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Abstract 
 

 This paper deals with “Turbo codes”. The turbo 

code encoder is built using a parallel concatenation 

of two RSC codes and associated decoder is SOVA. 

Simulation carried out for different BER, iterations, 

constraint lengths and frame sizes (FS) to show 

performance properties of turbo codes in AWGN 

channel and using binary shift keying modulation. 
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1. Introduction 
 

Over the past decade, there has been great interest in 

the development of Joint Source Channel Coding 

(JSCC) techniques. This is motivated by the 

impressive growth of personal mobile-

communications, which aim to support ever more 

sophisticated services in hostile wireless 

environments. Channel bandwidth limitations require 

powerful source compression techniques, but also 

noisy channels severely impact the compressed data 

error sensitivity. In this context, JSCC has emerged as 

a viable approach to the problem. On the other hand, 

the most recent coding standards for media 

applications, such as JPEG2000 for still images and 

H264/AVC for videos, are adopting arithmetic codes 

for entropy coding. This adoption is due firstly to the 

higher compression performance given by arithmetic 

codes when compared to other methods and secondly 

to the availability of low complex algorithms for its 

implementation. [1] Turbo codes were introduced in 

1993 by Berrou et al. In the last decade turbo codes 

have attracted considerable attention because of the 

large coding gains they can achieve in an additive 

white Gaussian noise (AWGN) channel [2] and is 

perhaps the most exciting and potentially important 

development in coding theory in recent years. Turbo 

codes have been adopted as a channel coding scheme 

in a number of mobile standards, such as Universal 

Mobile Telecommunications System (UMTS), 

cdma2000 and recently in WiMAX and DVB-2. 

Particularly, for UMTS turbo codes are used for high 

data rates. [3] This paper considers different data 

rates iterations, constraint lengths and frame sizes 

(FS) in AWGN channels, validated by computer 

simulation .They achieve near Shannon-limit error 

correction performance with relatively simple 

component codes and large interleaves. They can be 

constructed by concatenating at least two component 

codes in a parallel fashion, separated by an interleave. 

Simple (2, 1, 4) convolution codes can achieve very 

good results. In order for a concatenated scheme such 

as a turbo code to work properly, the decoding 

algorithm must affect an exchange of soft information 

between component decoders. The concept behind 

turbo decoding is to pass soft information from the 

output of one decoder to the input of the succeeding 

one, and to iterate this process several times to 

produce better decisions. Turbo codes are still in the 

process of standardization but future applications will 

include mobile communication systems, deep space 

communications, telemetry and multimedia. Hence, 

the understanding of turbo encoding and decoding 

and their performance is of almost important. 

Performance of turbo code can also be increased by 

multifold coding [4].     

 

All software implementation of the turbo codes has 

been done in MATLAB with channel Additive White 

Gaussian Noise (AWGN) and Binary Phase Shift 

Keying (BPSK) modulation. 

 

The paper is partitioned as follows. The next section 

describes the turbo encoder and the decoder. The 

SOVA decoding algorithms are then outlined. 

Typical results obtained are then presented, followed 

by a short conclusion. 

 

2. Turbo Code Encoder 
 

A turbo encoder is the parallel concatenation of 

recursive systematic convolution (RSC) codes, 

separated by an interleave, as shown in Fig. 1. The 

data flow dk goes into the first elementary RSC 

encoder, and after interleaving, it feeds a second 

elementary RSC encoder. The input stream is also 

systematically transmitted as Xk, and the 

redundancies produced by encoders 1 and 2 are 

transmitted as Y1k and Y2k. For turbo codes, the main 

reason of using RSC encoders as constituent encoders 

instead of the traditional non-recursive nonsystematic 

convolutional codes, is to use their recursive nature 

and not the fact that they are systematic.[6] turbo 

code with two different structures: The first one is the 

conventional structure in which three rate 1/2 

identical constituent encoders are used to build the 
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encoder, this is known as the Equal Rate Turba Code 

(ERTC). The second structure is a modified structure 

with encoder consists of two different constituent 

encoders (one of rate = 1/2 and the other of rate = 

ID), this structure is called Uneqiial Rare Turbo Code 

(URTC). [5]The global rate of the turbo encoder in 

Fig. 1 is one-third. 

