
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-1 Issue-3 March-2012

81

Performance Improvement of TCP by TCP Reno and SACK

Acknowledgement

Reena Rai
1
, Maneesh Shreevastava

2

Department of Information Technology LNCT Bhopal,

(M.P.) India

1,2

Abstract

Transmission Control Protocol (TCP) is the

dominating end-to-end transport layer protocol

which provides secure and reliable data transfer

together with some other protocols. In this review

paper, we contend that existing approaches to

improve TCP performance over mobile ad-hoc

networks have focused only on a subset of the

factors affecting TCP performance by TCP Reno,

SACK and Vegas. Effective resource utilization,

such as bandwidth utilization, retransmission rate

and window size, is compared. For evaluate these

TCP congestion control algorithms from many

aspects are present and we also concern fair

resource allocation from two main categories, one is

fairness between different delay links, and the other

is competition between different TCP congestion

control algorithms.

Keywords

TCP Reno, SACK and Vegas, TCP, MANETs, Wireless,

routing protocol, data transmissions, destination, TCP

performance, TCP’s timers.

1. Introduction

Early TCP implementation uses go-back-n model

with cumulative positive acknowledgement and

requires a retransmit time-out to retransmit the lost

packet. These TCP did little to minimize network

congestion. The operation of TCP in wireless/mobile

communications has been an important research issue

in recent years, owing to the impressive growth

experienced in that area of modern

telecommunications during the past decade.

Significant contributions, such as the one presented

in [1], indicate that the unmodified, standardized

operation of TCP is not well aligned with the

peculiarities of cellular environments. Terminal

movement across cell boundaries, leading to

handover, is misinterpreted by common TCP

implementations as sign of congestion within the

fixed network. To handle such congestion, TCP

unnecessarily slows down transmission by reducing

window sizes, and performing retransmissions, if

relevant need arises.

In our Paper, we will evaluate the congestion control

algorithms in Reno, Vegas and SACK TCP from

different aspects. First, we will compare the

performance of these algorithms: how much of the

available network bandwidth does it utilize? How

frequently does it retransmit packets? How does it

modify window size on congestion? These

comparisons are based on each version TCP running

separately on a congested network. The second

evaluation is the fairness of sharing the network. This

comparison is taken in two categories of experiment.

One is the fairness between different delay

connections running the same version TCP. Some

algorithms may bias against long delay connection,

such as Reno TCP and SACK. The other experiment

is carried out between different versions TCP when

they compete each other on the same connection.

TCP Vegas does not receive a fair share of bandwidth

when competing with other TCP Reno or SACK

connections. Since bias exists in both categories, how

different queue algorithms may affect the fairness is

also studied.

We shall assume that packet losses due to network

loss are minimal and most of the packet losses are

due to buffer overflows at the router. Thus it becomes

increasingly important for TCP to react to a packet

loss and take action to reduce congestion. TCP

ensures reliability by starting a timer whenever it

sends a segment. If it does not receive an

acknowledgement from the receiver within the „time-

out‟ interval then it retransmits the segment. We shall

start the paper by taking a brief look at each of the

congestion avoidance algorithms and noting how

they differ from each other. In the end we shall do a

head to head comparison to further bring into light

the differences.

There are several forms of acknowledgement:

Positive Acknowledgement:

The receiver explicitly notifies the sender which

packets, messages, or segments were received

correctly which may implicitly inform the sender

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-1 Issue-3 March-2012

82

which packets were not received even though they

were sent and thus may need to be retransmitted.

Positive Acknowledgment with Re-Transmission

(PAR), is a method used by TCP to verify receipt of

transmitted data. PAR operates by re-transmitting

data at an established period of time until the

receiving host acknowledges reception of the data.

Negative Acknowledgment (NACK)

The receiver explicitly notifies the sender which

packets, messages, or segments were received

incorrectly and thus may need to be retransmitted.

Selective Acknowledgment (SACK)

The receiver explicitly lists which packets, messages,

or segments in a stream are acknowledged (either

negatively or positively). Positive selective

acknowledgment is an option in TCP that is useful in

Satellite Internet access.

Cumulative Acknowledgment

The receiver acknowledges that it correctly received

a packet, message, or segment in a stream which

implicitly informs the sender that the previous

packets were received correctly. TCP uses

cumulative acknowledgment with its TCP sliding

window.

