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Abstract 
 

Distributed computing environment is flexible to 

control in complex embedded systems and their 

software components gain complexity when these 

systems are equipped with many microcontrollers and 

software object which covers diverse platforms, this 

system is called as DRE system. These DRE systems 

need new inter-object communication solution thus 

QoS-enabled middleware services and mechanisms 

have begun to emerge. Real-time application domain 

benefit from flexible and open distributed 

architectures, such as those defined by the CORBA 

specification. CORBA is well-suited to conventional 

request/response applications, but not suited to real-

time applications due to the lack of QoS features and 

performance optimizations. The paper shows the 

design and implementation of the high performance 

scheduling technique for the real time applications 

domain with CORBA systems. Four different 

algorithms are compared by using attributes of real 

time tasks constraints based on CORBA specification 

such as RMS, MLF, MUF and EDF. The 

experimental outcome demonstrates the better 

performance of MLF by analyzing the time taken for 

the execution of several numbers of tasks and further 

it can be compared with the combination of RMS and 

MLF to reach the best performance strategy.  
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1. Introduction 
 

Distributed real-time embedded (DRE) systems are 

becoming increasingly widespread and important. 

Common DRE systems include Telecommunication 

networks, tele-medicine, manufacturing process 

automation and defence applications. DRE systems 

should be capable of communicating in a distributed 

environment, be efficient and predictable and have less 

memory foot-print. DRE applications are tedious and 

error-prone because they are developed using low-level 

languages. These systems are hard to debug due to the 

limited availability of the debugging tools. Because of 

these challenges, application developers shifted 

towards software models that are reusable [5]. This 

paved way for Real-Time CORBA (RT CORBA). 

 

CORBA is distribution middleware that provides run-

time support to automate many distributed computing 

tasks, such as connection management, object 

marshalling / demarshaling, object demultiplexing, 

language and platform independence, load balancing, 

fault-tolerance, and security [1]. Real-time CORBA 

adds QoS control capabilities to regular CORBA which 

include improving application predictability by 

bounding priority inversions and managing system 

resources end-to-end [2]. Real-time CORBA also 

facilitates the configuration and control of the system 

resources such as processor resources, communication 

resources and memory resources. 

 

Most current implementations of Real-time CORBA 

are available only in C++ or Ada [5]. The Java 

programming language is an attractive alternative 

because it is widely used, powerful and portable. Java 

also offloads many tedious and error-prone 

programming details from developers into the language 

run-time system. It has desirable language features, 

such as strong typing, dynamic class loading, and 

reflection/introspection. Java defines portable support 

for concurrency and synchronization. The Real-time 

Java Experts Group has defined the Real-time 

Specification for Java (RTSJ) [5], which provides 

capabilities without modifying the Java programming 

language itself. Some of the capabilities of RT Java 

suitable for real-time embedded systems include 

efficient memory management models, access to raw 

physical memory and stronger guarantees on thread 

semantics. 

 

ZEN [3] is a Real-time CORBA ORB implemented 

using Real-time Java, thereby combining the benefits 

of these two standard technologies. Zen’s ORB 

architecture is based on the concept of layered 

plugMLbility. Zen employs the Micro-kernel 

architecture. It has eight core ORB services namely 

object adapters, message buffer allocators, GIOP 

message handling, CDR Stream readers/writers, 
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protocol transports, object resolvers, IOR parsers, and 

any handlers. These are removed out of the ORB to 

reduce its memory footprint and increase its flexibility. 

The remaining portion of code is called the ZEN 

kernel.  

 

TAO, a real-time Object Request Bus (ORB) 

developed by Object Computing Research group at the 

Washington University and Vanderbilt University aims 

at optimizing collocation,  ORB protocol overhead, 

Portable Object Adapter (POA) demultiplexing and 

strategy patterns for scheduling to make CORBA 

suitable for real time applications [3]. It uses Rate 

Monotonic Scheduling (RMS), Maximum Laxity First 

(MLF) in and Maximum Urgency First (MUF) 

algorithms for scheduling. It does not consider 

multiprocessor scheduling strategies [4]. Our 

scheduling framework considers multiprocessor 

scheduling in a distributed environment. The 

framework is capable of scheduling the tasks 

intelligently based on the load of the processors and the 

schedulability of the tasks [1]. Since the proposed 

scheduling framework aims at using RTCORBA and 

RTJS, it can alleviate the shortcomings in the non-

CORBA based implementations of scheduling 

strategies by bringing about heterogeneity, and 

platform, hardware, location transparency. Further, as 

it uses distributed object technology, it provides 

facility for extensibility. 

 

2. Importance 
 

Real-time applications like aircraft control systems, 

military command systems, industrial automation 

systems, transportation and telephone switches should 

execute their tasks within certain deadlines. Common 

Object Request Broker Architecture (CORBA) 

provides flexible middleware capable of integrating 

complex applications in heterogeneous environments. 

