
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

78

Web Log Mining using Improved Version of Proposed Algorithm

 Manish Shrivastava
1
, Kapil Sharma

2
, Angad Singh

3

 Professor, HOD, Information Technology, LNCT, Bhopal
 1

LNCT, Bhopal
 2

Professor, Information Technology, LNCT, Bhopal
3

Abstract

Association Rule mining is one of the important and

most popular data mining technique. It extracts

interesting correlations, frequent patterns and

associations among sets of items in the transaction

databases or other data repositories. Most of the

existing algorithms require multiple passes over the

database for discovering frequent patterns resulting

in a large number of disk reads and placing a huge

burden on the input/output subsystem. In order to

reduce repetitive disk read, a novel method of top

down approach is proposed in this paper. The

improved version of Apriori Algorithm greatly

reduces the data base scans and avoids generation

of unnecessary patterns which reduces data base

scan, time and space consumption.

Keywords

Data mining, Association rule, Apriori algorithm,

Frequent pattern.

1. Introduction

Association rule mining has been well studied in data

mining, especially for basket transaction data

analysis. Association rules also used in various areas

such as telecommunication networks, market, risk

management and inventory control etc. Aside from

being applicable for e-commerce, business

intelligence and marketing applications, it helps web

designers to restructure their web site. The frequent

pattern mining module gives the details of association

rule mining technique. Association rules shows,

attributes value conditions that occur frequently

together in a given data set that provides information

in the form of “ifthen” statements. Literature survey

reveals that identifying frequent item sets is

computationally expensive process. Counting the

occurrences of item sets requires a considerable

amount of processing time. As a consequence,

numbers of efficient algorithms are proposed. It is

noticed that, most of the algorithms for discovering

frequent patterns requires multiple passes over the

database resulting in a large number of disk reads and

placing a huge burden on the I/O subsystem. Apriori

utilizes a complete bottom up search with a

horizontal layout and enumerate all frequent item

sets. The proposed improved version of Apriori

algorithm utilizes top down approach, where the rules

are generated by avoiding generation of un-necessary

patterns. The major advantage of this approach is, the

number of database scans is greatly reduced.

Working of existing and proposed Apriori algorithm

to generate Association rule is discussed in the

following section.

The structure of the paper is as follows: Section 2

covers relative work. Section 3 presents processing

principle of existing and proposed algorithm. Section

4 shows experimental results and Section 5 concludes

the paper.

2. Related Work

One of the most well-known and popular data mining

techniques is the Association rules or frequent item

sets mining algorithm. The algorithm was originally

proposed by Agrawal et al. [1] [2] for market basket

analysis. Because of its significant applicability,

many revised algorithms have been introduced since

then, and Association rule mining is still a widely

researched area. Many variations done on the

frequent pattern mining algorithm of Apriori is

discussed in this section.

Association rule generation is used to relate pages

that are most often referenced together in a single

server sessions [13]. In the context of web usage

mining, association rules refer to sets of pages that

are accessed together with a support value exceeding

some specified threshold.

Agrawal et al. presented an AIS algorithm in [1]

which generates candidate item sets on-the-fly during

each pass of the database scan. Large item sets from

previous pass are checked if they are present in the

current transaction. Thus new item sets are formed by

extending existing item sets. This algorithm turns out

to be ineffective because it generates too many

candidate item sets. It requires more space and at the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

79

same time this algorithm requires too many passes

over the whole database and also it generates rules

with one consequent item.

Agrawal et. al. [2] developed various versions of

Apriori algorithm such as Apriori, AprioriTid, and

AprioriHybrid. Apriori and AprioriTid generate item

sets using the large item sets found in the previous

pass, without considering the transactions. AprioriTid

improves Apriori by using the database at the first

pass. Counting in subsequent passes is done using

encodings created in the first pass, which is much

smaller than the database. This leads to a dramatic

performance improvement of three times faster than

AIS. A further improvement, called AprioriHybrid, is

achieved when Apriori is used in the initial passes

and switches to AprioriTid in the later passes if the

candidate k-itemset is expected to fit into the main

memory.

Even though different versions of Apriori are

available, the problem with Apriori is that it

generates too many 2-item sets that are not frequent.

A Direct Hashing and Pruning (DHP) algorithm is

developed in [8] that reduce the size of candidate set

by filtering any k-item set out of the hash table, if the

hash entry does not have minimum support. This

powerful filtering capability allows DHP to complete

execution when Apriori is still at its second pass and

hence shows improvement in execution time and

utilization of space.

