
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

77

Object Oriented Mutation Applied in Java Application programming

Interface and C++ Classes

Titu Singh Arora
1
, Ravindra Gupta

2

M.Tech Scholar, Department of Computer Science, SSSIST Sehore, India
1

Professor in CSE Department at SSSIST Sehore
2

Abstract

Mutation analysis is a powerful and

computationally expensive technique that measures

the effectiveness of test cases for revealing faults.

The principal expense of mutation analysis is that

many faulty versions of the program under test,

culled mutants, must be repeatedly executed. We

survey several aspects of reconstruction of complex

object-oriented faults on the java API. Application

of object-oriented mutation operators in java

programs using a parser-based tool can be precise

but requires compilation of mutants. In this paper

we approach the mutation on Object Oriented

features to test the functionality. For this we

consider java and C++ programs.

Keywords

Java, Java API, C++, Mutation, Object Oriented

Functionality

1. Introduction

Mutation testing is considered one of the promising

testing techniques [1]. In the mutation testing, small

syntactic modifications are introduced into a program

P. A set of similar programs called "mutants" is

obtained after applying a single mutation operator to

a single location in P. These mutants are run with an

input data from a given test set. If for a test case the

output of program P differs from that of mutant P',

this test is said to "kill" mutant P'. The mutants that

generate the same output for any test case are called

"equivalent" mutants. Typically the equivalent

mutants are distinguished approximately after testing

or identified by hand. "Mutation score", the adequacy

of a test set, is measured as a ratio of the number of

mutants killed over the total number of non-

equivalent mutants.

Software testing involves exercising a program on a

set of test case input values and comparing the actual

output results with expected ones [2]. Since

exhaustive testing is usually not tractable, test

strategies are faced with a problematic task that is:

how to select a minimum set of test cases that is

sufficiently effective for revealing potential faults in a

program? An evaluation criterion for test strategies is

to measure the effectiveness of generated test cases.

Mutation analysis [3] is an evaluation technique that

assesses the quality of test cases by examining

whether they can reveal certain types of faults.

In object oriented paradigm, research is mainly

concerned with analysis, design and programming

techniques. Software testing could not get much

attention of researcher for object oriented paradigm.

These newly introduced features need some way to

verify their correctness. Traditional standard testing

techniques are inadequate for object oriented systems.

Mutation testing is basically used to measure the

accuracy of test suite, to assess the effectiveness of

testing technique and to compare them is also called,

mutation analysis [4].

Mutation testing is time consuming, complex and

manually impractical but it is more powerful than

statement coverage, branch coverage and data flow

testing in finding faults [5]. Cost of mutation is

usually assessed in terms of number of mutants which

depends on number of mutation operators. This

problem can be solved by finding a smaller subset of

mutation operators that have equal effectiveness as

the full set retains.

The key idea that makes mutation analysis feasible is

that the set of competent programs can be

approximated by making small changes to the given

program under test. Such changes typically include

the replacement of a program variable with some

other variable or the replacement of an arithmetic or

relational operator by some other compatible

operator. The resulting programs are known as

mutants of the given program and the modification

rules are known as mutation operators.

The remaining of this paper is organized as follows.

We discuss about java in Section 2. In Section 3 we

discuss about Mutation for Java API. In section 4 we

discuss about Failure Reasons. In section 5 we

discuss about the recent scenario. The conclusions are

given in Section 6. Finally references are given.

2. Java

In 1991, a group of Sun Microsystems engineers led

by James Gosling decided to develop a language for

consumer devices (cable boxes, etc.). They wanted

the language to be small and use efficient code since

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

78

these devices do not have powerful CPUs. They also

wanted the language to be hardware independent

since different manufacturers would use different

CPUs. The project was code-named Green. These

conditions led them to decide to compile the code to

an intermediate machine-like code for an imaginary

CPU called a virtual machine. (Actually, there is a

real CPU that implements this virtual CPU now.)

This intermediate code (called byte code) is

completely hardware independent. Programs are run

by an interpreter that converts the byte code to the

appropriate native machine code.

Thus, once the interpreter has been ported to a

computer, it can run any byte coded program. Sun

uses UNIX for their computers, so the developers

based their new language on C++. They picked C++

and not C because they wanted the language to be

object-oriented. The original name of the language

was Oak. However, they soon discovered that there

was already a programming language called Oak, so

they changed the name to Java.

The Green project had a lot of trouble getting others

interested in Java for smart devices. It was not until

they decided to shift gears and market Java as a

language for web applications that interest in Java

took off. Many of the advantages that Java has for

smart devices are even bigger advantages on the web.

Currently, there are two versions of Java. The original

version of Java is 1.0.

At the heart of Java technology lies the Java virtual

machine--the abstract computer on which all Java

programs run. Although the name "Java" is generally

used to refer to the Java programming language, there

is more to Java than the language. The Java virtual

machine, Java API, and Java class file work together

with the language to make Java programs run.