CORBA with its Minimum CORBA, Real-time 

CORBA and messaging standards makes it a highly 

suitable Distributed Object Computing middleware 

satisfying memory and timing constraints of real-time 

embedded applications [1]. The proposed framework 

aims at extending the CORBA scheduling service to 

bring about efficient and intelligent task scheduling in 

a distributed environment.  It can be dynamically 

configured and uses hybrid and multiprocessor 

scheduling algorithms. Since it is extensible, it lowers 

the software evolution lifecycle cost and time. The 

framework developed from the proposed concept can 

be applied in various real time systems including the 

following: 

 Air Force Multi-Platform Radar systems 

 Naval / Air-line systems 

 Aircraft control systems 

 Firm Real-time systems 

 Transportation control and Guidance systems 

 Mixed Systems 

 Telecom Networks 

 

3. Tools and Methods 
 

Models for unique paradigm for scheduler to execute 

without missing the deadline in the real time 

environment. The aim is to make middleware to real 

time suitable using paradigm approach. The 

characteristic of scheduling service model is real time 

response and adaptability with any kind of real-time 

applications. The paradigm approach in [4] has divided 

into two categories they are single paradigm approach 

and multi-paradigm approach. The two techniques are 

described below. 

 Single paradigm strategy 

o Fixed priority algorithm (Static – 

RMS) 

o Dynamic priority algorithm (EDF and 

MLF) 

 Multi-paradigm strategy 

o Hybrid algorithm (MUF) 

 

Single Paradigm Strategy  
Scheduling algorithms themselves can be characterized 

as being either static or dynamic. A static approach 

calculates (or pre-determines) schedules for the system. 

It requires prior knowledge of a process’s 

characteristics but requires little run-time overhead. By 

comparison, a dynamic approach determines 

schedules at run-time thereby furnishing a more 

flexible system that can deal with non-predicted events. 

It has higher run-time cost but can give greater 

processor utilization. Certainly in safety critical 

systems it is reasonable to argue that no event should 

be unpredicted and that schedulability should be 

guaranteed before execution [4]. This implies the use 

of a static scheduling algorithm. Dynamic approaches 

do, nevertheless, have an important role. 

 They are particularly appropriate to soft      

systems; 

 They could form part of an error recovery 

procedure for missed hard deadlines; 

 They may have to be used if the application’s 

requirements fail to provide a worst case 

upper limit (for example the number of planes 

in air traffic controls area). 
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A scheduler is static and offline if all scheduling 

decisions are made prior to the running of the system. 

A table is generated that contains all the scheduling 

decisions for use during run-time. This relies 

completely upon a priori knowledge of process 

behaviour. Hence this scheme is workable only if all 

the processes are effectively periodic.  

An online scheduler makes scheduling decisions 

during the run-time of the system. It can be either static 

or dynamic. The decisions are based on both process 

characteristics and the current state of the system. This 

is difficult for systems which have non-periodic 

processes [5]. Schedulers may be pre-emptive or non-

pre-emptive. The former can arbitrarily suspend a 

process’s execution and restart it later without affecting 

the behaviour of that process (except by increasing its 

elapse time). Pre-emption typically occurs when a 

higher priority process becomes runnable. The effect of 

pre-emption is that a process may be suspended 

involuntarily. Non-pre-emptive schedulers do not 

suspend processes in this way. This is sometimes used 

as a mechanism for concurrency control for processes 

executing inside a resource whose access is controlled 

by mutual exclusion. Hybrid systems are also possible. 

A scheduler may, in essence, be pre-emptive but allow 

a process to continue executing for a short period after 

it should be suspended. This property can be exploited 

by a process in defining a non-preemptable section of 

code. The code might, for example, read a system 

clock, calculate a delay value and then execute a delay 

of the desired length. Such code is impossible to write 

reliably if the process could be suspended between 

reading the clock and executing the delay. These 

deferred pre-emption primitives must be used with 

care. The resulting blocking must be bounded and 

small typically of the same magnitude as the overhead 

of context switching. 

 

The rate monotonic scheduling algorithm (RMS) is 

a fixed priority scheduling algorithm which consists of 

assigning the highest priority to the highest frequency 

tasks in the system. At any time, the scheduler chooses 

to execute the task with the highest priority [4]. By 

specifying the period and computational time required 

by the task, the behaviour of the system can be 

categorized apriori. One problem with the rate 

monotonic algorithm is that the schedulable bound is 

less than 100%. The schedulable bound of a task set is 

defined as the maximum CPU utilization for which the 

set of tasks can be guaranteed to meet their deadlines 

[4]. This means that as the task graph is designed with 

number of processes, the system should be able to meet 

the entire task by meeting their deadline with the 

complete usage of CPU resource. 

