
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

91

Analysis of Function generation on the basis of Object Oriented paradigm

Kamlesh Gujar
1
, Surendra Mishra

2
, Pankaj Kawadkar

3

M.Tech Scholar, Department of Computer Science, SSSIST Sehore, India
1

Head, PG Department of Computer Science, SSSIST Sehore, India
2

Head, MCA, SSSIST Sehore, India
3

Abstract

Object-oriented approaches to software design and

implementation have gained enormous popularity

over the past two decades. However, whilst models

of software systems routinely allow software

engineers to express relationships between objects,

object-oriented programming languages lack this

ability. Instead, relationships must be encoded using

complex reference structures. When the model

cannot be expressed directly in code, it becomes

more difficult for programmers to see a

correspondence between design and implementation

the model no longer faithfully documents the code.

As a result, programmer intuition is lost, and error

becomes more likely, particularly during

maintenance of an unfamiliar software system. In

this paper we discuss how to reduce the program

size by fractioning the program based on functions

so that the table fragment size of program reduce

and the program efficiency is increases.

Keywords

OOP, Program Fraction, Code Segment, Object Oriented

Approach

1. Introduction

Today‟s market much more emphasize on software

quality. This has led to an increasingly large body of

work being performed in the area of software

measurement, particularly for evaluating and

predicting the quality of software. In turn, this has led

to a large number of new measures being proposed

for quality design principles such as coupling. High

quality software design, among many other

principles, should obey the principle of low coupling.

Stevens et al., who first introduced coupling in the

context of structured development techniques, define

coupling as “the measure of the strength of

association established by a connection from one

module to another” [1]. Therefore, the stronger the

coupling between modules, i.e., the more inter-related

they are, the more difficult these modules are to

understand, change, and correct and thus the more

complex the resulting software system. Some

empirical evidence exists to support this theory for

structured development techniques; [2], [3].

Test-driven development (TDD) is not, despite its

name, a testing technique but rather a development

technique in which the tests are written prior to the

source code [4]. The tests are added gradually during

the implementation process and when the tests are

passed, the code is re factored to improve its internal

structure. This incremental cycle is repeated until all

the functionality is implemented [5]. The idea of

TDD was popularized by Beck [6] in the Extreme

Programming (XP) method. Therefore, although

TDD seems to have just recently emerged, it has

existed for decades; an early reference to the use of

TDD features in the NASA Project Mercury in the

1960s [7].

Basically there are two different kinds of abstractions

namely classes and interfaces. The most important

difference is that a class can hold functional logic and

an interface is used to organize source code and it

will also provide the boundary between the levels of

abstraction. According to object oriented

programming, the class provides encapsulation and

abstraction and the interface provides abstraction and

cannot inherit from one class but can implement

multiple interfaces. The above said differences are

minor and they are very similar in structure,

complexity, readability and maintainability of source

code [8]. Here, the difference in usage of class

inheritance and interface concepts are measured for

class diagrams by coupling metrics proposed by

Chidamber and Kemrer and Brian.

Complexity of source code directly relates to cost and

quality. Many coupling models are presented in the

literature to measure the possible interactions

between objects and to measure design complexity.

High coupling between objects increases complexity

and cost. Low coupling is good for designing object

oriented software. Inheritance introduces more

interactions among classes [9]. This will increase the

complexity. This paper presents a comparison

between object oriented interfaces and inheritance

class diagrams.

The remaining of this paper is organized as follows.

We discuss class and object in Section 2. In Section 3

we discuss about Object Oriented Concepts. In

section 4 we discuss about Evolution and Recent

Scenario. In section 5 we discuss about the

Challenges. The conclusions and future directions are

given in Section 6. Finally references are given.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

92

2. Class and Object

A class is nothing but a blueprint or a template for

creating different objects which defines its properties

and behaviors. Java class objects exhibit the

properties and behaviors defined by its class. A class

can contain fields and methods to describe the

behavior of an object. Methods are nothing but

members of a class that provide a service for an

object or perform some business logic. Java fields

and member functions names are case sensitive.

