
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

14

The Study of Detecting Replicate Documents Using MD5 Hash Function

Pushpendra Singh Tomar
1
, Maneesh Shreevastava

2

M.Tech Research Scholar, LNCT Bhopal
1

Head and Professor, IT LNCT Bhopal
2

Abstract

A great deal of the Web is replicate or near-

replicate content. Documents may be served in

different formats: HTML, PDF, and Text for

different audiences. Documents may get mirrored to

avoid delays or to provide fault tolerance.

Algorithms for detecting replicate documents are

critical in applications where data is obtained from

multiple sources. The removal of replicate

documents is necessary, not only to reduce runtime,

but also to improve search accuracy. Today, search

engine crawlers are retrieving billions of unique

URL’s, of which hundreds of millions are replicates

of some form. Thus, quickly identifying replicate

detection expedites indexing and searching. One

vendor’s analysis of 1.2 billion URL’s resulted in

400 million exact replicates found with a MD5

hash. Reducing the collection sizes by tens of

percentage point’s results in great savings in

indexing time and a reduction in the amount of

hardware required to support the system. Last and

probably more significant, users benefit by

eliminating replicate results. By efficiently

presenting only unique documents, user satisfaction

is likely to increase.

Keywords

Unique documents, detecting replicate, replication, search

engine.

1. Introduction

The definition of what constitutes a replicate has

somewhat different interpretations. For instance,

some define a replicate as having the exact syntactic

terms and sequence, whether having formatting

differences or not. In effect, there are either no

difference or only formatting differences and the

contents of the data are exactly the same. In any

case, data replication happens all the time. In large

data warehouses, data replication is an inevitable

phenomenon as millions of data are gathered at very

short intervals. Data warehouse involves a process

called ETL which stands for extract, transform and

load. During the extraction phase, multitudes of data

come to the data warehouse from several sources and

the system behind the warehouse consolidates the

data so each separate system format will be read

consistently by the data consumers of the warehouse.

Data portals are everywhere. The tremendous growth

of the Internet has spurred the existence of data

portals for nearly every topic. Some of these portals

are of general interest; some are highly domain

specific. Independent of the focus, the vast majority

of the portals obtain data, loosely called documents,

from multiple sources [1]. Obtaining data from

multiple input sources typically results in replication.

The detection of replicate documents within a

collection has recently become an area of great

interest [2] and is the focus of our described effort.

Typically, inverted indexes are used to support

efficient query processing in information search and

retrieval engines. Storing replicate documents affects

both the accuracy and efficiency of the search engine.

Retrieving replicate documents in response to a

user’s query clearly lowers the number of valid

responses provided to the user, hence lowering the

accuracy of the user’s response set. Furthermore,

processing replicates necessitates additional

computation. Replicates are abundant in short text

databases. For example, popular mobile phone

messages may be forwarded by millions of people,

and millions of people may express their opinions on

the same hot topic by mobile phone messages. In our

investigation on mobile phone short messages, more

than 40% short messages have at least one exact

replicate. An even larger proportion of short

messages are near-replicates. Detecting and

eliminating these replicate short messages is of great

importance for other short text processing, such as

short text clustering, short text opinion mining, short

text topic detection and tracking, short message

community uncovering. Exact replicate short texts

are easy to identify by standard hashing schemes.

Informal abbreviations without introducing any

additional benefit. Hence, the processing efficiency

of the user’s query is lowered. A problem introduced

by the indexing of replicate documents is potentially

skewed collection statistics. Collection statistics are

often used as part of the similarity computation of a

query to a document. Hence, the biasing of collection

statistics may affect the overall precision of the entire

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

15

system. Simply put, not only is a given user’s

performance compromised by the existence of

replicates, but also the overall retrieval accuracy of

the engine is jeopardized. The definition of what

constitutes a replicate is unclear. For instance, a

replicate can be defined as the exact syntactic terms,

without formatting differences. Throughout our

efforts however, we adhere to the definition

previously referred to as a measure of resemblance

[3]. The general notion is that if a document contains

roughly the same semantic content it is a replicate

whether or not it is a precise syntactic match. When

searching web documents, one might think that, at

least, matching URL’s would identify exact matches.

