
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

46

Performance of Turbo Code for UMTS in AWGN channel

Bhavana Shrivastava
1
, Yudhishthir Raut

2
, Ravi Shankar Mishra

3

M.Tech Scholar, NIIST Bhopal, India
1

Reader, NIIST Bhopal, India
2

HOD (EC), NIIST Bhopal, India
3

Abstract

 This paper deals with “Turbo codes”. The turbo

code encoder is built using a parallel concatenation

of two RSC codes and associated decoder is SOVA.

Simulation carried out for different BER, iterations,

constraint lengths and frame sizes (FS) to show

performance properties of turbo codes in AWGN

channel and using binary shift keying modulation.

Keywords

TURBO CODE, RSC, INTERLEAVER, AWGN and

SOVA.

1. Introduction

Over the past decade, there has been great interest in

the development of Joint Source Channel Coding

(JSCC) techniques. This is motivated by the

impressive growth of personal mobile-

communications, which aim to support ever more

sophisticated services in hostile wireless

environments. Channel bandwidth limitations require

powerful source compression techniques, but also

noisy channels severely impact the compressed data

error sensitivity. In this context, JSCC has emerged as

a viable approach to the problem. On the other hand,

the most recent coding standards for media

applications, such as JPEG2000 for still images and

H264/AVC for videos, are adopting arithmetic codes

for entropy coding. This adoption is due firstly to the

higher compression performance given by arithmetic

codes when compared to other methods and secondly

to the availability of low complex algorithms for its

implementation. [1] Turbo codes were introduced in

1993 by Berrou et al. In the last decade turbo codes

have attracted considerable attention because of the

large coding gains they can achieve in an additive

white Gaussian noise (AWGN) channel [2] and is

perhaps the most exciting and potentially important

development in coding theory in recent years. Turbo

codes have been adopted as a channel coding scheme

in a number of mobile standards, such as Universal

Mobile Telecommunications System (UMTS),

cdma2000 and recently in WiMAX and DVB-2.

Particularly, for UMTS turbo codes are used for high

data rates. [3] This paper considers different data

rates iterations, constraint lengths and frame sizes

(FS) in AWGN channels, validated by computer

simulation .They achieve near Shannon-limit error

correction performance with relatively simple

component codes and large interleaves. They can be

constructed by concatenating at least two component

codes in a parallel fashion, separated by an interleave.

Simple (2, 1, 4) convolution codes can achieve very

good results. In order for a concatenated scheme such

as a turbo code to work properly, the decoding

algorithm must affect an exchange of soft information

between component decoders. The concept behind

turbo decoding is to pass soft information from the

output of one decoder to the input of the succeeding

one, and to iterate this process several times to

produce better decisions. Turbo codes are still in the

process of standardization but future applications will

include mobile communication systems, deep space

communications, telemetry and multimedia. Hence,

the understanding of turbo encoding and decoding

and their performance is of almost important.

Performance of turbo code can also be increased by

multifold coding [4].

All software implementation of the turbo codes has

been done in MATLAB with channel Additive White

Gaussian Noise (AWGN) and Binary Phase Shift

Keying (BPSK) modulation.

The paper is partitioned as follows. The next section

describes the turbo encoder and the decoder. The

SOVA decoding algorithms are then outlined.

Typical results obtained are then presented, followed

by a short conclusion.

2. Turbo Code Encoder

A turbo encoder is the parallel concatenation of

recursive systematic convolution (RSC) codes,

separated by an interleave, as shown in Fig. 1. The

data flow dk goes into the first elementary RSC

encoder, and after interleaving, it feeds a second

elementary RSC encoder. The input stream is also

systematically transmitted as Xk, and the

redundancies produced by encoders 1 and 2 are

transmitted as Y1k and Y2k. For turbo codes, the main

reason of using RSC encoders as constituent encoders

instead of the traditional non-recursive nonsystematic

convolutional codes, is to use their recursive nature

and not the fact that they are systematic.[6] turbo

code with two different structures: The first one is the

conventional structure in which three rate 1/2

identical constituent encoders are used to build the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

47

encoder, this is known as the Equal Rate Turba Code

(ERTC). The second structure is a modified structure

with encoder consists of two different constituent

encoders (one of rate = 1/2 and the other of rate =

ID), this structure is called Uneqiial Rare Turbo Code

(URTC). [5]The global rate of the turbo encoder in

Fig. 1 is one-third.

