
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

 21

Result Analysis and Benefits of Detecting Replicate Documents Using MD5

Hash Function

Pushpendra Singh Tomar
1
, Maneesh Shreevastava

2

M-Tech (IT), LNCT, Bhopal
1

Head and Professor, IT, LNCT Bhopal
2

Abstract

The definition of what constitutes a replicate has

somewhat different interpretations. For instance,

some define a replicate as having the exact syntactic

terms and sequence, whether having formatting

differences or not. In effect, there are either no

difference or only formatting differences and the

contents of the data are exactly the same. In any

case, data replication happens all the time. In large

data warehouses, data replication is an inevitable

phenomenon as millions of data are gathered at

very short intervals. In this paper we provide a

detail result analysis on the basis of our approach

and the previous one.

Keywords

Replication, Result, MD5, documents

1. Introduction

The definition of what constitutes a replicate has

somewhat different interpretations. For instance,

some define a replicate as having the exact syntactic

terms and sequence, whether having formatting

differences or not. In effect, there are either no

difference or only formatting differences and the

contents of the data are exactly the same. In any

case, data replication happens all the time. In large

data warehouses, data replication is an inevitable

phenomenon as millions of data are gathered at very

short intervals.

Data warehouse involves a process called ETL which

stands for extract, transform and load. During the

extraction phase, multitudes of data come to the data

warehouse from several sources and the system

behind the warehouse consolidates the data so each

separate system format will be read consistently by

the data consumers of the warehouse. Data portals are

everywhere. The tremendous growth of the Internet

has spurred the existence of data portals for nearly

every topic. Some of these portals are of general

interest; some are highly domain specific.

Independent of the focus, the vast majority of the

portals obtain data, loosely called documents, from

multiple sources [1].

Obtaining data from multiple input sources typically

results in replication. The detection of replicate

documents within a collection has recently become

an area of great interest [2] and is the focus of our

described effort. Typically, inverted indexes are used

to support efficient query processing in information

search and retrieval engines. Storing replicate

documents affects both the accuracy and efficiency of

the search engine. Retrieving replicate documents in

response to a user‟s query clearly lowers the number

of valid responses provided to the user, hence

lowering the accuracy of the user‟s response set.

Furthermore, processing replicates necessitates

additional computation Replicates are abundant in

short text databases. For example, popular mobile

phone messages may be forwarded by millions of

people, and millions of people may express their

opinions on the same hot topic by mobile phone

messages. In our investigation on mobile phone short

messages, more than 40% short messages have at

least one exact replicate. An even larger proportion of

short messages are near-replicates. Detecting and

eliminating these replicate short messages is of great

importance for other short text processing, such as

short text clustering, short text opinion mining, short

text topic detection and tracking, short message

community uncovering. Exact replicate short texts

are easy to identify by standard hashing schemes.

Informal abbreviations without introducing any

additional benefit. Hence, the processing efficiency

of the user‟s query is lowered. A problem introduced

by the indexing of replicate documents is potentially

skewed collection statistics. Collection statistics are

often used as part of the similarity computation of a

query to a document. Hence, the biasing of collection

statistics may affect the overall precision of the entire

system.

Simply put, not only is a given user‟s performance

compromised by the existence of replicates, but also

the overall retrieval accuracy of the engine is

jeopardized. The definition of what constitutes a

replicate is unclear. For instance, a replicate can be

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

 22

defined as the exact syntactic terms, without

formatting differences. Throughout our efforts

however, we adhere to the definition previously

referred to as a measure of resemblance [3]. The

general notion is that if a document contains roughly

the same semantic content it is a replicate whether or

not it is a precise syntactic match. When searching

web documents, one might think that, at least,

matching URL‟s would identify exact matches.

However, many web sites use dynamic presentation

wherein the content changes depending on the region

or other variables. In addition, data providers often

create several names for one site in an attempt to

attract users with different interests or perspectives.