 

The interleaver is an important design parameter in a 

turbo code. It takes a particular stream at its input and 

produces a different sequence as output. Its main 

purpose at the encoder side is to increase the free 

distance of the turbo code, [6] hence improving its 

error-correction performance [7].  

 

There are different types of interleaves, such as the 

block, pseudo-random, simile, and odd-even 

interleaves [8]. They differ in the way they shuffle the 

input symbols. In this paper a random interleaves is 

used. 

 

 
 

Figure 1: A fundamental turbo encoder 

 

3. Turbo Code Decoder 
 

The turbo code decoder is based on modified Viterbi 

Algorithm that incorporates reliability values to 

improve decoding performance. The Viterbi 

Algorithm (VA) is modified to deliver not only the 

most likely path sequence in a finite-state Markov 

chain, but either the a-posteriori probability for each 

bit or reliability value. With this reliability indicator 

the modified VA produces soft decisions to be used 

in decoding of outer codes. In order to design and 

implement the decoding algorithm, first the concept 

of reliability for viterbi decoding and the metric that 

will be used in the modified Viterbi Algorithm for 

turbo code decoding is described. 

 

3.1 Principle of the General Soft-Output 

Viterbi Decoder 

The Viterbi algorithm produces the ML output 

sequence for convolutional codes. This algorithm 

provides optimal sequence estimation for one stage 

convolutional codes. For concatenated (multistage) 

convolutional codes, there are two main drawbacks to 

conventional Viterbi decoders. First, the inner Viterbi 

decoder produces bursts of bit errors which degrade 

the performance of the outer Viterbi decoders [9]. 

Second, the inner Viterbi decoder produces hard 

decision outputs which prohibit the outer Viterbi 

decoders from deriving the benefits of soft decisions 

[9]. Both of these drawbacks can be reduced and the 

performance of the overall concatenated decoder can 

be significantly improved if the Viterbi decoders are 

able to produce reliability (soft-output) values [10]. 

The reliability values are passed on to subsequent 

Viterbi decoders as a priori information to improve 

decoding performance. This modified Viterbi decoder 

is referred to as the soft-output Viterbi algorithm 

(SOVA) decoder. Figure 2 shows a concatenated 

SOVA decoder. 

 
 

Figure 2: A concatenated SOVA decoder where y 

represents the received channel values, u 

represents the hard decision output values, and L 

represents the associated reliability values. 

 

3.2 Reliability of SOVA decoder 

The reliability of the SOVA decoder is calculated 

from the trellis diagram as shown Fig 3. The solid 

line indicates the survivor path (assumed here to be 

part of the final ML path) and the dashed line 

indicates the competing (concurrent) path at time t for 

state 1. For the sake of brevity and clarity, survivor 

and competing paths for other nodes are not shown. 

The label S1,t represents state 1 and time t. Also, the 

labels {0,1} shown on each path indicate the 

estimated binary decision for the paths. The survivor 

path for this node is assigned an accumulated metric 

Vs(S1,t) and the competing path for this node is 

assigned an accumulated metric Vc(S1,t). 
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Figure 3: Example of survivor and competing 

paths for reliability estimation at time t [10]. 

 

fundamental information for assigning a reliability 

value L(t) to node S1,t‟s survivor path is the absolute 

difference between the two accumulated metrics, 

L(t)= | Vs(S1,t) - Vc(S1,t) | [10]. The greater this 

difference, the more reliable is the survivor path. If 

the bit on the survivor path at any step is the same as 

the associated bit on the competing path, the 

reliability value at that bit position remains 

unchanged. However, if they differ, for example, at 

times t-2 and t-4, the reliability values at the 

corresponding steps needs to be updated. The soft 

output is then the final updated reliability values of 

each decoded bit. 