However, many web sites use dynamic presentation

wherein the content changes depending on the region

or other variables. In addition, data providers often

create several names for one site in an attempt to

attract users with different interests or perspectives.

For instance, Fox4, Onsale-Channel-9, and Real-TV

all point to an advertisement for real TV.

Some forms of replicated content, such as those

appearing in publications of conference proceedings,

important updates to studies, confirmation of

contested results in controversial studies, and

translations of important findings, may no doubt be

beneficial to the scientific community. Replication is

seen as unethical when the primary intent is to

deceive peers, supervisors, and/or journal editors

with false claims of novel data. Given the large

number of papers published annually, the large

diversity of journals with overlapping interests in

which to publish, and the uneven access to journal

publication content, it is not unreasonable to assume

that the discovery of such replication is rare [4]. The

recent development of algorithmic methods to

systematically process published literature and

identify instances of replicated/plagiarized text as

accurately as possible should serve as an effective

deterrent to authors considering this dubious path.

Unfortunately, the methods in place now have a very

limited reach, and are confined to abstracts and titles

only. Replicates: where they come from. One of the

main problems with the existing geospatial databases

is that they are known to contain many replicate

points (e.g., [6] [7], [8]). The main reason why

geospatial databases contain replicates is that the

databases are rarely formed completely .from

scratch., and instead are built by combining

measurements from numerous sources. Since some

measurements are represented in the data from

several of the sources, we get replicate records. Why

replicates are a problem. Replicate values can corrupt

the results of statistical data processing and analysis.

For example, when instead of a single (actual)

measurement result, we see several measurement

results confirming each other, and we may get an

erroneous impression that this measurement result is

more reliable than it actually is. Detecting and

eliminating replicates is therefore an important part

of assuring and improving the quality of geospatial

data, as recommended by the US Federal Standard

[9]. The identification of exact replicate documents in

the Reuters collection was the primary goal of

Sanderson [10]. The method utilized correctly

identified 320 pairs and only failing to find four, thus

proving its effectiveness. In the creation of this

detection method, they found a number of other

replicate document types such as expanded

documents, corrected documents, and template

documents. The efficient computation of the overlap

between all pairs of web documents was considered

by Shivakumar et al. [11]. The improvement of web

crawlers, web archivers the presentation of search

results, among others can be aided by this

information. The statistics on how common

replication is on the web was reported. In addition,

the statistics on the cost of computing the above

information for a relatively large subset of the web

about 24 million web pages which correspond to

about 150 gigabytes of textual information was

presented.Many organizations archiving the World

Wide Web show more importance in topics dealing

with documents that remain unchanged between

harvesting rounds. Some of the key problems in

dealing with this have been discussed by Sigurðsson

[12].Subsequently, a simple, but effective way of

managing at least a part of it has been summarized

which the popular web crawler Heritrix [14]

employed in the form of an add-on module. They

discussed the limitations and some of the work

necessitating improvement in handling replicates, in

conclusion. Theobald et al. [13] proved that SpotSigs

provide both increased robustness of signatures as

well as highly efficient replication compared to

various state-of-the-art approaches. It was

demonstrated that simple vector-length comparisons

may already yield a very good partitioning condition

to circumvent the otherwise quadratic runtime

behavior for this family of clustering algorithms, for

a reasonable range of similarity thresholds.

Additionally, the SpotSigs replication algorithm runs

“right out of the box" without the need for further

tuning, while remaining exact and efficient, which is

dissimilar to other approaches based on hashing.

Provided that there is an effective means of bounding

the similarity of two documents by a single property

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

16

such as document or signature length, the SpotSigs

matcher can easily be generalized toward more

generic similarity search in metric spaces.

2. Proposed Technique

This standard specifies four secure hash algorithms,

SHA-1 [5], SHA-256, SHA-384, and SHA-512. All

four of the algorithms are iterative, one-way hash

functions that can process a message to produce a

condensed representation called a message digest.

These algorithms enable the determination of a

message’s integrity: any change to the message wills,

with a very high probability, result in a different

message digests. This property is useful in the

generation and verification of digital signatures and

message authentication codes, and in the generation

of random numbers (bits). In cryptography, SHA-1 is

a cryptographic hash function designed by the

National Security Agency and published by the NIST

as a U.S. Federal Information Processing Standard.

