
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

8

Real Time Scheduling Services for Distributed RT-CORBA Applications

Bineta Tresa Mathew
Assistant Professor, Department of Computer Science and Engineering Birla Institute of Technology,

Off shore Campus Ras Al Khaimah, UAE

Abstract

Distributed computing environment is flexible to

control in complex embedded systems and their

software components gain complexity when these

systems are equipped with many microcontrollers and

software object which covers diverse platforms, this

system is called as DRE system. These DRE systems

need new inter-object communication solution thus

QoS-enabled middleware services and mechanisms

have begun to emerge. Real-time application domain

benefit from flexible and open distributed

architectures, such as those defined by the CORBA

specification. CORBA is well-suited to conventional

request/response applications, but not suited to real-

time applications due to the lack of QoS features and

performance optimizations. The paper shows the

design and implementation of the high performance

scheduling technique for the real time applications

domain with CORBA systems. Four different

algorithms are compared by using attributes of real

time tasks constraints based on CORBA specification

such as RMS, MLF, MUF and EDF. The

experimental outcome demonstrates the better

performance of MLF by analyzing the time taken for

the execution of several numbers of tasks and further

it can be compared with the combination of RMS and

MLF to reach the best performance strategy.

Keywords

DRE, QoS, CORBA, RMS, MLF, MUF, EDF

1. Introduction

Distributed real-time embedded (DRE) systems are

becoming increasingly widespread and important.

Common DRE systems include Telecommunication

networks, tele-medicine, manufacturing process

automation and defence applications. DRE systems

should be capable of communicating in a distributed

environment, be efficient and predictable and have less

memory foot-print. DRE applications are tedious and

error-prone because they are developed using low-level

languages. These systems are hard to debug due to the

limited availability of the debugging tools. Because of

these challenges, application developers shifted

towards software models that are reusable [5]. This

paved way for Real-Time CORBA (RT CORBA).

CORBA is distribution middleware that provides run-

time support to automate many distributed computing

tasks, such as connection management, object

marshalling / demarshaling, object demultiplexing,

language and platform independence, load balancing,

fault-tolerance, and security [1]. Real-time CORBA

adds QoS control capabilities to regular CORBA which

include improving application predictability by

bounding priority inversions and managing system

resources end-to-end [2]. Real-time CORBA also

facilitates the configuration and control of the system

resources such as processor resources, communication

resources and memory resources.

Most current implementations of Real-time CORBA

are available only in C++ or Ada [5]. The Java

programming language is an attractive alternative

because it is widely used, powerful and portable. Java

also offloads many tedious and error-prone

programming details from developers into the language

run-time system. It has desirable language features,

such as strong typing, dynamic class loading, and

reflection/introspection. Java defines portable support

for concurrency and synchronization. The Real-time

Java Experts Group has defined the Real-time

Specification for Java (RTSJ) [5], which provides

capabilities without modifying the Java programming

language itself. Some of the capabilities of RT Java

suitable for real-time embedded systems include

efficient memory management models, access to raw

physical memory and stronger guarantees on thread

semantics.

ZEN [3] is a Real-time CORBA ORB implemented

using Real-time Java, thereby combining the benefits

of these two standard technologies. Zen’s ORB

architecture is based on the concept of layered

plugMLbility. Zen employs the Micro-kernel

architecture. It has eight core ORB services namely

object adapters, message buffer allocators, GIOP

message handling, CDR Stream readers/writers,

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

9

protocol transports, object resolvers, IOR parsers, and

any handlers. These are removed out of the ORB to

reduce its memory footprint and increase its flexibility.

The remaining portion of code is called the ZEN

kernel.

TAO, a real-time Object Request Bus (ORB)

developed by Object Computing Research group at the

Washington University and Vanderbilt University aims

at optimizing collocation, ORB protocol overhead,

Portable Object Adapter (POA) demultiplexing and

strategy patterns for scheduling to make CORBA

suitable for real time applications [3]. It uses Rate

Monotonic Scheduling (RMS), Maximum Laxity First

(MLF) in and Maximum Urgency First (MUF)

algorithms for scheduling. It does not consider

multiprocessor scheduling strategies [4]. Our

scheduling framework considers multiprocessor

scheduling in a distributed environment. The

framework is capable of scheduling the tasks

intelligently based on the load of the processors and the

schedulability of the tasks [1]. Since the proposed

scheduling framework aims at using RTCORBA and

RTJS, it can alleviate the shortcomings in the non-

CORBA based implementations of scheduling

strategies by bringing about heterogeneity, and

platform, hardware, location transparency. Further, as

it uses distributed object technology, it provides

facility for extensibility.

