
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

114

A Low Cost Hardware Trojan horse Device based on Unintended USB

channels and a Solution

Pravin Phule
Department of Computer Engineering PICT, Pune, Maharashtra, India

Abstract

Nowadays every device is becoming available as a

USB device. As a result of that these devices may be

used to attack a network endpoint. This paper aims

at implementing a Hardware Trojan horse device

which when used by a malicious insider can attack

a network endpoint to steal the confidential

information over unintended USB channels.

Endpoint Security Solutions are available to protect

the stealing of information through USB Mass

Storage, USB Printer interfaces but still they have

no control over the USB audio and USB keyboard

interfaces. So these interfaces can be used in an

unintended way to attack a network endpoint and

steal the information. This paper also focuses on

methodologies that can be applied to block the

unintended USB channels.

Keywords

Insider Threat, Hardware Trojan horse, Unintended USB

channel, Human Interface Device

1. Introduction

USB peripherals provide almost all types of

functionalities, from storage to Human Interface

Devices. The USB Specification defines a single

physical interface and a base protocol to be used for

all USB devices [1]. USB devices are plug and play

which means that computer system already contains

the driver required to configure the device. Due to the

wide use of Plug and play it has become the preferred

way of attacking a computer system using Auto Run

and Auto Play features [2].

Many security solutions are available to provide data

theft protection from USB devices [3, 4, 5, and 6].

Endpoint security solutions (ESSs) are used to protect

corporate data. Using Access Control Lists (ACL)

ESSs can allow specific users or employees to access

specific device but not all the devices. Such

protection works well only if access is allowed to the

devices whose serial numbers are available in ACL.

But ESSs are not well while regulating Human

interface devices such as a USB mouse, USB

keyboard, USB headsets or speakers etc. [3, 4, 5, 6].

So these interfaces can be exploited to develop

Hardware Trojan horse Device and attack the

network endpoint to steal the confidential

information of an organization.

A USB channel becomes unintended when it is used

to do something which is not defined by USB protocol

[7]. For example consider the communications

between a USB keyboard and a network endpoint.

USB keyboard uses two intended USB channels: one

to send key presses from USB keyboard to network

endpoint and another to send the state of the keyboard

LEDs (Caps Lock, Number Lock and Scroll Lock)

from network endpoint to USB keyboard. An

application on the network endpoint could create an

unintended USB channel by causing the exfiltration of

data in the form of toggling keyboard status LEDs [7].

2. Related Work And Literature

Review

In 2005, D. Barral and D. Dewey [9] introduced a

concept of USB Meta-Device. USB protocol relies on

a USB device for its identification. Due to that a USB

Meta-Device can programmed to identify itself as

any USB device. USB Meta-Device could be

programmed to identify itself as a device associated

with a vulnerable driver loaded on the network

endpoint. The approach used in this paper differs

from the USB Meta-Device in that it does not require

the presence of a vulnerable driver on the network

endpoint.

In 2006, M. Al-Zarouni[10] proved that USB Auto

Run and Auto Play features can be used to steal data

and automatically execute harmful code on a network

endpoint without user‟s knowledge. Endpoint

security solutions are available to deal with this type

of risk. The approach used in this paper differs in that

Hardware Trojan horse Device can be used in the

presence of Endpoint Security Solutions, as they

generally do not regulate Human Interface Devices.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

115

In 2006, G. Shah, A. Molina, and M. Blaze [11]

introduced the concept of Keyboard Jitterbug. The

keyboard Jitterbug device is also a way to exfiltrate

the data. It can be inserted between keyboard and

network endpoint to act as key logger. It can also be

used to exfiltrate the data by adjusting the timing

information of packets sent over the internet.

However, it is different from the approach used in

this paper because it requires that the network

endpoint to maintain an interactive session through

the Internet. Hardware Trojan horse Device can be

used to exfiltrate data without relying on internet

connectivity.

In 2009, J. Clark, S. Leblanc and S. Knight [7]

introduced the concept of Hardware Trojan Horse

Device based on Unintended USB channels and in

2011 they [6] extended the concept with the Risks

Associated with USB Hardware Trojan Devices used

by Insiders. This research [6, 7] is directly related to

the approach used in this paper. But it has used

PLX‟s Net 2280 Rdk [12] to develop a Hardware

Trojan horse device which is costly device. As

proposed in this paper it will use a low cost device:

mbed NXP LPC11U24 Microcontroller [13] to

develop a Hardware Trojan horse device. Also, this

paper proposes a solution to block the unintended

USB channel.