The interleaver is an important design parameter in a

turbo code. It takes a particular stream at its input and

produces a different sequence as output. Its main

purpose at the encoder side is to increase the free

distance of the turbo code, [6] hence improving its

error-correction performance [7].

There are different types of interleaves, such as the

block, pseudo-random, simile, and odd-even

interleaves [8]. They differ in the way they shuffle the

input symbols. In this paper a random interleaves is

used.

Figure 1: A fundamental turbo encoder

3. Turbo Code Decoder

The turbo code decoder is based on modified Viterbi

Algorithm that incorporates reliability values to

improve decoding performance. The Viterbi

Algorithm (VA) is modified to deliver not only the

most likely path sequence in a finite-state Markov

chain, but either the a-posteriori probability for each

bit or reliability value. With this reliability indicator

the modified VA produces soft decisions to be used

in decoding of outer codes. In order to design and

implement the decoding algorithm, first the concept

of reliability for viterbi decoding and the metric that

will be used in the modified Viterbi Algorithm for

turbo code decoding is described.

3.1 Principle of the General Soft-Output

Viterbi Decoder

The Viterbi algorithm produces the ML output

sequence for convolutional codes. This algorithm

provides optimal sequence estimation for one stage

convolutional codes. For concatenated (multistage)

convolutional codes, there are two main drawbacks to

conventional Viterbi decoders. First, the inner Viterbi

decoder produces bursts of bit errors which degrade

the performance of the outer Viterbi decoders [9].

Second, the inner Viterbi decoder produces hard

decision outputs which prohibit the outer Viterbi

decoders from deriving the benefits of soft decisions

[9]. Both of these drawbacks can be reduced and the

performance of the overall concatenated decoder can

be significantly improved if the Viterbi decoders are

able to produce reliability (soft-output) values [10].

The reliability values are passed on to subsequent

Viterbi decoders as a priori information to improve

decoding performance. This modified Viterbi decoder

is referred to as the soft-output Viterbi algorithm

(SOVA) decoder. Figure 2 shows a concatenated

SOVA decoder.

Figure 2: A concatenated SOVA decoder where y

represents the received channel values, u

represents the hard decision output values, and L

represents the associated reliability values.

3.2 Reliability of SOVA decoder

The reliability of the SOVA decoder is calculated

from the trellis diagram as shown Fig 3. The solid

line indicates the survivor path (assumed here to be

part of the final ML path) and the dashed line

indicates the competing (concurrent) path at time t for

state 1. For the sake of brevity and clarity, survivor

and competing paths for other nodes are not shown.

The label S1,t represents state 1 and time t. Also, the

labels {0,1} shown on each path indicate the

estimated binary decision for the paths. The survivor

path for this node is assigned an accumulated metric

Vs(S1,t) and the competing path for this node is

assigned an accumulated metric Vc(S1,t).

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

48

Figure 3: Example of survivor and competing

paths for reliability estimation at time t [10].

fundamental information for assigning a reliability

value L(t) to node S1,t‟s survivor path is the absolute

difference between the two accumulated metrics,

L(t)= | Vs(S1,t) - Vc(S1,t) | [10]. The greater this

difference, the more reliable is the survivor path. If

the bit on the survivor path at any step is the same as

the associated bit on the competing path, the

reliability value at that bit position remains

unchanged. However, if they differ, for example, at

times t-2 and t-4, the reliability values at the

corresponding steps needs to be updated. The soft

output is then the final updated reliability values of

each decoded bit.

1. (a) Initialize time t = 0.

(b) Initialize M0
 (m)

 only for the zero state in the

trellis diagram and all other states to -∞.

2. (a) Set time t = t + 1.

(b) Compute the metric

for

each state in the trellis diagram where, m denotes

allowable binary trellis branch/transition to a state (m

= 1, 2).

is the accumulated metric for time t on

branch m.

is the systematic bit (1

st
 bit on N bits) for

time t on branch m.

is the j-th bit on N bits for time t on branch

m (2 < j < N).

is the received value from the channel

corresponding to
.

is the channel reliability value.

L (ut) is the a-priori reliability value for time t. This

value is from the preceding decoder. If there is no

preceding decoder, then this value is set to zero.

3. Find

for each state. For

simplicity, let

denote the survivor path metric

and denote the competing path metric.

4. Store

and its associated survivor bit and

state paths.

5. compute

6. Compare the survivor and computing paths at

each state for time t and store the MEMs where the

estimated binary decisions of the two paths differ.