2. Importance

Real-time applications like aircraft control systems,

military command systems, industrial automation

systems, transportation and telephone switches should

execute their tasks within certain deadlines. Common

Object Request Broker Architecture (CORBA)

provides flexible middleware capable of integrating

complex applications in heterogeneous environments.

CORBA with its Minimum CORBA, Real-time

CORBA and messaging standards makes it a highly

suitable Distributed Object Computing middleware

satisfying memory and timing constraints of real-time

embedded applications [1]. The proposed framework

aims at extending the CORBA scheduling service to

bring about efficient and intelligent task scheduling in

a distributed environment. It can be dynamically

configured and uses hybrid and multiprocessor

scheduling algorithms. Since it is extensible, it lowers

the software evolution lifecycle cost and time. The

framework developed from the proposed concept can

be applied in various real time systems including the

following:

 Air Force Multi-Platform Radar systems

 Naval / Air-line systems

 Aircraft control systems

 Firm Real-time systems

 Transportation control and Guidance systems

 Mixed Systems

 Telecom Networks

3. Tools and Methods

Models for unique paradigm for scheduler to execute

without missing the deadline in the real time

environment. The aim is to make middleware to real

time suitable using paradigm approach. The

characteristic of scheduling service model is real time

response and adaptability with any kind of real-time

applications. The paradigm approach in [4] has divided

into two categories they are single paradigm approach

and multi-paradigm approach. The two techniques are

described below.

 Single paradigm strategy

o Fixed priority algorithm (Static –

RMS)

o Dynamic priority algorithm (EDF and

MLF)

 Multi-paradigm strategy

o Hybrid algorithm (MUF)

Single Paradigm Strategy
Scheduling algorithms themselves can be characterized

as being either static or dynamic. A static approach

calculates (or pre-determines) schedules for the system.

It requires prior knowledge of a process’s

characteristics but requires little run-time overhead. By

comparison, a dynamic approach determines

schedules at run-time thereby furnishing a more

flexible system that can deal with non-predicted events.

It has higher run-time cost but can give greater

processor utilization. Certainly in safety critical

systems it is reasonable to argue that no event should

be unpredicted and that schedulability should be

guaranteed before execution [4]. This implies the use

of a static scheduling algorithm. Dynamic approaches

do, nevertheless, have an important role.

 They are particularly appropriate to soft

systems;

 They could form part of an error recovery

procedure for missed hard deadlines;

 They may have to be used if the application’s

requirements fail to provide a worst case

upper limit (for example the number of planes

in air traffic controls area).

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

10

A scheduler is static and offline if all scheduling

decisions are made prior to the running of the system.

A table is generated that contains all the scheduling

decisions for use during run-time. This relies

completely upon a priori knowledge of process

behaviour. Hence this scheme is workable only if all

the processes are effectively periodic.

An online scheduler makes scheduling decisions

during the run-time of the system. It can be either static

or dynamic. The decisions are based on both process

characteristics and the current state of the system. This

is difficult for systems which have non-periodic

processes [5]. Schedulers may be pre-emptive or non-

pre-emptive. The former can arbitrarily suspend a

process’s execution and restart it later without affecting

the behaviour of that process (except by increasing its

elapse time). Pre-emption typically occurs when a

higher priority process becomes runnable. The effect of

pre-emption is that a process may be suspended

involuntarily. Non-pre-emptive schedulers do not

suspend processes in this way. This is sometimes used

as a mechanism for concurrency control for processes

executing inside a resource whose access is controlled

by mutual exclusion. Hybrid systems are also possible.