Scalability is another important area of data mining

because of its huge size. Hence, algorithms must be

able to “scale up” to handle large amount of data.

Eui-Hong et. al [4] tried to make data distribution and

candidate distribution scalable by Intelligent Data

Distribution (IDD) algorithm and Hybrid Distribution

(HD) algorithm respectively. IDD addresses the

issues of communication overhead and redundant

computation by using aggregate memory to partition

candidates and move data efficiently. HD improves

over IDD by dynamically partitioning the candidate

set to maintain good load balance. Another scalability

study of data mining is reported by introducing a

light-weight data structure called Segment.

Support Map (SSM) that reduces the number of

candidate item sets needed for counting [11]. SSM

contains the support count for the 1-item set. The

individual support counts are added together as the

upper bound for k-item sets. Applying this to Apriori,

the effort to generate 1-item set is saved by simply

inspecting those SSM support counts that exceed the

support threshold. Furthermore, those 1-item sets that

do not meet the threshold will be discarded to reduce

the number of higher level item sets to be counted.

Evolutionary Algorithms (EA) are widely adopted in

many scientific areas. EA borrows mechanisms of

biological evolution and applies them in problem-

solving, especially suitable for searching and

optimization problems. Hence, the problem of mining

with Association rules is a natural fit. Besides

Association rule mining Evolutionary algorithms are

also reported that can generate association rules [12].

It allows overlapping intervals in different item sets.

The quality of the association rule discovered is

measured in terms of confidence. The rules with

confidence above a certain level (threshold value) are

considered as interesting and deserve attention. Most

algorithms define interestingness in terms of user-

supply thresholds for support and confidence. The

problem is that these algorithms rely on the users to

set suitable values. Another algorithm called

APACS2 is proposed in [10], that makes use of an

objective interestingness measure called adjusted

difference. It also discovers both positive and

negative association rules. APACS2 uses adjusted

difference as an objective interestingness measure.

Adjusted difference is defined in terms of

standardized difference and maximum likelihood

estimate.

A survey on different methods and algorithms used to

find frequent patterns is presented in [14]. Analysis

of algorithms and descriptions for AprioriTid,

AprioriHybrid, Continuous Association Rule Mining

Algorithm (CARMA), Eclat algorithm, and Direct

hashing and Pruning (DHP) algorithm is explained in

detail. Conclusions are drawn as, for dense databases

Éclat algorithm is better, for sparse databases the

Hybrid algorithm is the best choice and as long as the

database fits in main memory the Hybrid algorithm

(combination of optimized version of Apriori and

Eclat) is most efficient one.

An improved version of original Apriori- All

algorithm is developed for sequence mining in [15].

It adds the property of the userID during every step

of producing the candidate set and every step of

scanning the database to decide about whether an

item in the candidate set should be used to produce

next candidate set. The algorithm reduces the size of

candidate set in order to reduce the number of

database scanning.

Based on the temporal association rule [3] [5],

retailers make better promotion strategies. The time

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

80

dimension exists in all transaction, and is included in

finding large item sets, especially when not all items

exist throughout the entire data gathering period. The

temporal concept introduced in [9] addition to the

normal support and confidence. The temporal support

is the minimum interval width. Thus, a rule is

considered as long as there is enough support or

temporal support.

Different works are reported in the literature to

modify the Apriori logic so as to improve the

efficiency of generating rules. Enhanced version of

Apriori algorithm is presented in [16] where, the

efficiency is improved by scanning the database in

forward and backward directions. Xiang-wei Liu et.al

[17] presented an improved association rule mining

algorithm that reduces scanning time of candidate

sets using hash tree. Another version of Apriori is

reported in [18] as an algorithm called IApriori

algorithm, which optimizes the join procedure of

frequent item sets generated to reduce the size of the

candidate item sets. The algorithm presented in [19]

scans the database only once to generate a frequent

item sets, thereby saving time and increasing

efficiency. These methods even though focused on

reducing time and space, in real time still needs

improvement.

Another way to improve Apriori is to use most

suitable data structure such as frequent pattern tree.

Han et. al., in [7] introduced an algorithm known as

FP-Tree algorithm for frequent pattern mining. It is

another milestone in the development of association

rule mining and avoids the candidate generation

process with less passes over the database. FP-Tree

algorithm breaks the bottlenecks of Apriori series

algorithms but suffers with limitations. It is difficult

to use in an environment that users may change the

support threshold with regard to the mining results,

and once the support threshold changed, the old FP-

Tree cannot be used anymore, hence additional effort

is needed to re-construct the corresponding FP-Tree.