3. Concept of Hardware Trojan Horse

Device

An application on the network endpoint could create

an unintended USB channel by causing

theexfiltration of data in the form of toggling

keyboardstatus LEDs Similarly an application on the

network endpoint could create an unintended USB

audio channel using Isochronous Out and exfiltrate

the data in the form of audio packets [1]. Refer

Figure 1 for more details.

Only Human Interface Devices such as USB

keyboard, USB speakers, headsets, USB mouse etc.

are considered for this project. Because previous

research has shown that these are the only USB

devices which are not regulated by Endpoint Security

Solutions. Other USB devices such as USB flash,

USB printer etc. are well regulated by Endpoint

Security Solutions [1, 2, and 3].

Figure 1: Concept of Hardware Trojan horse

Device [7]

4. Proposed Solution

The solution can be implemented as software on the

network endpoint. This software will keep a watch on

what type of data is sent over USB keyboard and

USB audio channel. If it found that some data is

exfiltrated to USB keyboard or USB audio channel

then immediately that activity is stopped or blocked.

Refer Figure 2 for more details.

Figure 2: Proposed Solution

5. Implementation Methodology and

Feasibility Assessment

There are four modules needed in the project as given

below:

 Uploading Malicious code to network

endpoint

 Steal data over the unintended USB

keyboard channel and unintended USB

audio channel

 Track and block unintended USB keyboard

channel

 Track and block unintended USB audio

channel

Uploading malicious code to network endpoint:

This module is to be implemented as a part of

keyboard interface which will reside on mbed

LPC11U24 microcontroller. This module will upload

a malicious code to the network endpoint. The

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

116

algorithm for the same is given below.

//UploadCode(Uk, Dk) uploads malicious code over

//unintended USB keyboard channel to the network

//endpoint

//where Uk is an unintended USB keyboard channel

//Dk is a USB keyboard device or a device which is

//identifies itself as USB keyboard

Algorithm UploadCode(Uk, Dk)

{

While (there exist a character c in a file which

contains malicious code)

 {

 sendchar(c);

//sendchar(c) sends a character of //malicious code to

network //endpoint in the form of key press //events

}

}

Steal data over the unintended USB keyboard

channel and the unintended USB audio channel:

This module will be a malicious code uploaded by

UploadCode(Uk, Dk) which after executing on

network endpoint will be able to encode data in the

form of toggling keyboard LEDs and send it over the

unintended USB keyboard channel as well as embed

data in audio packet and play it over an unintended

USB audio channel.

//Where U is an unintended USB channel

//Uk is an unintended USB keyboard channel

//Ua is an unintended USB audio channel

Algorithm stealData(U,D)

{

 //let f is the file to be stolen

 If (U=Uk)

 {

 While (there exist a character c in f)

 {

 sendcharOverUk (c);

//sendcharOverUk(c) sends //a character of f over

Uk//in the form of toggling LEDs

}

 }

 Else If (U=Ua)

 {

//let a be the audio packet to be sent //overUa

 a = embedFileInAudioPacket(f);

//embedFileInAudioPacket(f) //embeds file f in an

audio packet //„a‟

PlaySound(a);

//PlaySound (a) sends an audio //packet over Ua

}

}

Track and block the unintended USB keyboard

channel:

This module is to be developed as a part of the

security solution which will reside on network

endpoint and will be able to detect and block the

unintended USB keyboard channel. An algorithm for

the same is given below.

//Let I be an illegal activity

//Let Ik be an illegal activity performed using Uk

Algorithm trackAndstopStealing(Ik)

{

 While (true)

 {

If (there exists an illegal activity Ik)

 {

Block the unintended USB channel Uk ;

}

}

}

Track and block the unintended USB audio

channel:

This module is to be developed as a part of the

security solution which will reside on network

endpoint and will be able to detect and block the

unintended USB audio channel. An algorithm for the

same is given below.