A scheduler may, in essence, be pre-emptive but allow

a process to continue executing for a short period after

it should be suspended. This property can be exploited

by a process in defining a non-preemptable section of

code. The code might, for example, read a system

clock, calculate a delay value and then execute a delay

of the desired length. Such code is impossible to write

reliably if the process could be suspended between

reading the clock and executing the delay. These

deferred pre-emption primitives must be used with

care. The resulting blocking must be bounded and

small typically of the same magnitude as the overhead

of context switching.

The rate monotonic scheduling algorithm (RMS) is

a fixed priority scheduling algorithm which consists of

assigning the highest priority to the highest frequency

tasks in the system. At any time, the scheduler chooses

to execute the task with the highest priority [4]. By

specifying the period and computational time required

by the task, the behaviour of the system can be

categorized apriori. One problem with the rate

monotonic algorithm is that the schedulable bound is

less than 100%. The schedulable bound of a task set is

defined as the maximum CPU utilization for which the

set of tasks can be guaranteed to meet their deadlines

[4]. This means that as the task graph is designed with

number of processes, the system should be able to meet

the entire task by meeting their deadline with the

complete usage of CPU resource.

Conditions for Rate Monotonic scheduling

 Priority assignment based on rates of tasks.

 Higher rate task assigned higher priority.

 Schedulable utilization = 0.693 (Liu and

Leyland).

 If U < 0.693, schedulability is guaranteed.

 Tasks may be schedulable even if U > 0.693

The Earliest-Deadline-First Scheduling Algorithm

(EDF) uses the deadline of a task as its priority. The

task with the earliest deadline has the highest priority,

while the task with the latest deadline has the lowest

priority. One advantage of this algorithm is that the

schedulable bound is 100% for all task sets. Secondly,

because priorities are dynamic, the periods of tasks can

be changed at any time [4]. A major problem with the

EDF algorithm is that there is no way to guarantee

which tasks will fail in a transient overload situation.

In many systems, although the average case utilization

is less than 100%, it is possible that the worst-case

utilization is above 100%, leaving the possibility of

one or more tasks failing. In such cases, it is desirable

to control which tasks fail and which succeed during

such a transient overload. In the RM algorithm, low

priority tasks will always be the first to fail. However,

no such priority assignment exists with EDF, and thus

there is no control of which task fails during a transient

overload. As a result, it is possible that a very critical

task may fail at the expense of a lesser important task.

Conditions for EDF scheduling

 Priority assignment based on absolute deadlines

of tasks

 Shorter the absolute deadline, higher the priority

 Schedulable utilization = 1

The Minimum-Laxity-First Scheduling Algorithm

(MLF) assigns a laxity to each task in a system, and

then selects the task with the minimum laxity to

execute next. Laxity is defined as follows:

Laxity = deadline – current time – CPU_time_needed

Laxity is a measure of the flexibility available for

scheduling a task. A laxity of Tl means that even if the

task is delayed by l time units, it will still meet its

deadline. A laxity of zero means that the task must

begin to execute now or it will risk failing to meet its

deadline. The main difference between MLF and EDF

is that MLF takes into consideration the execution time

of a task, which EDF does not do. Like EDF, MLF has

a 100% schedulable bound, but there is no way to

control which are guaranteed to execute during a

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

11

transient overload [4]. The next section, present the

MUF algorithm, which allows the control of task

failures during transient overload, while maintaining

the flexibility of a dynamic scheduler, and 100%

schedulable bound for the critical set.

Multi-Paradigm Strategy

The maximum-urgency-first scheduling algorithm

(MUF) is a combination of fixed and dynamic priority

scheduling, also called mixed priority scheduling [2].

With this algorithm, each task is given urgency. The

urgency of a task is defined as a combination of two

fixed priorities, and a dynamic priority. One of the

fixed priorities, called the criticality, has higher

precedence over the dynamic priority. The other fixed

priority, which we call user priority, has lower

precedence than the dynamic priority. The dynamic

priority is inversely proportional to the laxity of a task.

The MUF algorithm consists of two parts. The first

part is the assignment of the criticality and user

priority, which is done apriori. The second part

involves the actions of the MUF scheduler during run-

time. The steps in assigning the criticality and user

priority are the following [3]:

1. As with RM, order the tasks from shortest

period to longest period.