It is not suitable for incremental mining, since as time

goes on databases keep changing, new datasets may

be inserted into the database or old datasets be

deleted, and hence these changes lead to a re-

construction of the FP-Tree[6].

Even though fast algorithms are reported for

Association mining it still inherits the drawback of

scanning the whole data base many times. The survey

reveals that more attention is required to address the

issues related to reduce the number of database scan,

and also to reduce memory space with less execution

speed. This results in a large number of disk reads

and placing a huge burden on the I/O subsystem.

These limitations and other related issues motivated

us to continue the research work in this area.

Comparing all these methods, in this work we

propose a new improved version of Apriori algorithm

which reduces time and space and the same is

presented in the next section.

3. Frequent Item Set and Association

Rule

The aim of Association rule mining is exploring

relations and important rules in large datasets. A

dataset is considered as a sequence of entries

consisting of attribute values also known as items. A

set of such item sets is called an item set. Frequent

item sets are sets of pages which are visited

frequently together in a single server session. Only

the list of session IDs and URLs is used during this

process. Support is often utilized to limit the number

of discovered patterns. Support of the subset {i1… in}

from a set D is defined as in equation (1)

S (i1, in) = count ({i1, in} D) / Count(D)---- (1)
Once the frequent item sets are discovered, we
calculate for each item set the interest to objectively
rank them. Interest is defined as in equation (2)

I (i1,…, in) = S(i1,…, in) / --------(2)

Set of n frequent items are broken into n separate

Association rules. The confidence of an association

rule (as in equation (3)) is the fraction of sessions

where the subsequent and the antecedent are present

and sessions where only the subsequent is present.

For the rule ia →is1… isn it is

C(ia → is1,…, isn) =S(ia → is1,…, isn) / S(ia) ---(3)

The applications of frequent item sets and association

rules are: business intelligence (e.g. cross

promotional opportunities), web site restructuring,

and documents pre-fetching. Association rules are of

interest to both database community and data mining

users. The support of an item is the percentage of

transactions in which that item occurs. Confidence

measures strength of the rule, where as support

measures how often it should occur in the database.

Typically, large confidence values and a smaller

support are used.

The Apriori algorithm is used for mining frequent

item sets. The algorithm to discover Association rules

generally broken down into two steps:

1. Find all large item sets - A large item set is a set

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

81

of items that exceeds the minimum support.

2. Generate rules from the large item sets.

Association rules are considered interesting if they
satisfy both a minimum support threshold and
minimum confidence threshold.

3.1 Proposed Work
There are many existing algorithms for generating

frequent access patterns from the access paths. But

they have less efficient in terms of execution time

and memory requirement. This proposed algorithm is

modification of FP-tree Algorithm, but this algorithm

will not use recursion for generating Frequent

Patterns. So this Algorithm will take less execution

time for access paths which are not having

uncommon items. This is explained in the below

example.

The main idea of the algorithm is to maintain a

frequent pattern tree of the database. It is an extended

prefix-tree structure, storing crucial quantitative

information about frequent patterns. This algorithm is

not using recursion unlike FP-tree Algorithm. This

algorithm scans the data base once for generating

page table. This table stores the information about

web pages, the number of times the user accessed

that web page and the pointer field that stores the

reference of that webpage in the pattern base tree.

The page table nodes are sorted according to the page

count. The tree nodes are frequent items and are

arranged in such a way that more frequently

occurring nodes will have a better chances of sharing

nodes than the less frequently occurring ones. The

method starts from frequent 1-itemsets as an initial

suffix pattern and examines only its conditional

pattern base (a subset of the database), which consists

of the set of frequent items co-occurring with the

suffix pattern. The page table nodes are used for

generating frequent access patterns. Start from the

page table seqptr, which stores the reference of the

tree node then traverse the tree from bottom to the

root node. Add the entire nodes which are in the

traversal with the condition pagecount > min_sup. If

this condition is not satisfied then move to the next

path in the tree. Generate all the frequent patterns of

the users by using backward traversals of the tree.

3.1.1 Algorithm
This algorithm is divided into two steps:

Step1: Construct frequent access pattern tree

according to access paths derived from user session

files, and records the access counts of each page.

Input: A Access Paths database S, and minimum

support threshold min_sup

Output: The Page Header Table, FP- Tree.