Algorithm trackAndstopStealing(Ia)

{

 While (true)

 {

If (there exists an illegal activity Ia)

{

Block the unintended USB channel Ua ;

}

}

}

Algorithm trackAndstopStealing(Ik /Ia) is an NP-Hard

problem [14]. Because it needs to track for an illegal

activity (Ik /Ia). If there exists an unintended USB

channel (Uk/Ua) and device (Dk/Da) attached to that

channel then we can say that there is some illegal

activity going on. But it is not possible to recognize

whether the USB channel being used is intended or

unintended. So providing a solution to block an

unintended USB channel becomes an NP-Hard

problem.

Previous research [6, 7] proved that USB keyboard

channel became unintended when it is used to

exfiltrate data in the form of toggling keyboard

LEDs. Toggling of keyboard LEDs can be detected

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

117

and can be blocked. So algorithm

trackAndstopStealing(Ik) can be reduced to tracking

for continuous toggling of keyboard LEDs and if

found then stop it which can be detected and solved

in polynomial time. Algorithm

trackAndstopStealing(Ik) can be redefined as follows:

//Let I be an illegal activity

//Let Ik be an illegal activity performed using Uk

Algorithm trackAndstopStealing(Ik)

{

 While (true)

 {

If (keyboard LEDs toggling continuously)

 {

Stop continuous toggling of keyboard LEDs;

}

}

}

Previous research [6, 7] also proved that USB audio

channel became unintended when it is used to

exfiltrate data in the form of audio packets. We can

record the audio being played and if it contains

information other than audio then that audio can be

blocked from playing. So algorithm

trackAndstopStealing(Ia) can be reduced to recording

the audio and if it found that audio packet contains

information other than audio which can be detected

and solved in polynomial time.

Algorithm trackAndstopStealing(Ia) can be redefined

as follows:

//Let Ia be an illegal activity performed using Ua

Algorithm trackAndstopStealing(Ia)

{

If (an audio packet contains information

other than audio)

 {

 Block that audio from playing;

}

 }

6. Proposed Outcome of Project

The outcome is a Hardware Trojan horse device and

software which will provide a solution to block

exfiltration of data through unintended USB channels

to the attached Hardware Trojan horse device as

shown in Figure 2.

A Hardware Trojan horse device can easily attack

the network endpoint as follows:-

A network endpoint‟s keyboard is replaced by a

Hardware Trojan Horse. The Hardware Trojan Horse

activates outside the organization‟s business hours

and logs in to the network endpoint. It will then

upload the applications necessary to create the

Keyboard LED and Audio Channels between the

network endpoint and the Hardware Trojan horse,

and applications that can open a tunnel and a back

door to the Internet. Then Hardware Trojan Horse

will carry out its attack. It will perform a search of

the network endpoint data, looking for the files

containing uploaded keywords and writes the results

of the search to a text file. These search results,

consisting of the path to files containing keywords,

are exfiltrated to the Hardware Trojan Horse using

the Keyboard LED Channel. The search result will be

analyzed by the Hardware Trojan horse, which will

then cause the exfiltration of the files of interest from

the network endpoint to the Hardware Trojan Horse

using the Audio Channel [6, 7].

Exfiltration of files from network endpoint to

attached device in the form of Keyboard LED

status messages can be blocked as follows:-

Whenever there is no key press corresponding to

NUM LOCK, SCROLL LOCK, and CAPS LOCK

but still there is something that is toggling keyboard

LEDs then such process can be caught and proposed

software can disturb and consequently block such

activity.

Exfiltration of files from the network endpoint to

the attached device through the USB audio

channel can be blocked as follows:-

Whenever audio is played proposed software can

check what type of information is transferred to audio

device in the form of audio packet and if it found that

some data is exfiltrated to the USB audio channel

then it can block that activity.

7. Conclusion

The researchers are not completely aware of the risks

associated with USB devices. This paper focuses on

the risk associated with unintended USB channels

and proposes the possible solution to mitigate this

risk. This paper also discusses the feasibility of the

implementation using P, NP, NP-Hard and NP-

Complete models. All the algorithms are proposed

regardless of any technology or programming

language.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-7 December-2012

118

Real time protection is nothing but addressing the

threat before it becomes a problem [8]. This paper

will address an insider threat before it becomes a

widely used way to steal the corporate data.