2. Define the critical set as the first N tasks such

that the total worst-case CPU utilization does

not ex-ceed 100%. These will be the tasks that

do not fail, even during a transient overload of

the system. If a critical task does not fall

within the critical set, then period

transformation, as used with RM can also be

used here.

3. Assign high criticality to all tasks in the

critical set, and low criticality to all other

tasks.

4. Optionally assign a unique user priority to

every task in the system.

Before its cycle, each task must specify its desired start

time, deadline time, and worst-case execution time.

Later it is showed that step 1 can be relaxed, but at the

increased risk of a low-criticality task failing to meet

its deadline. Whenever a task is added to the ready

queue, a reschedule operation is performed [1].

The MUF scheduler is used to determine which task is

to be selected for execution, using the following

algorithm:

1. Select the task with the highest criticalness.

2. If two or more tasks share highest criticalness,

then select the task with the highest dynamic

priority (i.e. minimum laxity). Only tasks with

pending deadlines have a non-zero dynamic

priority. Tasks with no deadlines have a

dynamic priority of zero.

3. If two or more tasks share highest criticalness,

and have equal dynamic priority, then the task

among them with the highest user priority is

selected.

4. If there are still two or more tasks that share

highest criticalness, dynamic priority, and

highest user priority, then they are serviced in

a first-come-first-serve manner.

5. The optional assignment of unique user

priorities for each task ensures that the

scheduler never reaches step 4, thus providing

a deterministic scheduling algorithm.

4. Proposed Work

The Strategy pattern in Zen, a RTORB, proposes a

static uniprocessor scheduling strategies [5]. The

proposed framework aims at extending the CORBA

scheduling service on top of Zen ORB, to bring about

efficient and intelligent task scheduling in a distributed

environment considering schedulability, load balancing

and security constraints. The main components of the

scheduling service include the global scheduler, local

scheduler, profiler and the local dispatcher. The

operations of the scheduling service for static and

dynamic set of tasks are explained.

Operation of the scheduler for a static set of tasks

Figure 1 shows the operation of the scheduling service

for a static set of tasks. The various components of this

service are to be implemented as CORBA objects. The

functionality of these components is explained below.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

12

Figure 1: Operation of the static scheduling service

Global Scheduler- The purpose of the global scheduler

is to allocate tasks to different processors in the

distributed system. This scheduler schedules the tasks

based on initial priorities given by the application

programmer. It accepts a task graph as its input. A task

graph defines the number of tasks to be executed and

also specifies their execution time, arrival time,

deadline, level and criticality. The global scheduler

then decides the allocation of the set of tasks to the

processors based on the processor loads.

Local Scheduler- A local scheduler is implemented to

schedule the tasks for each processor. The processors

are labelled as P1, P2 illustrated in Fig. 1. It uses

Maximum Urgency First (MUF) to schedule the set of

task it receives.

Local dispatcher- It selects the most eligible task from

the list, allocates a thread for the task and assigns it to

the processor. It also decides on the choices of pre-

emption based on priorities.

Operation of the scheduler for a dynamic set task

Since RT CORBA deals with real time systems, which

accepts dynamic tasks, a scheduler should be capable

of accepting and scheduling dynamic tasks. The

various components of this scheduler as shown in

Figure 2 should be implemented as CORBA objects.

The functionality of component is explained below.

Figure 2: Operation of the dynamic scheduler

Global Scheduler- As new tasks arrive, the scheduler

makes decisions dynamically by balancing the load on

the resources. Load balancing is done by profiling the

load in different processors in the distributed system.

The processor with minimum load and satisfying the

security constraint is allocated the new task. This

processor, now checks for schedulability of the task in

the local scheduler. The Global Scheduler uses ML to

schedule the tasks. It uses schedulability, load

balancing and security constraints.

Local Scheduler- A local scheduler is implemented to

schedule the tasks for each processor. When a new

dynamic task is allocated to the local scheduler, it

checks for the schedulability of the task. It then

executes Maximum Urgency First (MUF) to

reschedule the task set.

Local dispatcher- It selects the most eligible task from

the list and assigns it to the processor. If the new task

has higher priority than the currently executing task,

the current task is pre-empted and the new task is given

the thread to execute.