For instance, Fox4, Onsale-Channel-9, and Real-TV

all point to an advertisement for real TV.

2. Clustering Analysis

Litigators and investigators are reaching the limits of

their ability to process the immense amount of

information generated by electronic communications

involved in complex matters. As a result, some firms

are using clustering analysis and data visualization

technology to help them greatly streamline the review

stage of e-discovery.

Clustering analysis technologies automatically group

documents based on relationships and “concepts”

(related words or phrases) in the data, providing a

more robust view of the contents than keyword

searches alone. By using the technology to cluster

related documents and visualize them in a “concept

map” interface, attorneys can tag groups of highly

relevant documents while quickly setting aside

irrelevant documents.

For example, attorneys for a large financial

institution facing class-action litigation recently used

clustering to rapidly reduce a population of 550,000

documents to 7,000 documents that merited a more

detailed privileged review saving substantial time and

money for their client.

3. Elimination of exact replicates

In this Section, we describe the data model and

algorithms involved in the replicates elimination

mechanism. The data model relies on 3 main classes:

instance, volume and block.

The instance class provides a centralized view of a

storage space composed of volumes containing

blocks. Each block keeps a document and related

operational meta-data. The signature is the number

obtained from applying a fingerprinting algorithm to

the document. A content key contains the signature of

the document and the volume where it was stored. A

block holds a unique document within the volume.

It is composed by a header and a data container

(Figure 1)

1). The data container keeps the document. The

header contains information about the software

version, the document‟s original size in bytes and a

reference counter that keeps track of the difference

between the storage and deletes requests performed

on the document, allowing independent applications

to share the same instance without interfering with

each other‟s data processing. The header also

specifies the algorithm used to compress the

document, allowing the coexistence of several

compression types within the volume and the

application of suitable algorithms according to the

document‟s format. The storage structure of a volume

is a tree containing blocks on its leafs. Figure 1

illustrates a storage structure with depth 3. The nodes

within each level of depth are identified by numbers

represented in hexadecimal format from 0 to FF. The

tree depth can change within the volumes that

compose an instance, according to the storage

capacity of the node.

Figure 1: Storage structure of a volume: a tree

holding blocks on the leafs.

The location of a block within the volume tree is

obtained by applying a function called signlocation to

the document‟s signature. Assuming that the

signature of a document is unique, two documents

have the same location within a volume if they are

replicates. Consider a volume tree with depth n and a

signature with m bytes of length. Signlocation uses

the (n - 1) most significant bytes in the signature to

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

 23

identify the path to follow in the volume tree. The ith

byte of the signature identifies the tree node with

depth i. The remaining bytes of the signature (m-n-1)

identify the block name on the leaf of the tree. For

instance, considering a volume tree with depth 3, the

block holding content with signature

ADEE2232AF3A4355 would be found in the tree by

following the nodes AD, EE and leaf

2232AF3A4355.

The detection of replicates is performed during the

storage of each document, ensuring that each distinct

document is stored in a single block within the

instance. When a client requests the storage of a

document, the system performs a sequence of tasks:

1. Generates a signature s for the document;

2. Applies sign location to the signature and

obtains the location l of the corresponding

block;

3. Searches for a block in location l within the

n volumes that compose the instance,

multicasting requests to the volumes;

4. If a block is found on one of the volumes,

the document is considered to be a duplicate

and its reference counter is incremented.

Otherwise, the document is stored in a new

block with location l in the volume

identified by s mod n;

5. Finally, a content key referencing the block

is returned to the client.

4. Fake Replication

Theoretically, if two documents have the same

signature they are replicates. However, fingerprinting

algorithms present a small probability of collision

that causes the generation of the same signature for

two different documents.

We believe that the probability of losing a document

due to a disk error or bug on the underlying software

(e.g imported software libraries or hardware drivers)

is bigger than the probability of fingerprint collisions.