Retransmission is a very simple concept

Whenever one party sends something to the other

party, it retains a copy of the data it sent until the

recipient has acknowledged that it received it. In a

variety of circumstances, e.g.:

if no such acknowledgment is forthcoming within a

reasonable time, the time-out. The sender discovers,

often through some out of band means, that the

transmission was unsuccessful.

if the receiver knows that expected data has not

arrived, and so notifies the sender.

if the receiver knows that the data has arrived, but in

a damaged condition, and indicates that to the sender,

the sender simply automatically retransmits the data.

2. Related Work

In this Research Paper [2] they implemented

Multipath routing algorithms for heterogeneous

network. Multipath routing separates the traffic

among different paths to minimize congestion in

terms of multiple alternative paths through a network

which can provide a variety of benefits such as

minimize delay and congestion, maximize bandwidth,

or improved security. We propose a newly improved

QoS multipath routing algorithm for heterogeneous

networks. Different types of adhoc routing protocols

are discussed in this paper such as Ad-Hoc On-

Demand Distance Vector (AODV) , Ad-Hoc On

Demand Multipath Distance Vector (AOMDV),QoS

Ad-Hoc On Demand Multipath Distance Vector

(QAOMDV), AOMDV is the extension of AODV

routing protocol. QAOMDV is QoS version of

AOMDV. These routing protocols are used in

wireless network which is designed to form multiple

routes from source to the destination and also avoid

the loop formation so that it reduces congestion in the

channel. The performance of AODV, AOMDV, and

QAOMDV protocols are compared and proved the

new routing protocol is better than others. The NS2

simulation result shows that improved performance of

the heterogeneous network for newly proposed

multipath routing protocol. The QAOMDV works

better than other protocols in terms of delay,

bandwidth, load balance, outing overhead and packet

delivery ratio have been considered by varying the

traffic load in the network. This paper analyzes the

performance of different multi-path routing

algorithms such as AODV, AOMDV and QAOMDV

routing algorithms for wireless segment of

heterogeneous network has been compared. The

heterogeneous network is the combination of fixed

and mobile network. Multipath routing protocols that

computes multiple paths during route discovery

avoids high overhead, latency and bandwidth. It is

observed the performance of QAOMDV, a QoS

multipath routing protocol of AOMDV, is efficient

than DSR, AODV, AOMDV and DSDV.

Their Simulation results shows that the performance

of QAOMDV is better than other routing protocol in

wireless side and hierarchical routing is used in wired

network. They proved that Multipath routing

algorithm provides low delay and high throughput,

better bandwidth utilization and low packet loss

during data transmission. Finally the Timing analysis

gives the comparison between different traffic pattern

and Different routing protocols are compared by

Average End to End delay with pause time.

3. Proposed Technique

TCP congestion control lies in Additive Increase

Multiplicative Decrease (AIMD), halving the

congestion window for every window containing a

packet loss, and increasing the congestion window by

roughly one segment per RTT otherwise. and TCP

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-1 Issue-3 March-2012

83

congestion control is the Retransmit Timer, including

the exponential bakeoffs of the retransmit timer when

a retransmitted packet is itself dropped. The third

fundamental component is the Slow-Start mechanism

for the initial probing for available bandwidth. The

fourth TCP congestion control mechanism is ACK-

clocking, where the arrival of acknowledgements at

the sender is used to clock out the transmission of new

data.

The TCP variants discussed in this paper, except TCP

Vegas, all adhere to this underlying framework of

Slow-Start, AIMD, Retransmit Timers, and ACK-

clocking. None of these changes alter the fundamental

underlying dynamics of TCP congestion control.

Instead, these changes help to avoid unnecessary

Retransmit Timeouts, correct unnecessary Fast

Retransmits and Retransmit Timeouts resulting from

disordered or delayed packets, and reduce

unnecessary costs (in delay and unnecessary

retransmits) associated with the mechanism of

congestion notification.

TCP congestion control

Main algorithms

Slow start

Congestion Avoidance

Fast Retransmit

Fast Recovery

TCP SACK (Selective Acknowledgement)

TCP Tahoe

The Tahoe TCP implementation added a number of

new algorithms and refinements to earlier TCP

implementations. The new algorithms include Slow-

Start, Congestion Avoidance, and Fast Retransmit [3].