Conditions for Rate Monotonic scheduling 

 Priority assignment based on rates of tasks.  

 Higher rate task assigned higher priority. 

 Schedulable utilization = 0.693 (Liu and 

Leyland). 

 If U < 0.693, schedulability is guaranteed. 

 Tasks may be schedulable even if U > 0.693 

 

The Earliest-Deadline-First Scheduling Algorithm 

(EDF) uses the deadline of a task as its priority. The 

task with the earliest deadline has the highest priority, 

while the task with the latest deadline has the lowest 

priority. One advantage of this algorithm is that the 

schedulable bound is 100% for all task sets. Secondly, 

because priorities are dynamic, the periods of tasks can 

be changed at any time [4]. A major problem with the 

EDF algorithm is that there is no way to guarantee 

which tasks will fail in a transient overload situation. 

In many systems, although the average case utilization 

is less than 100%, it is possible that the worst-case 

utilization is above 100%, leaving the possibility of 

one or more tasks failing. In such cases, it is desirable 

to control which tasks fail and which succeed during 

such a transient overload. In the RM algorithm, low 

priority tasks will always be the first to fail. However, 

no such priority assignment exists with EDF, and thus 

there is no control of which task fails during a transient 

overload. As a result, it is possible that a very critical 

task may fail at the expense of a lesser important task.  

 

Conditions for EDF scheduling 

 

 Priority assignment based on absolute deadlines 

of tasks  

 Shorter the absolute deadline, higher the priority 

 Schedulable utilization = 1 

The Minimum-Laxity-First Scheduling Algorithm 

(MLF) assigns a laxity to each task in a system, and 

then selects the task with the minimum laxity to 

execute next. Laxity is defined as follows: 

Laxity = deadline – current time – CPU_time_needed 

Laxity is a measure of the flexibility available for 

scheduling a task. A laxity of Tl means that even if the 

task is delayed by l time units, it will still meet its 

deadline. A laxity of zero means that the task must 

begin to execute now or it will risk failing to meet its 

deadline. The main difference between MLF and EDF 

is that MLF takes into consideration the execution time 

of a task, which EDF does not do. Like EDF, MLF has 

a 100% schedulable bound, but there is no way to 

control which are guaranteed to execute during a 
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transient overload [4]. The next section, present the 

MUF algorithm, which allows the control of task 

failures during transient overload, while maintaining 

the flexibility of a dynamic scheduler, and 100% 

schedulable bound for the critical set. 

 

Multi-Paradigm Strategy  

The maximum-urgency-first scheduling algorithm 

(MUF) is a combination of fixed and dynamic priority 

scheduling, also called mixed priority scheduling [2]. 

With this algorithm, each task is given urgency. The 

urgency of a task is defined as a combination of two 

fixed priorities, and a dynamic priority. One of the 

fixed priorities, called the criticality, has higher 

precedence over the dynamic priority. The other fixed 

priority, which we call user priority, has lower 

precedence than the dynamic priority. The dynamic 

priority is inversely proportional to the laxity of a task.  

The MUF algorithm consists of two parts. The first 

part is the assignment of the criticality and user 

priority, which is done apriori. The second part 

involves the actions of the MUF scheduler during run-

time. The steps in assigning the criticality and user 

priority are the following [3]: 

 

1. As with RM, order the tasks from shortest 

period to longest period. 

2. Define the critical set as the first N tasks such 

that the total worst-case CPU utilization does 

not ex-ceed 100%. These will be the tasks that 

do not fail, even during a transient overload of 

the system. If a critical task does not fall 

within the critical set, then period 

transformation, as used with RM can also be 

used here.  

3. Assign high criticality to all tasks in the 

critical set, and low criticality to all other 

tasks. 

4. Optionally assign a unique user priority to 

every task in the system. 

 

Before its cycle, each task must specify its desired start 

time, deadline time, and worst-case execution time. 

Later it is showed that step 1 can be relaxed, but at the 

increased risk of a low-criticality task failing to meet 

its deadline. Whenever a task is added to the ready 

queue, a reschedule operation is performed [1].  

The MUF scheduler is used to determine which task is 

to be selected for execution, using the following 

algorithm: 

 

1. Select the task with the highest criticalness. 

2. If two or more tasks share highest criticalness, 

then select the task with the highest dynamic 

priority (i.e. minimum laxity). Only tasks with 

pending deadlines have a non-zero dynamic 

priority. Tasks with no deadlines have a 

dynamic priority of zero. 

3. If two or more tasks share highest criticalness, 

and have equal dynamic priority, then the task 

among them with the highest user priority is 

selected.  

4. If there are still two or more tasks that share 

highest criticalness, dynamic priority, and 

highest user priority, then they are serviced in 

a first-come-first-serve manner.  

5. The optional assignment of unique user 

priorities for each task ensures that the 

scheduler never reaches step 4, thus providing 

a deterministic scheduling algorithm.  
 