Java's architecture arises out of four distinct but

interrelated technologies:

 the Java programming language

 the Java class file format

 the Java Application Programming Interface

 the Java virtual machine

When you write and run a Java program, you are

tapping the power of these four technologies. You

express the program in source files written in the Java

programming language, compile the source to Java

class files, and run the class files on a Java virtual

machine. When you write your program, you access

system resources (such as I/O, for example) by

calling methods in the classes that implement the Java

Application Programming Interface, or Java API. As

your program runs, it fulfills your program's Java API

calls by invoking methods in class files that

implement the Java API. You can see the relationship

between these four parts in Figure 1.

Together, the Java virtual machine and Java API form

a "platform" for which all Java programs are

compiled.

Figure 1 Java Programming Environment

3. Mutation for Java API

To estimate the number of fish of a certain species in

a lake, one way to do it is letting some marked fish

out in the lake (say, 20) and then catches some fish

and count the marked ones. If we catch 40 fish and 4

of them are marked, then 1 out of 10 is marked and

the population in the entire lake could be estimated to

about 200. If we catch all marked fish, we would as a

side-effect end up with almost the entire population in

our nets.

Fault-based testing does something similar. We let

some “marked” bugs loose in the code and try to

catch them. If we catch them all, our “net “probably

caught many of the other, fishier, fish. The unknown

bugs, that is one of the fault-based testing strategies is

mutation testing. There are many variations of

mutation testing such as weak mutation, interface

mutation and specification-based mutation testing .

The method described in this thesis is strong mutation

testing, but the idea is the same for all of them,

namely to “mutate” the original program under test.

To mutate a program, an error is put somewhere in

the code. And just like the fish in the lake, we will try

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

79

to catch it. A typical mutation would be to replace <

with > in one and only one expression.

Example: theprogram P =

1. if (x > 0)

2. doThis();

3. if (x > 10)

4. doThat();

A mutation of P would be (line 1)

1. if (x < 0)

2. doThis();

3. if (x > 10)

4. doThat();

Another mutation (line 3):

1. if (x > 0)

2. doThis();

3. if (x < 10)

4. doThat();

Now we have made several copies of P and

introduced a single mutation into each copy. These

copies are called mutants. Let D denote the input

domain. Assume we have a passing test set, T ⊂ D,

that is P satisfies or passes every test in T . To get a

measure of its mutation adequacy, we run the test set

against each mutation and count the number of

mutants for which T fails.

If T fails for a certain mutant, we call that mutant

killed. The idea is that if T detects this fault (kills the

mutant), it will detect real, unknown faults as well. If

T kills all mutants, it potentially detects many

unknown faults. Mutants that are not killed are called

alive and mutants (denoted mu) such that ∀x ∈ D, P.x

= µ.x are called equivalent. We will write µ ≡ P if the

mutant µ is equivalent to P . P.x represents the

evaluation of the program P on the input x. Mutation

adequacy or mutation score is defined as (number of

killed mutations)/(total number of non-equivalent

mutations) * 100 %. Why would this method work?

makes two fundamental assumptions; (a) the

competent programmer hypothesis and (b) the

coupling effect.

The traditional approach to software testing is to find

some subset T (called the test set) of the input domain

D, such that

∀x ∈ T, P.x = f(x) → ∀x ∈ D, P.x = f(x),

where f is a functional specification of the program P

. (This is called a reliable test set.) To be able to reach

this conclusion, some exhaustive testing strategy

would be necessary. This is too strong a conclusion

and is proven to be an undecidable problem. That is

why mutation testing weakens the above:

either P is “pathological” or

∀x ∈ T, P.x = f(x) → ∀x ∈ D, P.x = f(x)

 “pathological” program

P is “pathological” ↔ P /∈ Φ,

where Φ is the set of programs in a “neighbourhood”

of a correct program. We expect programmers to be

competent enough to produce programs in this

neighbourhood. We can now reformulate

∀x ∈ T, P.x = f(x) ∧

∀Q ∈ Φ (Q ≡ P ∨ ∃x ∈ T, Q.x =6 P.x)

→ ∀x ∈ D, P.x = f(x),

4. Failure Reasons

To visualize failure regions, we define D = (x, y, z),

where x and y are integers in the interval [1, 10] and z

= 5, execute two mutants of the TRIANGLE program

(see the appendix) and compare the output with the

original, unmutated program P.

We see surface plots of the different function

where P is the program under test and P1 -> NULL.

The semantic size, would then be

where c(D) is the cardinality of D. The failure region

F is the set

The coupling function _ for the two faulty versions

P1 and P2 of P:

Finally, we will define the coupling effect ratio of P1

with respect to P2:

In words, we could express this as an estimate of the

probability of “a test point detecting P1 also detecting

P2”. Normally, we will not have the luxury to see the

entire input domain at once.