 

1. (a) Initialize time t = 0. 

(b) Initialize M0
 (m)

 only for the zero state in the 

trellis diagram and all other states to -∞. 

2. (a) Set time t = t + 1. 

(b) Compute the metric 

for 

each state in the trellis diagram where, m denotes 

allowable binary trellis branch/transition to a state (m 

= 1, 2). 

 
is the accumulated metric for time t on 

branch m. 

 
is the systematic bit (1

st
 bit on N bits) for 

time t on branch m. 

 
is the j-th bit on N bits for time t on branch 

m (2 < j < N). 

 
is the received value from the channel 

corresponding to 
. 

  
is the channel reliability value. 

L (ut) is the a-priori reliability value for time t. This 

value is from the preceding decoder. If there is no 

preceding decoder, then this value is set to zero. 

3. Find 
 

for each state. For 

simplicity, let 
 
denote the survivor path metric 

and denote the competing path metric. 

4. Store 
 
and its associated survivor bit and 

state paths. 

5. compute  

6. Compare the survivor and computing paths at 

each state for time t and store the MEMs where the 

estimated binary decisions of the two paths differ. 

7. Update 
 

for all 

MEMs from smallest to largest MEM. 

8. Go back to Step (2) until the end of the received 

sequence. 

9. Output the estimated bit sequence û and its 

associated “Soft” or L-value sequence. 

 

L =   , where,  operator defines element by 

element multiplication operation and  is the final 

updated reliability sequence. L  is then processed 

and passed on as the a-priori sequence  for the 

succeeding decoder. 

 

3.3 Implementation of SOVA for turbo code 

[11][12] 

The iterative turbo code decoder is composed of two 

concatenated SOVA component decoders. Figure 4 

shows the turbo code decoder structure. 

 
 

Figure 4: SOVA iterative turbo code decoder. 
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The turbo code decoder processes the received 

channel bits on a frame basis. As shown in Figure 5, 

the received channel bits are de-multiplexed into the 

systematic stream y1 and two parity check streams y2 

and y3 from component encoders 1 and 2 

respectively. These bits are weighted by the channel 

reliability value and loaded on to the CS registers. 

The registers shown in the figure are used as buffers 

to store sequences until they are needed. The switches 

are placed in the open position to prevent the bits 

from the next frame from being processed until the 

present frame has been processed. 

The SOVA component decoder produces the “soft” 

or L value L(ut‟) for the estimated Bit ut‟ (for time t). 

The “soft” or L- value L(ut‟) can be decomposed into 

three distinct terms as stated in [11]. 

 

L (ut‟) = L (ut) + Lc yt,1 + Le (ut‟) 

 

Le(ut‟) is the a-priori value and is produced by the 

preceding SOVA component encoder. 

Lcyt,1 is the weighted received systematic channel 

value. 

Le(ut‟) is the extrinsic value produced by the present 

SOVA component decoder. 

The information that is passed between SOVA 

component decoders is the extrinsic value 

 

Le (ut‟) = L (ut‟) - L (ut) - Lc yt,1 

 

The a-priori value L(ut) is subtracted out from the 

“soft” or L  value L(ut‟)  to prevent passing 

information back to the decoder from which it was 

produced. Also, the weighted received systematic 

channel value Lcyt,1  is subtracted out to remove 

“common” information in the SOVA component 

decoders. Figure 5 show that the turbo code decoder 

is a closed loop serial concatenation of SOVA 

component decoders. In this closed loop decoding 

scheme, each of the SOVA component decoders 

estimates the information sequence using a different 

weighted parity check stream. The turbo code 

decoder further implements for iterative decoding to 

provide more dependable reliability/a-priori 

estimations from the two different weighted parity 

check streams, hoping to achieve better decoding 

performance. 

 

The iterative turbo code decoding algorithm for the n-

th iteration is as follows: 

 

1. The SOVA1 decoder inputs sequences 
 

(systematic),
  

(parity check), and Le2 (u‟) 

outputs sequence L1 (u‟) .For the first iteration, 

sequence Le2 (u‟) = 0 because there is no initial a-

priori value (no extrinsic values from SOVA2).      