SHA stands for "secure hash algorithm". The three

SHA algorithms are structured differently and are

distinguished as SHA-0, SHA-1, and SHA-2. SHA-1

is very similar to SHA-0, but corrects an error in the

original SHA hash specification that led to significant

weaknesses. The SHA-0 algorithm was not adopted

by many applications. SHA-2 on the other hand

significantly differs from the SHA-1 hash function.

Each algorithm can be described in two stages:

preprocessing and hash computation. Preprocessing

involves padding a message, parsing the padded

message into m-bit blocks, and setting initialization

values to be used in the hash computation. The hash

computation generates a message schedule from the

padded message and uses that schedule, along with

functions, constants, and word operations to

iteratively generate a series of hash values. The final

hash value generated by the hash computation is used

to determine the message digest.The four algorithms

differ most significantly in the number of bits of

security that are provided for the data being hashed –

this is directly related to the message digest length.

When a secure hash algorithm is used in conjunction

with another algorithm, there may be requirements

specified elsewhere that require the use of a secure

hash algorithm with a certain number of bits of

security. For example, if a message is being signed

with a digital signature algorithm that provides 128

bits of security, then that signature algorithm may

require the use of a secure hash algorithm that also

provides 128 bits of security (e.g., SHA-256).

Additionally, the four algorithms differ in terms of

the size of the blocks and words of data that are used

during hashing. Table 1 presents the basic properties

of all four secure hash algorithms.

Table 1. Basic properties of all four secure hash

algorithms

Algorith

m

Messa

ge

Size

(bits)

Bloc

k

Size

(bits

)

Wor

d

Size

(bits

)

Messa

ge

Digest

Size

(bits)

Securit

y2

(bits)

SHA-1 <264 512 32 160 80

SHA-

256
<264 512 32 256 128

SHA-

384
<2128 1024 64 384 192

SHA-

512
<2128 1024 64 512 256

The performance numbers above were for a single-

threaded implementation on an Intel Core 2 1.83 GHz

processor under Windows Vista in 32-bit mode, and

serve only as a rough point for general comparison.

This function rapidly compares large numbers of files

for identical content by computing the SHA-256 hash

of each file and detecting replicates. The probability

of two non-identical files having the same hash, even

in a hypothetical directory containing millions of files,

is exceedingly remote. Thus, since hashes rather than

file contents are compared, the process of detecting

replicates is greatly accelerated.

3. Test Result and Analysis

It is important to mention that this process does not

have to be sequential: if we have several processors,

then we can eliminate records in parallel, we just

need to make sure that if two record are replicates,

e.g., r1 = r2, then when one processor eliminates r1

the other one does not eliminate r2. To come up with

a general algorithm for detecting and eliminating

replicates under uncertainty, let us _rst consider an

ideal case when there is no uncertainty, i.e., when

replicate records ri = (xi; yi; di) and rj = (xj ; yj ; dj)

mean that the corresponding coordinates are equal: xi

= xj and yi = yj . In this case, to eliminate replicates,

we can do the following. We _rst sort the records in

lexicographic order, so that ri goes before rj if either

xi < xj , or (xi = xj and yi • yj). In this order,

replicates are next to each other. So, we _rst compare

r1 with r2. If coordinates in r2 are identical to

coordinates in r1, we eliminate r2 as a replicate, and

compare r1 with r3, etc. After the next element is no

longer a replicate, we take the next record after r1

and do the same for it, etc. After each comparison,

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

17

we either eliminate a record as a replicate, or move to

a next record. Since we only have n records in the

original database, we can move only n steps to the

right, and we can eliminate no more than n records.

Thus, totally, we need no more than 2n comparison

steps to complete our procedure. Since 2n is

asymptotically smaller than the time O(n ¢ log(n))

needed to sort the record, the total time for sorting

and deleting replicates is O(n¢log(n))+2n =

O(n¢log(n)). Since we want a sorted database as a

result, and sorting requires at least O(n ¢ log(n))

steps, this algorithm is asymptotically optimal.