Also it focuses on the deficiencies of Endpoint

Security solutions. They rely on a device for

identification. The device may identify itself as any

Human Interface Device and can be used to steal

information. Endpoint Security solutions have control

over USB Mass Storage, USB Printer interfaces. But

now there is a need that they should also regulate the

data or information transferred over the USB

keyboard or USB audio channels.

Acknowledgment

I would like to thank my college Pune Institute of

Computer Technology, Pune, Maharashtra, India for

blessing me the environment which is perfect for

research. I would also like to thank the author J.

Clark for his quick and accurate response to my

queries about his research based on Unintended USB

Channels.

References

[1] USB Implementers Forum, “USB 2.0

Specification,” 2001,

http://www.usb.org/developers/docs.

[2] S. Stasiukonis, “Social engineering, the USB

way,” 2006,

http://www.darkreading.com/security/article/208

803634/social-engineering-the-usb-way.html.

[3] Centenial Software, “DeviceWall: Endpoint

Security homepage,” 2012,

http://www.frontrange.com/ProductsSolutions/De

tail.aspx?id=9416.

[4] CheckPointSoftware, “Pointsec protector

homepage,” 2009

http://www.checkpoint.com/products/datasecurity

/protector.

[5] DeviceLockInc., “Devicelock homepage,” 2009,

http://www.devicelock.com.

[6] J. Clark, S. Leblanc and S. Knight, “Risks

Associated with USB Hardware Trojan Devices

used by Insiders,” in IEEE International Systems

Conference (SysCon), April 2011.

[7] J. Clark, S. Leblanc and S. Knight, “Hardware

Trojan horse device based on unintended USB

channels,” in 3rd International Conference on

Network and System Security, pages 1-8, IEEE

Computer Society, May 2009.

[8] Microsoft, “Microsoft Security Essentials

Product Information page”, 2012,

http://windows.microsoft.com/en-

US/windows/products/security-ssentials/product-

information.

[9] D. Barral and D. Dewey, ““Plug and Root”, the

USB Key to the Kingdom,” 2005,

http://www.blackhat.com/presentations/bh-usa-

05/BHnUSn05-Barrall-Dewey.pdf.

[10] M. Al-Zarouni, “The reality of risks from

consented use of USB devices,” in Proceedings

of the 4th Australian Information Security

Conference, Sep. 2006, pp. 5–15.

[11] G. Shah, A. Molina, and M. Blaze, “Keyboards

and covert channels,” in Proceedings of the 15th

conference on USENIX Security Symposium,

2006.

[12] PLX Technology, “Net2280 home page,” 2008,

http://www.plxtech.com/products/net2000/net228

0.asp.

[13] mbed, “mbed NXP LPC11U24 home page,”

2012, http://mbed.org/handbook/mbed-NXP-

LPC11U24.

[14] Eric W. Weisstein, “NP-Hard Problem,”

2012,http://mathworld.wolfram.com/NP-

HardProblem.html.

Pravin Phule, Pune, India, born on 13 May

1986, Post Graduate Student at Pune

Institute of Computer Technology, Pune,

Affiliated to the University of Pune,

Maharashtra, India

http://www.usb.org/developers/docs
http://www.darkreading.com/security/article/208803634/social-engineering-the-usb-way.html
http://www.darkreading.com/security/article/208803634/social-engineering-the-usb-way.html
http://www.checkpoint.com/products/datasecurity/protector
http://www.checkpoint.com/products/datasecurity/protector
http://www.devicelock.com/
http://www.blackhat.com/presentations/bh-usa-05/BHnUSn05-Barrall-Dewey.pdf
http://www.blackhat.com/presentations/bh-usa-05/BHnUSn05-Barrall-Dewey.pdf
http://www.plxtech.com/products/net2000/net2280.asp
http://www.plxtech.com/products/net2000/net2280.asp
http://mbed.org/handbook/mbed-NXP-LPC11U24
http://mbed.org/handbook/mbed-NXP-LPC11U24
http://www.ericweisstein.com/
http://mathworld.wolfram.com/NP-HardProblem.html
http://mathworld.wolfram.com/NP-HardProblem.html