2. The extrinsic information from SOVA1 is 

obtained by 

 

Le1 (u‟) = L1 (u
‟
) - Le2 (u‟) - Lc y1 , Where  

3. The sequences 
 

and Le1 (u‟) are 

interleaved and denoted as I{ } and I{ Le1 (u‟) 

}. 

4. The SOVA2 decoder inputs sequences I{ } 

(systematic), I{ } (parity check that was 

already interleaved by the turbo code encoder), and 

I{Le1(u‟)} (a-priori information) and outputs 

sequences I{L2(u
‟
)} and I{u

‟
}. 

5. The extrinsic information from SOVA2 is 

obtained by 

I{Le2 (u‟)} = I{L2 (u
‟
)} – I{Le1 (u‟)} – I{Lc y1 } 

6. The sequences I{Le2(u‟)} and I{u
‟
} are 

deinterleaved and denoted as Le2(u‟) and u‟. Le2(u‟) is 

fed back to SOVA1 as a-priori information for the 

next iteration and u‟ is the estimated bits output for 

the n-th iteration. 

 

4. Results 

 

 
 

Figure 5: The performance of the rate 1/3 turbo 

code for different constraint lengths 

 

The performance of the rate 1/3 turbo code in soft 

decision Viterbi decoding for different constraint 

lengths is shown in Figure 5. In this figure, it can be 

seen that as the constraint length increases, the 

performance of the code also increases, resulting in 

lower BER. This is the typical characteristic of any 

convolutional code. 
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Figure 6: Comparison of Turbo code BER 

performance for 1 iteration,,FS=256 

 

The simulated performance results of turbo codes 

with fixed frame sizes but different rates are shown in 

Figure 6. From these figures, it can be seen that for a 

fixed constraint length, a decrease in code rate 

increases the turbo code performance. 

 

 
Figure 7: Turbo codes with fixed frame sizes, fixed 

constraint length and fixed rate 

 

The simulated performance results of turbo codes 

with fixed frame sizes, fixed constraint length and 

fixed rate are shown in figure 7. From figure an 

increase in number of iteration improves the turbo 

code performance.   

 

 
Figure 8: Turbo code with the same constraint 

length and rates but different frame sizes 

 

The overall iterative (8 iterations) decoding gain for a 

turbo code with the same constraint length and rates 

but different frame sizes are shown in Figure 8. As 

shown in these figures, the overall iterative decoding 

gain increases as the frame size increases. 

 

5. Conclusion 
 

This paper described the concept of turbo coding, 

whose basic configuration depends on the parallel 

concatenation of two component codes (RSC). The 

three distinct terms of “Soft” or L-value are reviewed, 

and these values were used for the information 

exchange between the two SOVA component 

decoders.  

 

The BER performance for turbo codes is investigated 

for many different cases. These different cases are 

summarized under the following three main 

categories: 

1. Turbo code BER performance of 8 decoding 

iterations for fixed code rates constraint 

lengths but different frame sizes. 

2. Turbo code BER performance of 8 decoding 

iterations for fixed frame sizes different code 

rates and constraint lengths. 

3. Turbo code BER performance improvement 

between 1 decoding iteration and 8 decoding 

iterations for fixed code rates, fixed 

constraint lengths and fixed frame sizes. 

The simulation results showed many interesting 

properties about turbo codes that are in the same 

direction with published research work. Some of 

these important results are listed below: 
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1. For a fixed turbo code encoder, its 

performance improves as the frame size 

increases. 

2. For a fixed frame size, the turbo code 

performance increases under two different 

conditions. First, for a fixed constraint 

length, a decrease in code rate improves the 

performance. Second, for a fixed code rate, 

an increase in constraint length improves the 

performance. 

3. Considerable decoding gain is observed if 

more, than one decoding iteration is used. 
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