Algorithm:

For each record, compute the indices

 pi = bxi=(C ¢ ")c; : : : ; qi = byi=(C ¢ ")c:

2. Sort the records in lexicographic order • by their

index vector ~pi = (pi; : : : ; qi). If several records

have the same index vector, check whether some are

replicates of one another, and delete the replicates.

As a result, we get an index-lexicographically

ordered list of records:

 r(1) • : : : • r(n0), where n0 • n.

3. For i from 1 to n, we compare the record r(i) with

its •-following immediate neighbors; if one of the

following immediate neighbors is a replicate to r(i),

then we delete this neighbor.

4. Conclusion

We proposed a new replicate document detection

algorithm called DRD and evaluated its performance

using multiple data collections. The document

collections used varied in size, degree of expected

document replication, and document lengths. In terms

of human usability, no similar document detection

approach is perfect. The ultimate determination of

how similar a document must be to be considered a

replicate relies on human judgment. Therefore, any

solution must be easy to use. To support ease of use,

all potential replicates should be uniquely grouped

together. Therefore, any match in even single results

in a potential replicate match indication. This results

in the scattering of potential replicates across many

groupings, and many false positive potential matches.

DRD, in contrast, treats a document in its entirety and

maps all potential replicate s into a single grouping.

This reduces the processing demands on the user.

This paper has been felt necessary when the work on

developing Replicate document detection is very

hopeful, and is still in promising status. This survey

paper intends to aid upcoming researchers in the field

of Replicate document detection in web crawling to

understand the available methods and help to perform

their research in further direction.

References

[1] Broder, A., Glassman, S., Manasse, S., Zweig, G.

1997. Syntactic clustering of the web. In

Proceedings of the Sixth International World

Wide Web Conference (WWW6’97) (Santa

Clara, CA., April). 391–404.

[2] Shivakumar, N., Garica-Molina, H. 1998.

Finding near-replicas of documents on the web.

In Proceedings of Workshop on Web Databases

(WebDB’98) (Valencia, Spain, March). 204–212.

[3] Heintze, N. 1996. Scalable document

fingerprinting. In Proceedings of the Second

USENIX Electronic Commerce Workshop

(Oakland, CA., November). 191–200.

[4] Sanderson,M. 1997. Replicate detection in the

Reuters collection. Technical Report (TR-1997-

5) of the Department of Computing Science at the

University of Glasgow, Glasgow G12 8QQ, UK.

[5] The SHA-1 algorithm specified in this document

is identical to the SHA-1 algorithm specified in

FIPS 180-1.

[6] McCain, M., and William C., 1998. Integrating

Quality Assurance into the GIS Project Life

Cycle, Proceedings of the 1998 ESRI Users

Conference.

[7] Goodchild, M., and Gopal, S. (Eds.), 1989.

Accuracy of Spatial Databases, Taylor & Francis,

London.

[8] Scott, L., 1994. Identi_cation of GIS Attribute

Error Using Exploratory Data Analysis,

Professional Geographer 46(3), 378.386.

[9] FGDC Federal Geographic Data Committee,

1998. FGDC-STD- 001-1998. Content standard

for digital geospatial metadata (revised June

1998), Federal Geographic Data Committee,

Washington, D.C.

[10] Sanderson, M., 1997. "Duplicate Detection in the

Reuters Collection", Technical Report (TR-1997-

5), Department of Computing Science, University

of Glasgow.

[11] Shivakumar, N., Garcia Molina, H., 1999.

"Finding near-replicas of documents on the

web",Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, Vol. 1590, pp. 204-

212.

[12] Sigurðsson, K., 2006. "Managing duplicates

across sequential crawls", proceedings of the

6thInternational Web Archiving Workshop.

[13] Theobald, M., Siddharth, J., Paepcke, A., 2008.

"SpotSigs: Robust and Efficient Near Duplicate

Detection in Large Web Collections",

Proceedings of the 31st annual international

ACM SIGIR conference on Research and

development in information retrieval, Singapore,

pp. 563-570.

[14] Mohr, G., Stack, M., Ranitovic, I., Avery, D., and

Kimpton, M., 2004. "An Introduction to

Heritrix", 4th International Web Archiving

Workshop.