The refinements include a modification to the round-

trip time estimator used to set retransmission timeout

values. The Fast Retransmit algorithm is of special

interest because it is modified in subsequent versions

of TCP. With Fast Retransmit, after receiving a small

number of duplicate acknowledgments for the same

TCP segment (dup ACKs), the data sender infers that

a packet has been lost and retransmits the packet

without waiting for a retransmission timer to expire,

leading to higher channel utilization and connection

throughput [4].

TCP Reno

The new algorithm prevents the communication

channel from going empty after Fast Retransmit,

thereby avoiding the need to Slow-Start to re-fill it

after a single packet loss. The Reno TCP

implementation retained the enhancements

incorporated into Tahoe TCP but modified the Fast

Retransmit operation to include Fast Recovery [5].

Fast Recovery operates by assuming each dup ACK

received represents a single packet having left the

pipe. Thus, during Fast Recovery the TCP sender is

able to make intelligent estimates of the amount of

outstanding data. A TCP sender enters fast Recovery

after receiving an initial threshold of dup ACKs. Once

the threshold of dup ACKs is received, the sender

retransmits one packet and reduces its congestion

window by one half. After entering Fast Recovery and

retransmit a single packet, the sender effectively waits

until half of a window of 2 dup ACKs have been

received, and then sends a new packet for each

additional dup ACK that is received. Upon receipt of

an ACK for new data, the sender exits Fast Recovery.

Reno significantly improves upon the behavior of

Tahoe TCP when a single packet is dropped from a

window of data, but can suffer from performance

problems when multiple packets are dropped from a

window of data.

TCP SACK

The SACK TCP implementation preserves the

properties of Tahoe and Reno TCP of being robust in

the presence of out-of-order packets, and uses

retransmit timeouts as the recovery method of last

resort. The congestion control algorithms

implemented in SACK TCP are a conservative

extension of Reno's congestion control, in that they

use the same algorithms for increasing and decreasing

the congestion window, and make minimal changes to

the other congestion control algorithms. Adding

SACK (Selective Acknowledgement) to TCP does not

change the basic underlying congestion control

algorithms. The main difference between the SACK

TCP implementation and the Reno TCP

implementation is in the behavior when multiple

packets are dropped from one window of data. During

Fast Recovery, SACK maintains a variable called pipe

that represents the estimated number of packets

outstanding in the path. The sender only retransmits

data when estimated number of packets in the path is

less than the congestion window. Use of the pipe

variable decouples the decision of when to send a

packet from the decision of which packet to send. The

sender maintains a data structure that remembers

acknowledgments from previous SACK options.

When the sender is allowed to send a packet, it

retransmits the next packet from the list of packets

inferred to be missing at the receiver. The SACK

sender has a special handling for partial ACKs (ACKs

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-1 Issue-3 March-2012

84

received during Fast Recovery that advance the

Acknowledgment Number field of TCP header, but do

not take the sender out of fast Recovery). The sender

decrements pipe by two rather than one for partial

ACKs, the SACK sender never recovers more slowly

than a Slow-Start. Detailed description of SACK TCP

can be found in [6].

TCP Vegas

The idea is that when the network is not congested,

the actual flow rate will be close to the expected flow

rate. Otherwise, the actual flow rate will be smaller

than the expected flow rate. TCP Vegas adopts a more

sophisticated bandwidth estimation scheme. It uses

the difference between expected and actual flow rates

to estimate the available bandwidth in the network.

TCP Vegas, using this difference in flow rates,

estimates the congestion level in the network and

updates the window size accordingly. This difference

in the flow rates can be easily translated into the

difference between the window size and the number

of acknowledged packets during the round trip time,

using the equation TCP Vegas tries to keep at least α

packet but no more than β packets in the queues.

The reason behind this is that TCP Vegas attempts to

detect and utilize the extra bandwidth whenever it

becomes available without congesting the network.

This mechanism is fundamentally different from that

used by TCP Reno. TCP Reno always updates its

window size to guarantee full utilization of available

bandwidth, leading to constant packet losses, whereas

TCP Vegas does not cause any oscillation in window

size once it converges to an equilibrium point [7]. Our

paper is focused on Reno, SACK and Vegas TCP

since Tahoe is replaced by Reno in most of today‟s

applications.