5. Expected Result

The performance of the proposed scheduling

framework is to be evaluated based on the following

criteria:

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

13

 Performance characteristics of the proposed fast

multi paradigm algorithm.

 Trade off of the multiple objectives in the

algorithm.

 Load balancing achieved.

 Performance of the scheduler for uniform task

distribution.

 Performance of the scheduler for normal task

distribution.

Result Analysis- Where x-axis is number of tasks and

y-axis is amount of time in ms. When numbers of tasks

are increasing the scheduling performance has been

increased such as RMS and EDF alone, but RMS with

multi paradigm technique increased the performance of

distributed embedded system. The entire algorithm

tested using ZEN.

Comparative Results

0

10

20

30

40

n=10 n=100 n=500 n=1000

Number of Tasks

T
im

e

RM S EDF M LF M UF

Figure 3: Zen developed by using Real Time Java

Specification. So our application run any real time

embedded system with minimum modifications

6. Conclusion and Future Work

The proposed CORBA-based RT scheduling

framework schedules heterogeneous tasks onto

heterogeneous processors in a distributed computing

system. It aims at providing efficient schedules and

adapting to varying resource availability. The

functionality of the scheduler is to be tested for two

different types of random task distributions, namely,

uniform and normal distributions, each with thousands

of different randomly generated sets of tasks. Since the

proposed scheduler considers load balancing between

different processors, it can create better schedules and

reduce the make span. It is more suitable for real-world

use because it considers properties of distributed

systems, such as load balancing, security and variable

availability heterogeneous processors, which other

algorithms for the task scheduling problem do not

consider. The experimental outcome demonstrates the

better performance of MLF by analyzing the time

taken for the execution of several numbers of tasks and

further it can be compared with the combination of

RMS and MLF which is the combination of static and

dynamic strategies to reach the best performance.

References

[1] Christopher D. Gill and Douglas C. Schmidt “An

Efficient Distributed Scheduling Framework for

CORBA Application,” IEEE/ACM Trans. On

Distributed Systems, Vol. 10, No.4, pp.183-197,

April 2008.

[2] Pyarali I., Schmidt D.C., Cytron R.K,

“Techniques for Enhancing real-time CORBA

Quality of Service” Proceedings of the IEEE

Publication Date: July 2003, Volume: 91,

Issue:7,pp.1070- 1085.

[3] Krishnamurthy Y., Pyarali I, Schmidt D.C., “The

Design and implementation of Real-Time CORBA

2.0: Dynamic Scheduling in TAO” Real-Time and

Embedded Technology and Applications

Symposium, 2004. Proceedings. 10th IEEE

Publication Date: 25-28 May 2004, On page(s):

121- 129.

[4] Jose M. Lo´pez, Jose´ L. Dı´az, and Daniel F.

MLrcı´a, “Minimum and Maximum Utilization

Bounds for Multiprocessor Rate Monotonic

Scheduling” IEEE Trans. on Parallel and

Distributed Systems, Vol. 15, No. 7, July 2004.

[5] Arvind Krishna, Douglas C. Schmidt, and

Raymond Klefstad, “Enhancing Real-Time

CORBA via Strategies and Real-Time Java

features,” Proceedings of the 24th IEEE

International Conference on Distributed Computing

Systems (ICDCS), May 23-26, 2004, Tokyo,

Japan.

Bineta Tresa Mathew was born in

Kuwait on 29th Jan 1984. She received

the B.E. degree in Information

Technology from Anna University, India

in 2006 and M.E. degree from Karunya

University, India in 2009 in Computer

Science Engineering. She is working as

Assistant Professor in the department of Computer Science

and Engineering, Birla Institute of Technology, Offshore

campus, RAK, UAE. Her research interest includes genetic

algorithm.

Author’s Photo

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=27343&isYear=2003
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9204
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9204
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9204
http://www.cs.wustl.edu/~schmidt/PDF/RT-POA.pdf
http://www.cs.wustl.edu/~schmidt/PDF/RT-POA.pdf
http://www.cis.ohio-state.edu/icdcs04/
http://www.cis.ohio-state.edu/icdcs04/
http://www.cis.ohio-state.edu/icdcs04/