The most important functionality of the program

would of course be to create mutants. This section

explains how to do that. The problem is reduced to

mutate individual program elements, since a mutant

normally differs from the program under test in one

program element only.

Consider this statement in the program under test:

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

80

z = x + y;

How do we mutate this statement? One approach is to

create a metamutant. A meta mutant is one program

containing all mutants. To declare which mutant is

executing, an environment variable is set.

The metamutant version of the above statement could

be something like

z = plusIntInt(x, y, 230, 232);

Each binary expression eligible for mutation is

replaced with a function similar to the one above. The

automatically generated plusIntInt function

plusIntInt(int x, int y, int firstMut, int lastMut)

{

if (getCurrentMutation() >= firstmut &&

getCurrentMutation() <= lastmut)

{

if (getCurrentMutation() == firstmut)

return x - y;

if (getCurrentMutation() == firstmut + 1)

return x * y;

if (getCurrentMutation() == firstmut + 2)

return x / y;

return x + y;

}

else

return x + y;

}

Detecting equivalent mutants requires a constraint

solver. Constraints are kept track of just like any

scoped variable. Consider this code snippet:

1. public someFunc(int x, int y)

2. if (y == 0)

{

...

3. z = plusIntInt(x, y, 230, 232);

...

}

A type checker knows that in line 3, the variables x

and y are available. With not too much effort we can

teach the type checker to handle constraints so that it

also know that in the entire code block after line 2,

the constraint y = 0 holds (unless y is modified, of

course).

5. Recent Scenario

In 2003, Anna Dereziska [6] states that the quality of

a test suite can be measured using mutation analysis.

Groups of OO mutation operators are proposed for

testing object-oriented features. The OO operators

applied to UML specification and C++ code are

illustrated by various examples.

In 2010, Zaheed Ahmed et al. [7] survey some of the

traditional mutation operators which are incorporated

in mutation testing of object oriented systems.

Recently class level mutation operators are also

defined; they focus with particular consideration of

the OO programming (OOP) language JAVA. A

number of automated tools have been developed to

generate the defective versions of program and to

execute them against test suit. Classification,

evaluation of the mutation operators against some

proposed parameters and identification of some

research areas is a result of this survey.

In 2011, Stefan Endrikat et al. [8] describe an

empirical, socio-technical study with Java and

AspectJ where developers needed to perform changes

on their code base multiple times. It shows that

frequent changes in the crosscutting code which do

not change the concern’s underlying structure

compensate an initial higher development time for

those concerns.

In 2011, Anna Dereziska et al. [9] proposed

reconstruction of complex object-oriented faults on

the intermediate language level. The approach was

tested in the ILMutator tool implementing few object-

oriented mutation operators in the intermediate code

derived from compiled C# programs. Exemplary

mutation and performance results are given and

compared to results of the parser-based mutation tool

CREAM.

6. Conclusion

This paper presents discuss several concepts and on

how to Classes in object-oriented systems, written in

different programming languages, contain identifiers

and comments which reflect concepts from the

domain of the software system. This information can

be used to measure the cohesion of software. The

above phenomena show the need of mutation.

We survey several aspects of reconstruction of

complex object-oriented faults on the java API.

Application of object-oriented mutation operators in

java programs using a parser-based tool can be

precise but requires compilation of mutants. In this

paper we approach the mutation on Object Oriented

features to test the functionality. For this we consider

java and C++ programs.

References

[1] J.M. Voas, G. McGraw, Software fault

injection,Inoculating Programs Against Errors, J.

Wiley & Sons, 1998.

[2] B. Beizer. Software Testing Techniques. Van

Nostrand Reinhold,New York, USA, Seconde

Edition, 1990.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

81

[3] R. DeMillo, R. Lipton, and E Sayward. Hints on

Test Data Selection: Help for the Practicing

Programmer. Computer, 11(4):34-41, Apr. 1978.

[4] Namin, A. S., and Andrews, J. 2007. On

Sufficiency of Mutants, 29th International

Conference on Software Engineering (ICSE'07

Companion).

[5] Namin, A. S., and Andrews, J. 2007. On

Sufficiency of Mutants,29th International

Conference on Software Engineering (ICSE'07

Companion).

[6] Anna Dereziska,” Object-Oriented Mutation to

Asses the Quality of Tests”, 2003 IEEE.

[7] Zaheed Ahmed, Muhammad Zahoor and Irfan

Younas, “Mutation Operators for Object-Oriented

Systems: A Survey”, 2010, IEEE.

[8] Stefan Endrikat , Stefan Hanenberg, “Is Aspect-

Oriented Programming a Rewarding Investment

into Future Code Changes? ASocio-Technical

Study on Development and Maintenance Time”,
2011 19th IEEE International Conference on

Program Comprehension.

[9] Anna Dereziska, Karol Kowalski,” Object-

oriented Mutation Applied in Common

Intermediate Language Programs Originated from

C# ”, 2011 Fourth International Conference on

Software Testing, Verification and Validation

Workshops.