Current states of a class‟s corresponding object are

stored in the object‟s instance variables. Methods

define the operations that can be performed in java

programming.

Syntax:

class classname

{

Methods + variables;

}

An object is an instance of a class created using a

new operator. The new operator returns a reference to

a new instance of a class. This reference can be

assigned to a reference variable of the class. The

process of creating objects from a class is called

instantiation. An object encapsulates state and

behavior.

An object reference provides a handle to an object

that is created and stored in memory. In Java, objects

can only be manipulated via references, which can be

stored in variables.

Creating variables of your class type is similar to

creating variables of primitive data types, such as

integer or float. Each time you create an object, a new

set of instance variables comes into existence which

defines the characteristics of that object. If you want

to create an object of the class and have the reference

variable associated with this object, you must also

allocate memory for the object by using the new

operator. This process is called instantiating an object

or creating an object instance.

The purpose of a class diagram is to depict the classes

within a model. In an object oriented application,

classes have attributes (member variables), operations

(member functions) and relationships with other

classes. The UML class diagram can depict all these

things quite easily. The fundamental element of the

class diagram is an icon the represents a class. This

icon is shown in Figure 1.

Figure1 Class Icon

A class icon is simply a rectangle divided into three

compartments. The topmost compartment contains

the name of the class. The middle compartment

contains a list of attributes (member variables), and

the bottom compartment contains a list of operations

(member functions). In many diagrams, the bottom

two compartments are omitted.

Even when they are present, they typically do not

show every attribute and operations. The goal is to

show only those attributes and operations that are

useful for the particular diagram.This ability to

abbreviate an icon is one of the hallmarks of UML.

Each diagram has a particular purpose. That purpose

may be to highlight on particular part of the system,

or it may be to illuminate the system in general. The

class icons in such diagrams are abbreviated as

necessary. There is typically never a need to show

every attribute and operation of a class on any

diagram. Figure 2 shows a typical UML description

of a class that represents a circle.

Figure 2 Circle Class

Notice that each member variable is followed by a

colon and by the type of the variable. If the type is

redundant, or otherwise unnecessary, it can be

omitted. Notice also that the return values follow the

member functions in a similar fashion. Again, these

can be omitted. Finally, notice that the member

function arguments are just types. I could have named

them too, and used colons to separate them from their

types;

If we analyze the above figure then we can deduce

that if our program is divided into number of pieces

according to their functionality then the accordance

of that program produce more flexibility in

comparison to the previous one. In C++ we represent

this program which is shown in figure 3.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

93

Figure 3 Class Circle

So we divide the program in at least four parts

according to the function.

3. Object Oriented Concepts

Throughout this evolution, what it means for a

programming language to be object-oriented has been

the subject of debate: it is not unusual for an object-

oriented language to lack a feature declared

elsewhere to be indispensable. Simula, for example,

lacks dynamic dispatch, but the designer of

C++,Bjarne Stroustrup, believes that a language does

not support object-oriented programming without in

C++ parlance virtual functions .

At the very least, however, an object is a package

with a unique identity, some state and some behavior.

For the purposes of this work, an object‟s identity

will be its address in memory. An object‟s state will

be formed from a collection

of named fields, which take values including object

identities thus, an object may hold a reference to

another object, or even to itself. Where a field does

not hold such a reference, its value is said to be „null‟.

An object‟s behaviour will be formed from a

collection of named methods, which contain

commands that, amongst other actions, operate on the

object‟s fields. An object‟s fields and methods

together form its set of attributes.

Through references, an object method may access the

attributes of other objects as well as the attributes of

its own object: a method always knows the identity of

the object to which it belongs, known as a reference

to self. In general, the target of a message invocation

is known as the receiver of the method call.

Encapsulation

We have already discussed the history of object-

oriented programming languages with respect to their

ability to modularize a software system by

encapsulating some state and behavior. Depending on

the available language features, an object‟s state can

be hidden from the outside world so that the object

forms a boundary around some of its fields.