Algorithm:

Step1:

Procedure FAP_Tree (T, p)

begin

Create_tree (T); //construct the root of FAP-Tree

signed with

“null”

While (P<>null) do begin

If (p.name is the same as the name of T’s ancestor

(n)) begin

Increment n.count value

T=n;

end of if statement else

begin

If (p.name is the same as the name of T’s child (e))

begin

Increment c.count value

T=c; end

else

Insert_tree (T, p);

//insert the new node of P into T, as a child of the

current node

p=p.next;

end of else statement end of the else statement

Step 2: The function of FAP_growth is used to mine

both long and short access patterns on the FAP tree,

which is created in Step1

Input: FAP_tree, min_sup = t

Output: the set of all Frequent Access Patterns: k

Algorithm: FAP_growth (tree, t), mine frequent

access pattern. Procedure FAP-growth (tree, t); //tree

is generated tree in step1 begin

For each Ki.count>=min_sup //Ki is a member of the

page header table

begin

Generate access pattern B=Ki K = K U B;

P= ki.next;

//p points to the first location of Ki in the FAP-tree

While (p! =null) and (p.count>=min_sup) do

begin

// Look for each Ki’s prefix access pattern base, then

construct access pattern Bi by Ki prefix access

pattern base connecting with itself;

If (Bi>= min_sup)

Ki=ki U Bi; //adding newly generated patterns in to

pattern base

p=p.next;

//p points to the next location of Ki in the FAP tree

end of the while loop

end of the for loop

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

82

end of the function

This algorithm is same as FP-tree Algorithm for the

first step. But in the second step this algorithm uses

the backward traversals for finding frequent access

patterns. So the execution time is reducing due to

these tree traversals.

4. Implementation Detail

In the present study, an online data mining tool has

been developed that can be utilized by a customer

coming on our website.

Technology Used:
Language: JAVA 1.4.2, JDBC.

Platform: Windows XP.

Database: mysql .

5. Results

For validation of the algorithm data used from the

web site www.musicmachines.com. The log records

are available from September 2008 to December

2010. Simulations were performed using an AMD

Athlon processor, with 256 MB of main memory,

756 MB of virtual memory, 40 GB of local disk

space and on Microsoft Windows XP Operating

System. These results checked for constant size data

base (i.e50MB, 150MB). The two algorithms i.e.

Apriori Algorithm and Proposed Algorithm are

implemented by using Java.

The user screens are shown in the Appendix A for

both the algorithms.

The following figure shows the comparison result.

Case 1: Apriori and Proposed Algorithm results

comparison with Time

Figure 1: Apriori and Proposed Algorithm results

comparison with Time

Case 2: Apriori and Proposed Algorithm results

comparison with Memory

Figure 2: Apriori and Proposed Algorithm results

comparison with Memory

6. Conclusion

Information content on the WWW is increasing at an

exponential rate and it is not surprising to find users

having difficulty in navigation and finding relevant

information. Hence, the e-commerce site developers

find it difficult to observe potential customers or web

site structure. This thesis used a Web Access log file

of a Web site to apply data mining techniques for

finding frequent access patterns of the users.

The Work initially makes a in depth analysis of the

existing Algorithms for their similarities in

generating Frequent Access Patterns for Web Usage

Mining. Based on the shortcomings it then develops a

comprehensive algorithm. The algorithm is based on

the method of generating frequent patterns without

candidate sets. The time taken for generation of

targeted frequent patterns is small to respond to the

user in real time mode. This algorithm will take at

most two data base scans for generating the frequent

access patterns. The maximum tree size required is at

most the number of web pages in the website. An

even faster response can be obtained if the depth of

the tree is increases, i.e. user access paths are

increased in the transactions. Further Addition of new

paths does not create any update problems, which are

very common in existing algorithms. The system is

also scaleable using multiple disk storage. This

scaling routine takes constant time overhead for

memory partition and swapping operations.

Scope for Work
However the work may be extended to analyze the

Data Preprocessing phase in detail. One work has

been carried out mostly for the frequent pattern

analysis. The work can be extended to analyzed and

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

83

suggest modifications for the Data Preprocessing

phase. It can also simulated using variable memory

sizes, instead of the constant memory sizes, instead

of the constant memory size adapted for the study.

Graph theory and Statistical analysis etc. can also be

done for Web Usage Mining. By using efficient

algorithm we can reduce the runtime and memory

requirement.

References

[1] Agrawal, R., Imielinski, T., and Swami, A. N.