4. Proposed Work 
 

The Strategy pattern in Zen, a RTORB, proposes a 

static uniprocessor scheduling strategies [5]. The 

proposed framework aims at extending the CORBA 

scheduling service on top of Zen ORB, to bring about 

efficient and intelligent task scheduling in a distributed 

environment considering schedulability, load balancing 

and security constraints. The main components of the 

scheduling service include the global scheduler, local 

scheduler, profiler and the local dispatcher. The 

operations of the scheduling service for static and 

dynamic set of tasks are explained. 

 

Operation of the scheduler for a static set of tasks 

Figure 1 shows the operation of the scheduling service 

for a static set of tasks. The various components of this 

service are to be implemented as CORBA objects. The 

functionality of these components is explained below. 
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Figure 1: Operation of the static scheduling service 

 

Global Scheduler- The purpose of the global scheduler 

is to allocate tasks to different processors in the 

distributed system. This scheduler schedules the tasks 

based on initial priorities given by the application 

programmer. It accepts a task graph as its input. A task 

graph defines the number of tasks to be executed and 

also specifies their execution time, arrival time, 

deadline, level and criticality. The global scheduler 

then decides the allocation of the set of tasks to the 

processors based on the processor loads. 

 

Local Scheduler- A local scheduler is implemented to 

schedule the tasks for each processor. The processors 

are labelled as P1, P2 illustrated in Fig. 1. It uses 

Maximum Urgency First (MUF) to schedule the set of 

task it receives. 

 

Local dispatcher- It selects the most eligible task from 

the list, allocates a thread for the task and assigns it to 

the processor. It also decides on the choices of pre-

emption based on priorities. 

 

Operation of the scheduler for a dynamic set task  

Since RT CORBA deals with real time systems, which 

accepts dynamic tasks, a scheduler should be capable 

of accepting and scheduling dynamic tasks. The 

various components of this scheduler as shown in 

Figure 2 should be implemented as CORBA objects. 

The functionality of component is explained below. 

 
 

Figure 2: Operation of the dynamic scheduler 

 

Global Scheduler- As new tasks arrive, the scheduler 

makes decisions dynamically by balancing the load on 

the resources. Load balancing is done by profiling the 

load in different processors in the distributed system. 

The processor with minimum load and satisfying the 

security constraint is allocated the new task. This 

processor, now checks for schedulability of the task in 

the local scheduler. The Global Scheduler uses ML to 

schedule the tasks. It uses schedulability, load 

balancing and security constraints. 

 

Local Scheduler- A local scheduler is implemented to 

schedule the tasks for each processor. When a new 

dynamic task is allocated to the local scheduler, it 

checks for the schedulability of the task. It then 

executes Maximum Urgency First (MUF) to 

reschedule the task set. 

 

Local dispatcher- It selects the most eligible task from 

the list and assigns it to the processor. If the new task 

has higher priority than the currently executing task, 

the current task is pre-empted and the new task is given 

the thread to execute. 

 

5. Expected Result 
 

The performance of the proposed scheduling 

framework is to be evaluated based on the following 

criteria: 
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 Performance characteristics of the proposed fast 

multi paradigm algorithm. 

 Trade off of the multiple objectives in the 

algorithm. 

 Load balancing achieved. 

 Performance of the scheduler for uniform task 

distribution. 

 Performance of the scheduler for normal task 

distribution. 

 

Result Analysis- Where x-axis is number of tasks and 

y-axis is amount of time in ms. When numbers of tasks 

are increasing the scheduling performance has been 

increased such as RMS and EDF alone, but RMS with 

multi paradigm technique increased the performance of 

distributed embedded system. The entire algorithm 

tested using ZEN. 

 

Comparative Results
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Figure 3: Zen developed by using Real Time Java 

Specification. So our application run any real time 

embedded system with minimum modifications 

 

6. Conclusion and Future Work 
 

The proposed CORBA-based RT scheduling 

framework schedules heterogeneous tasks onto 

heterogeneous processors in a distributed computing 

system. It aims at providing efficient schedules and 

adapting to varying resource availability. The 

functionality of the scheduler is to be tested for two 

different types of random task distributions, namely, 

uniform and normal distributions, each with thousands 

of different randomly generated sets of tasks. Since the 

proposed scheduler considers load balancing between 

different processors, it can create better schedules and 

reduce the make span. It is more suitable for real-world 

use because it considers properties of distributed 

systems, such as load balancing, security and variable 

availability heterogeneous processors, which other 

algorithms for the task scheduling problem do not 

consider. The experimental outcome demonstrates the 

better performance of MLF by analyzing the time 

taken for the execution of several numbers of tasks and 

further it can be compared with the combination of 

RMS and MLF which is the combination of static and 

dynamic strategies to reach the best performance. 
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