Abstraction

By encapsulating state, an object can ensure that the

environment does not manipulate its state in an

unexpected way. Where a language supports the

specification of hidden attributes, those that remain

public form an interface for the object. An object

representing a car may, for example, expose methods

that allow the driver to switch the car on, turn left and

right, change speed and to switch it off. It would not,

however, expose methods that allow individual spark

plugs to be fired such a method might form part of the

car‟s implementation, but the driver has no need to

view the implementation of the car in such detail.

Generalization

It is expected that some objects will share common

properties:

for example, vehicles usually have an engine and can

carry passengers, regardless of whether they are cars

or aeroplanes. Rather than specifying such properties

for every vehicle, we can regard „being a vehicle‟ as a

property that all vehicle objects share.

One might be tempted to conclude that an object-

oriented system, once developed, can be reused or

extended simply by combining components of

existing classes in different ways, by adding

operations to existing classes.

Reuse of behavior

A special case of generalization involves the reuse of

behavior or, more specifically, the code that

implements that behavior. Not only does this help

enforce the idea that vehicles behave similarly, but

the ability to reuse code to implement the behavior of

several objects improves the maintainability of the

code: a bug fixed in one object‟s behavior is fixed for

all objects using that code.

Specialization

While groups of objects may be ostensibly the same,

slight variations may be accommodated: like other

vehicles, a rocket may carry passengers and has an

engine, but unlike other vehicles it also has a heat

shield, for example. To start from scratch with a new

concept of „being a heat-shielded vehicle would

involve the reimplementation of engines and the

advantages of generalization would be lost.

Overriding of behavior

A method is overridden where its implementation,

derived from some generalization, is replaced. The

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

94

attributes possessed by the resulting object will match

those of the original object, but the new object‟s

method will behave differently

4. Evolution and Recent Scenario

Object-oriented software is based on the notions of

class, encapsulation, inheritance, and polymorphism.

These notions make it more challenging to design

metrics for the characterization of OO-based software

vis-a-vis what it takes to do the same for the purely

procedural code [10], [11]. An early work by Coppick

and Cheatham [12] attempted to extend the then

popular program-complexity metrics, such as the

Halstead [13] and the McCabe and Watson

complexity measures [14], to OO software.

Subsequently, other works on OO software metrics

focused mostly on the issue of how to characterize a

single class with regard to its own complexity and its

linkages with other classes.

In 2010, Bei-Bei Yin et al. [15] proposed two

quantitative measures of heterogeneity of software

structural profile based on entropy. Three case studies

are presented to show the effectiveness of the

proposed measures. Different from the perspectives

adopted in these works, our previous work found that

the networks of software dynamic execution

processes may also be scale-free. Scale-free degree

distribution demonstrates that during the execution

process the methods being invoked only a few times

are far more abundant than those being frequently

invoked.

In 2010, Juan Luo et al. [16] proposed a

combinatorial restructuring algorithm which

guarantees learning optimality and furthermore

reduces the search space to be polynomial in the size

of learning set, but exponential to the number of

piece-wise bounds.

In 2011, Shinobu Nagayama et al. [17] proposed a

new architectures for numeric function generators

(NFGs) using piecewise arithmetic expressions. The

proposed architectures are programmable, and they

realize a wide range of numeric functions. To design

an NFG for a given function, we partition the domain

of the function into uniform segments, and transform

a sub function in each segment into an arithmetic

spectrum. From this arithmetic spectrum, they derive

an arithmetic expression, and realize the arithmetic

expression with hardware.

5. Challenges

1. Improper understanding of the problem

The users of a software system express their needs to

the software professionals. The requirement

specification is not precisely conveyed by the users in

a form understandable by the software professionals.

This is known as impedance mismatch between the

users and software professionals.

2. Change of rules during development

during the software development process

because of some government policy or any other

industrial constraints realized, the users may request

the developer to change certain rules of the problem

already state.

3. Preservation of existing software

In reality, the existing software is modified or

extended to suit the current requirement. If a system

had been partially automated, the remaining

automation process is done by considering the

existing one. It is expensive to preserve the existing

software because of the non availability of experts in

that field all the time. Also, it results in complexity

while integrating newly developed software with the

existing one.