7. Update

for all

MEMs from smallest to largest MEM.

8. Go back to Step (2) until the end of the received

sequence.

9. Output the estimated bit sequence û and its

associated “Soft” or L-value sequence.

L = , where, operator defines element by

element multiplication operation and is the final

updated reliability sequence. L is then processed

and passed on as the a-priori sequence for the

succeeding decoder.

3.3 Implementation of SOVA for turbo code

[11][12]

The iterative turbo code decoder is composed of two

concatenated SOVA component decoders. Figure 4

shows the turbo code decoder structure.

Figure 4: SOVA iterative turbo code decoder.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

49

The turbo code decoder processes the received

channel bits on a frame basis. As shown in Figure 5,

the received channel bits are de-multiplexed into the

systematic stream y1 and two parity check streams y2

and y3 from component encoders 1 and 2

respectively. These bits are weighted by the channel

reliability value and loaded on to the CS registers.

The registers shown in the figure are used as buffers

to store sequences until they are needed. The switches

are placed in the open position to prevent the bits

from the next frame from being processed until the

present frame has been processed.

The SOVA component decoder produces the “soft”

or L value L(ut‟) for the estimated Bit ut‟ (for time t).

The “soft” or L- value L(ut‟) can be decomposed into

three distinct terms as stated in [11].

L (ut‟) = L (ut) + Lc yt,1 + Le (ut‟)

Le(ut‟) is the a-priori value and is produced by the

preceding SOVA component encoder.

Lcyt,1 is the weighted received systematic channel

value.

Le(ut‟) is the extrinsic value produced by the present

SOVA component decoder.

The information that is passed between SOVA

component decoders is the extrinsic value

Le (ut‟) = L (ut‟) - L (ut) - Lc yt,1

The a-priori value L(ut) is subtracted out from the

“soft” or L value L(ut‟) to prevent passing

information back to the decoder from which it was

produced. Also, the weighted received systematic

channel value Lcyt,1 is subtracted out to remove

“common” information in the SOVA component

decoders. Figure 5 show that the turbo code decoder

is a closed loop serial concatenation of SOVA

component decoders. In this closed loop decoding

scheme, each of the SOVA component decoders

estimates the information sequence using a different

weighted parity check stream. The turbo code

decoder further implements for iterative decoding to

provide more dependable reliability/a-priori

estimations from the two different weighted parity

check streams, hoping to achieve better decoding

performance.

The iterative turbo code decoding algorithm for the n-

th iteration is as follows:

1. The SOVA1 decoder inputs sequences

(systematic),

(parity check), and Le2 (u‟)

outputs sequence L1 (u‟) .For the first iteration,

sequence Le2 (u‟) = 0 because there is no initial a-

priori value (no extrinsic values from SOVA2).

2. The extrinsic information from SOVA1 is

obtained by

Le1 (u‟) = L1 (u
‟
) - Le2 (u‟) - Lc y1 , Where

3. The sequences

and Le1 (u‟) are

interleaved and denoted as I{ } and I{ Le1 (u‟)

}.

4. The SOVA2 decoder inputs sequences I{ }

(systematic), I{ } (parity check that was

already interleaved by the turbo code encoder), and

I{Le1(u‟)} (a-priori information) and outputs

sequences I{L2(u
‟
)} and I{u

‟
}.

5. The extrinsic information from SOVA2 is

obtained by

I{Le2 (u‟)} = I{L2 (u
‟
)} – I{Le1 (u‟)} – I{Lc y1 }

6. The sequences I{Le2(u‟)} and I{u
‟
} are

deinterleaved and denoted as Le2(u‟) and u‟. Le2(u‟) is

fed back to SOVA1 as a-priori information for the

next iteration and u‟ is the estimated bits output for

the n-th iteration.

4. Results

Figure 5: The performance of the rate 1/3 turbo

code for different constraint lengths

The performance of the rate 1/3 turbo code in soft

decision Viterbi decoding for different constraint

lengths is shown in Figure 5. In this figure, it can be

seen that as the constraint length increases, the

performance of the code also increases, resulting in

lower BER. This is the typical characteristic of any

convolutional code.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

50

Figure 6: Comparison of Turbo code BER

performance for 1 iteration,,FS=256

The simulated performance results of turbo codes

with fixed frame sizes but different rates are shown in

Figure 6. From these figures, it can be seen that for a

fixed constraint length, a decrease in code rate

increases the turbo code performance.