Mining Association Rules Between Sets of Items

in Large Databases. Proceedings of the ACM

SIGMOD, International Conference on

Management of Data, pp.207-216, 1993.

[2] Agrawal. R., and Srikant. R., Fast Algorithms for

Mining Association Rules, Proceedings of 20th

International Conference of Very Large Data

Bases. pp.487-499,1994.

[3] Agrawal. R., and Srikant. R. Mining Sequential

Patterns. Proceedings of 11th International

Conference on Data Engineering, IEEE

Computer Society Press, pp.3-14, 1995.

[4] Eui-Hong Han, George Karypis, and

Kumar, V. Scalable Parallel Data Mining for

Association Rules. IEEE Transaction on

Knowledge and Data Engineering, 12(3), pp.728-

737, 2000.

[5] Han, J., Dong, G., and Yin, Y. Efficient Mining

of Partial Periodic Patterns in Time Series

Database. Proceedings of 15th IEEE International

Conference on Data Engineering, pp.106–115,

1999.

[6] Han, J., Jian, Pei., and Yiwen, Yin. Mining

Frequent Patterns without Candidate Generation.

Proceedings of ACM International conference on

Management of Data, 29(2), pp.1-12, 2000.
[7] Han, J., Jian, Pei., Yiwen, Yin, and Runying,

Mao. Mining Frequent Pattern without Candidate

Generation: A Frequent-Pattern Tree Approach.

Journal of Data Mining and Knowledge

Discovery, 8, pp.53-87, 2004.

[8] Jong Park, S., Ming-Syan, Chen, and Yu, P. S.

Using a Hash-Based Method with transaction

Trimming for Mining Association Rules. IEEE

Transactions on Knowledge and Data

Engineering, 9(5), pp.813-825,1997.

[9] Juan, M. A., Gustavo, H., and Rossi. An

Approach to Discovering Temporal Association

Rules. Proceedings of the ACM Symposium on

Applied Computing, 1, pp.234-239,2000.

[10] Keith, Chan., and Wai-Ho, A. An Effective

Algorithm for Mining Interesting Quantitative

Association Rules. Proceedings of the ACM

Symposium on Applied Computing, pp. 88.-

90,1997.

[11] Lakshmanan, V., S., Carson Kai-Sang, L., and T.

Raymond. The Segment Support Map: Scalable

Mining of Frequent Itemsets. Journal of ACM

SIGKDD Explorations Newsletter, 2(2), pp.21-

27, 2000.

[12] Mata, J., Alvarez, J. L., and Riquelme, J. C.

Evolutionary Computing and Optimization: An

Evolutionary Algorithm to Discover Numeric

Association Rules. Proceedings of ACM

Symposium on applied Computing, pp. 590-594,

2002.

[13] Srivastava, J., Cooley, R., Deshpande, M., and

Tan, P. N. Web Usage Mining: Discovery and

Applications of Usage Patterns from Web Data.

Journal of ACM Special Interest Group on

Knowledge Discovery and Data Mining

Explorations, 1(2), pp.12-23, 2000.
[14] Velu, C. M., Ramakrishnan, M., Somu, V., and

Logznathan, V. Efficient Association Rules for

Data Mining. International Journal of Soft

Computing , 2, pp.21-36, 2007.
[15] Wang Tong, and He Pi-Lian. Web Log Mining

by Improved Apriori All Algorithm. Transaction

on Engineering Computing and Technology, 4,

pp.97-100, 2005.

[16] Wei Zhang, Zhang Wei, Dongme Sun Shaohua

Teng and Haibin Zhu. An Algorithm to Improve

Effectiveness of Apriori. Proceedings of 6th

IEEE International Conference on Cognitive

Informatics, pp.385-390, 2007.

[17] Xiang-Wei Liu, and Pi-Lian He. The Research of

Improved Association Rules Mining Apriori

Algorithm. Proceedings of 3rd International

Conference on Machine Learning and

Cybernetics, pp.1577-1579, 2004.

[18] Yiwu Xie, Yutong Li, Chunli Wang, and Mingyu

Lu. The Optimization and Improvement of the

Apriori Algorithm. Proceedings of IEEE

International Symposium on Intelligent

Information Technology Application Workshops,

pp. 1101-1103, 2008.

[19] Zhao Hong, Gang yang, Lei Wang, and Ying liu.

An Implementation of Improved Apriori

Algorithm. Proceedings of 8th IEEE International

Conference on Machine Learning and

Cybernetics, pp.1565-1569, 2009.