Nevertheless, we support 3 modes for the store

operation to fulfill the requirements of applications

that may need absolute certainty that fake replicates

do not occur: force-new, regular and compare. When

using the force-new mode, the elimination of

replicates is switched off and a new block is created

to store each document. This semantic is useful if one

knows that the collection does not contain replicates.

The regular mode (default) detects a collision if two

contents have the same signature but different sizes.

In this case, an overflow block is created to keep the

document. However, the success of this heuristic

depends on the distribution of the document sizes and

collisions will not be detected among documents with

the same size. We computed the distribution of sizes

for a random sample of 3.2 million web pages and

found that the probability of two random web pages

having the most frequent size. Assuming that the

probability of two pages having the same size and the

probability of fingerprint collision between them are

independent events, our results indicate that the

comparison of sizes can substantially reduce the

occurrence of fake replicates without requiring longer

fingerprint signatures or additional meta-data. The

compare mode relies on size and byte wise

comparison of the documents to detect collisions.

If two contents have the same signature but different

sizes, or have the same size but are not byte equal, a

collision is detected. Fake replicates never occur

when using this store mode.

Replication Concept
Unique sub files Replicate sub

files

Figure 2: The Replicate Concept

5. Result Analysis

Unfortunately, there is no available absolute body of

truth or a benchmark to evaluate the success of these

techniques. Thus, it is difficult to get any type of

quantitative comparison of the different algorithms

and thresholding techniques. This is not likely to

change in the near future. As document collections

grow, the likelihood of judgments of Replicates being

made is small; therefore, the best that can be hoped

for is to provide fast efficient techniques for

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

 24

duplication detection that can be passed on to

analysis for further evaluation.

The most obvious way to identify Replicate

documents is to directly hash the entire contents of a

document to a unique value. This type of approach

finds exact matches by comparing the calculated hash

value with the other document hash values for

Replicate document detection. However, they are

used to see if a particular document has changed. We

experimented with various filtration techniques to

improve the resilience of the direct hash approach to

small document changes. If a simple filtration

technique based on strictly syntactic information is

successful then fast Replicate and similar document

detection could be achieved.

Table 1. Unique Documents and Percent Found as

Replicate for Small, Html, Image, Audio, Video

and other File

File Type
Percent Found as

Replicates

Unique

Documents

Found in

Collection

Small File 6 % 17906

Html File 2.22 % 2423

Picture File 8 % 227654

Audio File 6 % 8743

Video File 4 % 5462

Other File 6.22 % 50112

The effect of filtering tokens on the degree of

Replicate document detection is shown in Table 1.

We used the LNCT collection because the collection

is fully replicated. Therefore, the percentage of

Replicates found is an evaluation metric of the

effectiveness of the filter. Also shown in the table, is

the percentage of terms retained after each filtering

technique. Generally speaking, as we show in Table

1, the higher the filtration, the greater the degree of

detection.

0

50000

100000

150000

200000

250000

Small
File

Html
File

Picture
File

Audio
File

Video
File

Other
File

Unique Documents
Found in Collection

Percent Found as
Replicates

Figure 3: Unique Documents and Percent Found

as Replicate

While several of the filtration techniques do find 88%

of the collection, the Replicates they find are near or

exact matches and a maximum number of unique

documents of 92038. In contrast, F-Replicate for this

same collection detects 96.2% duplication and a

maximum number of unique documents of 87568.

Clearly the lower the maximum number of unique

documents, the better is the detection capability.