4. Management of development process

 Since the size of the software becomes larger and

larger in the course of time it is difficult to manage,

coordinate, and integrate the modules of the software.

5. Flexibility due to lack of standards

There is no single approach to develop software for

solving

a problem. Only standards can bring out uniformity.

Since only a few standards exist in the software

industries, software development is a laborious task

resulting in complexity.

6. Behavior of discrete systems

 The behavior of a continuous system can be

predicted by using the existing laws and theorems.

For example, the landing of a satellite can be

predicted exactly using some theory even though it is

a complex system. But, computers have systems with

discrete states during execution of the software.

6. Conclusion and Future Directions

This paper presents discuss several concepts and on

how to reduce coupling in object oriented

programming. Due to the reduction in coupling,

developers can produce quality programs. Classes in

object-oriented systems, written in different

programming languages, contain identifiers and

comments which reflect concepts from the domain of

the software system.

Object-oriented approaches to software design and

implementation have gained enormous popularity

over the past two decades. Instead, relationships must

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

95

be encoded using complex reference structures. When

the model cannot be expressed directly in code, it

becomes more difficult for programmers to see a

correspondence between design and implementation

the model no longer faithfully documents the code.

As a result, programmer intuition is lost, and error

becomes more likely, particularly during maintenance

of an unfamiliar software system. In this paper we

discuss how to reduce the program size by fractioning

the program based on functions so that the table

fragment size of program reduce and the program

efficiency is increases.

References

[1] W. Stevens, G. Myers, and L. Constantine,

“Structured Design,”IBM Systems J., vol. 13, no.

2, pp. 115-139, 1974.

[2] R.W. Selby and V.R. Basili, “Analyzing Error-

Prone SystemsStructure,” IEEE Trans. Software

Eng., 1991.

[3] P.A. Troy and S.H. Zweben, “Measuring the

Quality of Structured Designs,” J. Systems and

Software, 1981.

[4] Beck, K., Test-Driven Development by Example,

Addison-Wesley, Boston, MA, USA, 2003.

[5] Astels, D., Test-Driven Development: A Practical

Guide, Prentice Hall, Upper Saddle River, USA,

2003.

[6] Beck, K., Extreme Programming Explained,

Second Edition:Embrace Change, Addison-

Wesley, USA, 2004.

[7] G. Larman and V.R. Basili, "Iterative and

Incremental Development: A Brief History",

2003, IEEE.

[8] Mathew Cochran,”Coding Better: Using Classes

Vs Interfaces”,January 18th, 2009.

[9] Mohsen D. Ghassemi and Ronald R.

Mourant,”Evaluation of Coupling in the Context

of Java Interfaces”, Proceedings OOPSLA, ACM

2000.

[10] S.R. Chidamber and C.F. Kemerer, “A Metrics

Suite for Object Oriented Design,” IEEE Trans.,

1994.

[11] N. Churcher and M. Shepperd, “Towards a

Conceptual Framework for Object-Oriented

Software Metrics,” 1995.

[12] C.J. Coppick and T.J. Cheatham, “Software

Metrics for Object-Oriented Systems,” 1992.

[13] M.H. Halstead, Elements of Software Science.

Elsevier, 1977.

[14] T.J. McCabe and A.H. Watson, “Software

Complexity,” Crosstalk,J. Defense Software Eng.

1994.

[15] Bei-Bei Yin, Ling-Zan Zhu, and Kai-Yuan Cai ,”

Entropy-based Measures of Heterogeneity of

Software Structural Profile ”, 2010 34th Annual

IEEE Computer Software and Applications

Conference Workshops.

[16] Juan Luo and Alexander Brodsky,” An Optimal

Regression Algorithm for Piecewise Functions

Expressed as Object-Oriented Programs”, 2010

Ninth International Conference on Machine

Learning and Applications.

[17] Shinobu Nagayama, Tsutomu Sasao, Jon T.

Butler,” Numeric Function Generators Using

Piecewise Arithmetic Expressions” 2011 41st

IEEE International Symposium on Multiple-

Valued Logic.