Figure 7: Turbo codes with fixed frame sizes, fixed

constraint length and fixed rate

The simulated performance results of turbo codes

with fixed frame sizes, fixed constraint length and

fixed rate are shown in figure 7. From figure an

increase in number of iteration improves the turbo

code performance.

Figure 8: Turbo code with the same constraint

length and rates but different frame sizes

The overall iterative (8 iterations) decoding gain for a

turbo code with the same constraint length and rates

but different frame sizes are shown in Figure 8. As

shown in these figures, the overall iterative decoding

gain increases as the frame size increases.

5. Conclusion

This paper described the concept of turbo coding,

whose basic configuration depends on the parallel

concatenation of two component codes (RSC). The

three distinct terms of “Soft” or L-value are reviewed,

and these values were used for the information

exchange between the two SOVA component

decoders.

The BER performance for turbo codes is investigated

for many different cases. These different cases are

summarized under the following three main

categories:

1. Turbo code BER performance of 8 decoding

iterations for fixed code rates constraint

lengths but different frame sizes.

2. Turbo code BER performance of 8 decoding

iterations for fixed frame sizes different code

rates and constraint lengths.

3. Turbo code BER performance improvement

between 1 decoding iteration and 8 decoding

iterations for fixed code rates, fixed

constraint lengths and fixed frame sizes.

The simulation results showed many interesting

properties about turbo codes that are in the same

direction with published research work. Some of

these important results are listed below:

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

51

1. For a fixed turbo code encoder, its

performance improves as the frame size

increases.

2. For a fixed frame size, the turbo code

performance increases under two different

conditions. First, for a fixed constraint

length, a decrease in code rate improves the

performance. Second, for a fixed code rate,

an increase in constraint length improves the

performance.

3. Considerable decoding gain is observed if

more, than one decoding iteration is used.

References

[1] Amin Zribi, Sonia Zaibi, Ramesh Pyndiah,

Ammar Bouallègue, "Low-Complexity Joint

Source/Channel Turbo Decoding of Arithmetic

Codes with Image Transmission Application,"

dcc, pp.472, Data Compression Conference,

2009.

[2] C. Berrou, A. Glavieux and P. Thitimajshima,

„Near-Shannon limit error-correcting coding and

decoding: turbo codes (1)‟, Proc. IEEE Int. Conf.

Commun., May (1993), 1064.

[3] Costas Chaikalis and Nicholas Samaras, Greece.

Costas Chaikalis, Nicholas Samaras, "UMTS

Dynamic Outer Interleaver Reconfiguration for

Indoor Environment Using SOVA Turbo

Decoder," icwmc, pp.205-210, 2009 Fifth

International Conference on Wireless and Mobile

Communications, 2009.

[4] J. Xu C. Tanriover, B. Honary and S. Lin.

“Improving turbo code error performance by

multifold coding” IEEE Comm., Letters, vol. 6,

no. 5, pages 193 195, May 2002.

[5] A .Hmimy , S. C. Gupta . “Performance of

Turbo-Codes for W-CDMA Systems in Flat

Fading Channels”. 452 - 456 vol.1. WCNC.

1999 IEEE.

[6] S. A. Barbulescu and S. S. Pietrobon,

„Terminating the trellis of turbo-codes in the

same state‟, Electronics Let., 31 (1995), 22.

[7] Jung and M. Nabhan, „Performance evaluation of

turbo codes for short frame transmission

systems‟, Electronics Let., 30 (1994), 111.

[8] M. Salehi H. R. Sadjadpour, J. A. Sloane and G.

Nebe. “Interleaver design for turbo codes” IEEE

J.Select. Areas Commun., vol.19, no.5, pages

831-837, May 2001.

[9] J. Hagenauer and P. Hoeher, “A Viterbi algorithm

with soft-decision outputs and its applications,”

in Proc., IEEE Globecom Conj (Dallas,TX, Nov.

1989), pp. 1680-1686.

[10] Claude Berrou, “A Low Complexity Soft-Output

Viterbi Decoder Architecture”, IEEE Trans.

Commun , pp. 737 745, 1996.

[11] J. Hagenauer, "Source controlled channel

decoding", IEEE Trans. Commun., vol. 43, pp.

2449-2457, Sep. 1995.

[12] Hagenauer, "Iterative Decoding of Binary Block

and Convolutional Codes", IEEE Trans.

Commun., vol.42, No. 2, pp. 429-445, MARCH.

1996.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6459
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6459