Table 2 Show Computing Result with Time Elapse

and File Size

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

 25

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10

Total files found

Elapsed Time for
search (Seconds)

deleted files

Elapsed Time for
Delete (Seconds)

 Figure 4 Detecting Total File and Deleted File

With Time Elapsed

Figure 5 Total and Computing Hashes File With

Size of File in MB

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10

Total files found

Computing hashes
files

deleted files

Figure 6 Total Documents with Computing

Hashes File and Deleted File

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10

Total files found

Sum of file sizes (MB)

Elapsed Time for search
(Seconds)

Computing hashes files

Sum of file sizes is now
(MB)

Elapsed Time for
computing hashes
(Seconds)

Figure 7 Detecting Total and Similar Documents

with Time Elapsed and Size of File in MB

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-2 Issue-2 December 2011

 26

Our simple filtering techniques reduced the list of

tokens used to create the hash. By eliminating white

spaces and only keeping unique tokens, many small

document changes are eliminated. Keeping only

unique tokens eliminates movement of paragraph

errors, stemming removes errors caused by small

token changes, and stop word removal removes

errors caused by adding or removing common

irrelevant tokens, in terms of semantics. We found

that removing tokens containing „special characters‟

(i.e.=, -,D, etc.) performed the best in terms of

removing tokens from documents.

Algorithms for detecting similar documents are

critical in applications where data is obtained from

multiple sources. The removal of similar documents

is necessary, not only to reduce runtime, but also to

improve search accuracy. Today, search engine

crawlers are retrieving billions of unique URL‟s, of

which hundreds of millions are Replicates of some

form. Thus, quickly identifying Replicate detection

expedites indexing and searching. One vendor‟s

analysis of 1.2 billion URL‟s resulted in 400 million

exact Replicates found with a MD5 hash. Reducing

the collection sizes by tens of percentage points

results in great savings in indexing time and a

reduction in the amount of hardware required to

support the system. Last and probably more

significant, users benefit by eliminating Replicate

results. By efficiently presenting only unique

documents, user satisfaction is likely to increase.

We proposed a new similar document detection

algorithm called F-Replicate and evaluated its

performance using multiple data collections. The

document collections used varied in size, degree of

expected document duplication, and document

lengths. The data was obtained from LNCT, Server

and from Home PC. F-Replicate relies on collection

statistics to select the best terms to represent the

document. F-Replicate was developed to support web

document collections.

Thus, unlike many of its predecessors, F-Replicate

efficiently processes large collections and does not

neglect small documents. In comparison to the prior

state of threat, In terms of human usability, no similar

document detection approach is perfect however; our

experimentation shows the F-Replicate to be the most

effective approach for finding Replicate documents.

The ultimate determination of how similar a

document must be to be considered a Replicate, relies

on human judgment. Therefore, any solution must be

easy to use. To support ease of use, all potential

Replicates should be uniquely grouped together.

6. Conclusion

We proposed a new replicate document detection

algorithm called DRD and evaluated its performance

using multiple data collections. The document

collections used varied in size, degree of expected

document replication, and document lengths. In terms

of human usability, no similar document detection

approach is perfect. The ultimate determination of

how similar a document must be to be considered a

replicate relies on human judgment. Therefore, any

solution must be easy to use. To support ease of use,

all potential replicates should be uniquely grouped

together.

Therefore, any match in even single results in a

potential replicate match indication. This results in

the scattering of potential replicates across many

groupings, and many false positive potential matches.

DRD, in contrast, treats a document in its entirety and

maps all potential replicate s into a single grouping.

This reduces the processing demands on the user.

This paper has been felt necessary when the work on

developing Replicate document detection is very

hopeful, and is still in promising status. This survey

paper intends to aid upcoming researchers in the field

of Replicate document detection in web crawling to

understand the available methods and help to perform

their research in further direction.

References

[1] Broder, A., Glassman, S., Manasse, S., and

Zweig, G. 1997. Syntactic clustering of the web.

In Proceedings of the Sixth International World

Wide Web Conference (WWW6‟97) (Santa

Clara, CA., April). 391–404.

[2] Shivakumar, N. and Garica-Molina, H. 1998.

Finding near-replicas of documents on the web.

In Proceedings of Workshop on Web Databases

(WebDB‟98) (Valencia, Spain, March). 204–212.

[3] HEINTZE, N. 1996. Scalable document

fingerprinting. In Proceedings of the Second

USENIX Electronic Commerce Workshop

(Oakland, CA., November). 191–200.