Congestion Window Size Variation

One main difference in congestion control algorithms

of TCP SACK and TCP Reno is how they deal with

more than one packet loss in one congestion window.

We try simulating the case when four packets are

dropped in one congestion window to see the window

size variation. i hope when congestion window of

TCP Reno drops to 0 and slow-start and more than

one packet are dropped in one window. Congestion

window of TCP Vegas oscillates when more packets

are dropped, but never goes back from slow-start.

TCP SACK maintains the same window size as the

value after the first packet drop and returns to a higher

window size than both Reno and Vegas. The

algorithm of TCP SACK performs better in the case

of more than one packet is dropped in one window.

4. Performance Evaluation

Justify the Behaviour on Long Delay connections:

To justify the observation in [7] that TCP Reno is

biased against the connections with longer delays.

The reason for this behaviour is as follows. While a

source does not detect any congestion, it continues to

increase its window size by one during one round trip

time (RTT). Obviously, connections with a shorter

delay can update their window sizes faster than those

with longer delays, and thus capture higher

bandwidths. To our understanding, TCP SACK does

not change this window increasing mechanism, so we

expect the same unfair behaviour with TCP SACK.

We try to designing the simulation scenarios as

follows. The network topology is shown in Topology

fig 1. S1 and S2 will be set to be the same TCP

agents, such as two Reno, two Vegas or two SACK

TCP agents, respectively. Results of X=1ms (the

same propagation delay as comparison baseline) and

X=23ms (the RTT of longer delay connection is 8

times of the shorter one) will be collected to show the

fairness between different delay connections.

Fig 1. Topology Network

5. Conclusion

In this research paper, we propose to improve the

performance of TCP Reno, TCP Vegas and TCP

SACK from many aspects. of the both TCP Vegas

and TCP SACK make some performance

improvements to TCP Reno. TCP Vegas achieves

higher throughput than Reno and SACK for large

loss rate. TCP SACK is better when more than one

packet is dropped in one window. TCP Vegas causes

much fewer packets retransmissions than TCP Reno

and SACK.

R

1

R

2

10 Mbps
10 Mbps

10 Mbps 10 Mbps

1.5

1 ms

S1

S2

S3

S4

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-1 Issue-3 March-2012

85

We also suggest a change in Vegas algorithm to

make Vegas more aggressive in the competition. This

may be worthy of further investigation. The efforts in

analysis of queuing algorithms effects lie in the

gateway side of the network. There are many

suggestions of modification that lie on the host side

to improve the fairness.

References

[1] R. Caceres, and Iftode. “Improving the

performace of reliable transport protocols in

mobile computing Environments”, IEEE JSAC,

Vol 13, No 5, June 1995.

[2] S.Santhi, G.Sudha Sadasivam, "Performance

Evaluation of Different Routing Protocols to

Minimize Congestion in Heterogeneous

Network", IEEE-International Conference on

Recent Trends in Information Technology, pp.

336-341, 2011.

[3] V. Jacobson, Congestion avoidance and control,

ACM SIGCOMM Computer Communication

Review, v.18 n.4, p.314-329, August 1988.

[4] Kevin Fall, Sally Floyd, Simulation-based

comparisons of Tahoe, Reno and SACK TCP,

ACM SIGCOMM Computer Communication

Review, v.26 n.3, p.5-21, July 1996.

[5] V. Jacobson. “Modified TCP Congestion

Avoidance Algorithm”, Technical report, 30 Apr.

1990.

[6] Kevin Fall, Sally Floyd, Simulation-based

comparisons of Tahoe, Reno and SACK TCP,

ACM SIGCOMM Computer Communication

Review, v.26 n.3, p.5-21.

[7] Jeonghoon Mo, Richard J. La, Venkat

Anantharam, and Jean Walrand, Analysis and

Comparison of TCP Reno and Vegas.

Reena rai was born in korba dist.

Korba,(Chhattisgarh) India on 26th

September 1984. She received his

Bachelor Of Engineering Degree in

Information Technology with first

division and M-Tech in Information

Technology. Her research interests

include Computing Techniques,

Security System , Robotics and Environmental with

knowledge and skills for growth and development of

Nation.

