clients can

visualize these volume datasets without having

specialized software for visualization purpose. At a

time four users can interact with the server. User need

to have only java installed on its machine and address

of the server. So a user who does not have much

computation and storage capacity can also work on

volumetric medical data. In future if intermediate

result will be stored at client side then whenever client

wants to visualize the results it will fetch the

intermediate results from its database.

Communication cost of retrieving same image will get

reduced. Thus the efficiency of the system will

increase.

References

[1] Visualization image: www.openterran.org last

accessed on 17/03/2013.

[2] LHDL: http://www.livinghuman.org last

accessed on 18/04/2013.

[3] Frey, S., and Ertl, T. Load Balancing Utilizing

Data Redundancy in Distributed Volume

Rendering. In 11th Eurographics Conference on

Parallel Graphics and Visualization(2011), 51-

60.

[4] Alan, Watt., and Mark, Watt. Advanced

Animation and Rendering Techniques, Addison-

Wesley(1992).

[5] V. Sanchez, R. Abugharbieh, and P.

Nasiopoulos, “3-D Scalable Medical Image

Compression With Optimized Volume of Interest

Coding”, IEEE Transactions on Medical Imaging,

vol.29 no.10, pp. 1808-1820, 2010.

[6] Hui Wei, Enjie Liu, and Gordon Clapworthy,

“Interactive 3D Rendering to Assist the

Processing of Distributed Medical Data”, ACM

IITM‟10, Uttar Pradesh, India, pp. 28–30, 2010.

[7] Ply volumetric dataset download:

http://www.cyberware.com/products/scanners/pxS

amples.html, last accessed on 10/06/2013.

[8] Stl volumetric dataset download:

http://www.eng.nus.edu.sg/LCEL/RP/u21/wwwro

ot/stl_library.htm#Download, last accessed on

20/06/2013.

[9] JavaView: http://www.javaview.de last accessed

on 20/04/2013.

[10] K. Polthier, S. Khadem, E. Preuss, and U.

Reitebuch, “Publication of Interactive

Visualizations with JavaView”, Springer Verlag

Int‟l Conf. on Multimedia Tools for

Communicating Mathematics, pp. 1-24, 2002.

[11] K. Engel, P. Hastreiter,B. Tomandl, K. Eberhardt,

and T. Ertl, “Combining local and remote

visualization techniques for interactive volume

rendering in medical applications”, Proceedings

on IEEE Int‟l Conf. on Visualization, USA, pp.

449-452, 2000.

[12] M. Borkin, K. Gajos, A. Peters, D. Mitsouras, S.

Melchionna, F. Rybicki, C. Feldman, and H.

Pfister, “Evaluation of Artery Visualizations for

Heart Disease Diagnosis”, IEEE Transactions on

Visualization and Computer Graphics, vol.17,

no.12, pp. 2479-2488, 2011.

[13] VTK Introduction and download page:

http://www.vtk.org/ last accessed on 04/05/2013.

[14] Sandor Markon, Hideaki. Miyake, Satoshi.

Maekawa, Ahmet. Onat, and Zhao. Zhibo,

“Improved interaction methods for medical

S

e

c

o

n

d

s

(Seconds) SS

(Seconds) DS

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

238

visualization with floating images”, Proceeding of

ICME International Conference on Complex

Medical Engineering (CME), China, pp. 462-466,

2013.

[15] Liu Danzhou, K.A. Hua, and K. Sugaya, “A

Generic Framework for Internet-Based Interactive

Applications of High-Resolution 3-D Medical

Image Data”, IEEE Transactions on Information

Technology in Biomedicine, vol. 12, no. 5, pp.

618-626, 2008.

[16] S. Ubik, . Tr vn ek, P. ejdl, and J. Hal k,

“Remote Access to 3D Models for Research,

Engineering, and Art”, IEEE Transactions on

MultiMedia, vol. 19, no. 4, pp. 12-19, 2012.

[17] L. Constantinescu, Kim. Jinman, and D.D. Feng,

“SparkMed: A Framework for Dynamic

Integration of Multimedia Medical Data Into

Distributed m-Health Systems”, IEEE

Transactions on Information Technology in

Biomedicine, vol.16, no.1, pp. 40-52, 2012.

[18] R. Vasudevan, G. Kurillo, E. Lobaton, T.

Bernardin, O. Kreylos, R. Bajcsy, and K.

Nahrstedt, “High-Quality Visualization for

Geographically Distributed 3-D Teleimmersive

Applications”, IEEE Transactions on Multimedia,

vol. 13, no. 3, pp. 573-584, 2011.

[19] Female.raw volumetric dataset download : http:

www9.informatik.uni-erlangen.de/External/vollib,

last accessed on 25/06/2013.

[20] Mummy.vtk volumetric dataset download:

http://www.cs.utah.edu/~ramanuja/sci_vis/prj4/R

EPORT.html last accessed on 28/06/2013.

[21] Verschuur J., “A Client/Server Framework for

Interactive Remote 3D Visualization of

Histological Data”, Master thesis of Delft

University of Technology, 2009.

Alok Pratap Singh, presently pursing

his Master in Information Technology,

specialization in Human-Computer

Interaction from IIIT Allahabad, India.

He received his B.Tech. degree in

Computer Science and Engineering

from NIEC, Lucknow, India in 2010.

His major interest is in image

Processing, Computer graphics, volume data visualization

and distributed system.

Piyush Kumar, presently pursing his

Ph.D. Degree and did his Master in

Information Technology, specialization

in Human-Computer Interaction from

IIIT Allahabad, India. He received his

B.Tech. degree in Computer Science

and Engineering from KNIT,

Sultanpur, India in 2009. His major

interest is in Image Processing, Gesture Recognition, OCR,

Data Glove, Virtual Reality and Augmented Reality and

Large Volume Data Visualization.

 Anupam Agrawal is presently

working as Professor of Information

Technology at Indian Institute of

Information Technology Allahabad

(IIIT-A). Before joining IIIT-A in the

year 2000, he was working as scientist

„D‟ at DEAL, DRDO, Govt. of Indian,

Dehradun. He received the M.Tech.

degree in Computer Science and Engineering from the

Indian Institute of Technology Madras, Chennai and the

Ph.D. degree in Information Technology from the Indian

Institute of Information Technology, Allahabad (in

association with Indian Institute of Technology, Roorkee).

He was a postdoctoral researcher at the Department of

Computer Science & Technology, University of

Bedfordshire (UK) during which he had contributed

significantly in two major European projects. His research

interests include Computer Vision, Image Processing,

Visual Computing, Soft Computing and Human Computer

Interaction. He has more than 75 publications related to

these areas in various international journals and conference

proceedings, and has co-authored on two books. He is on

the review board for various international journals

including IEEE, Springer, MDPI, Taylor & Francis and

Elsevier. He is currently serving as Principal Investigator of

an international (Indo-UK) Project. He is a member of

ACM (USA), senior member of IEEE (USA) and a fellow

of IETE (India). He is also serving as Chairman of the

ACM Chapter at IIIT-A

