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Abstract 
 

In this project we explore the capability and 

flexibility of   FPGA solutions in a sense to 

accelerate scientific computing applications which 

require very high precision arithmetic, based on 

IEEE   754 standard 128-bit floating-point number 

representations. Field Programmable Gate Arrays 

(FPGA) is increasingly being used to design high 

end computationally intense microprocessors 

capable of handling floating point mathematical 

operations. Quadruple Precision Floating-Point 

Arithmetic is important in computational fluid 

dynamics and physical modelling, which require 

accurate numerical computations. However, 

modern computers perform binary arithmetic, 

which has flaws in representing and rounding the 

numbers. As the demand for quadruple precision 

floating point arithmetic is predicted to grow, the 

IEEE 754 Standard for Floating-Point Arithmetic 

includes specifications for quadruple precision 

floating point arithmetic. We   implement quadruple 

precision floating point arithmetic unit   for all the 

common operations, i.e. addition, subtraction, 

multiplication and division. While previous work 

has considered circuits for low precision floating-

point formats, we consider the implementation of 

128-bit quadruple precision circuits. The project 

will provide arithmetic operation, simulation result, 

hardware design, Input via PS/2 Keyboard interface 

and results displayed on LCD using Xilinx virtex5 

(XC5VLX110TFF1136) FPGA device. 
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1. Introduction 
 

Integer arithmetic is common throughout 

computation. Integers govern loop behavior, 

determine array size, measure pixel coordinates on 

the screen, determine the exact colors displayed on a 

computer display, and perform many other tasks. 

However, integers cannot easily represent fractional 

amounts, and fractions are essential to many 

computations. Floating-point arithmetic lies at the 

heart of computer graphics cards, physics engines, 

simulations and many models of the natural world. 

Floating-point computations suffer from errors due to 

rounding and quantization. Fast computers let 

programmers write numerically intensive programs, 

but computed results can be far from the true results 

due to the accumulation of errors in arithmetic 

operations. Implementing floating-point arithmetic in 

hardware can solve two separate problems. First, it 

greatly speeds up floating-point arithmetic and 

calculations. Implementing a floating-point 

instruction will require at a generous estimate at least 

twenty integer instructions, many of them conditional 

operations, and even if the instructions are executed 

on an architecture which goes to great lengths to 

speed up execution, this will be slow. In contrast, 

even the simplest implementation of basic floating-

point arithmetic in hardware will require perhaps ten 

clock cycles per instruction, a small fraction of the 

time a software implementation would require. 

Second, implementing the logic once in hardware 

allows the considerable cost of implementation to be 

amortized across all users, including users which may 

not be able to use another software floating-point 

implementation (say, because the relevant functions 

are not publicly available in shared libraries).  

 

Quadruple precision arithmetic increases the 

accuracy and reliability of numerical computations 

by providing floating-point numbers   that have more 

than twice the precision of double precision numbers. 

This is important in applications, such as 

computational   fluid dynamics and physical 

modelling, which require accurate numerical 

computations. Most modern processors have 

hardware support for double    precision (64-bit) or 

double-extended precision (typically 80-bit) floating-

point multiplication, but not for quadruple precision 

(128-bit) floating-point arithmetic operations. It is 

also true, however, that double precision and double 

extended precision are not enough for many scientific 

applications including climate modelling, 

computational physics, and computational geometry. 

The use of quadruple precision arithmetic can greatly 
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improve the numerical stability and reproducibility of 

many of these applications. Due to these advantages 

quadruple precision arithmetic can provide in 

scientific computing applications, specifications for 

quadruple precision numbers are being added to the 

revised version of the IEEE 754 Standard for 

Floating-Point Arithmetic. Recently, the use of 

FPGA-based accelerators has become a promising 

approach for speeding up scientific applications. The 

computational capability of FPGAs is increasing 

rapidly. A top-level FPGA chip from Xilinx Virtex-5 

series contains 51840 logic Slices, 10368 Kbits 

storage and 192 DSP processing blocks (25 × 18 

MAC). 

 

Initial plans for the floating-point unit envisioned 

were ambitious. Full support for quadruple precision-

format IEEE 754 floating-point addition, subtraction, 

multiplication, and division, along with full support 

for exceptions. Floating-point unit functionality can 

be loosely divided into the following areas, the Adder 

module, Subtracter module the Multiplier module and 

Division module. Together these modules compose 

the internals of the FPU module, which encapsulates 

all behavior in one location and provides one central 

interface for calculation of floating point calculations. 

A keyboard is interfaced with Floating Point Unit to 

feed the 128 bit input operands making use of the ps2 

interface available on the FPGA board. The 128 bit 

output is displayed on the 16*2 LCD present on the 

FPGA board. Field Programmable Gate Array 

(FPGA) is a silicon chip with unconnected logic 

blocks, these logic blocks can be defined and 

redefined by user at any time. FPGAs are 

increasingly being used for applications which 

require high numerical stability and accuracy. With 

less time to market and low cost, FPGAs are 

becoming a more attractive solution compared to 

Application Specific Integrated Circuits (ASIC). 

FPGAs are mostly used in low volume applications 

that cannot afford silicon fabrication or designs 

which require frequent changes or upgrades. In 

FPGAs, the bottleneck for designing efficient 

floating-point units has mostly been area. With 

advancement in FPGA architecture, however, there is 

a significant increase in FPGA densities. Devices 

with millions of gates and frequencies reaching up to 

500 MHz are becoming more suitable for floating-

point arithmetic reliant applications. 

 

2. Floating Point Numerical 

Representation 
 

The IEEE 754 standard specifies that a quadruple 

precision number consists of a 1-bit sign, a 15-bit 

biased exponent, and a 112-bit significant. The 

quadruple precision number format is shown in fig. 

2.1.  

 
 

Fig. 2.1: Quadruple Precision Format 

 

E is an unsigned biased number and the true exponent 

e is obtained as e=E-Ebias with Ebias=16383. For 

quadruple precision numbers value of E ranges from 

0 to 32767.The number zero is represented with E=0 

and f=0.An exponent E=2047 and f=0 represents 

infinity.    The fraction f represents a number in the 

range [0,l) and the significant S is given by S=l.f  and 

f is in the range [1,2).The actual value of the 

quadruple precision floating point number is the 

following: 

 

Value = -1
(sign bit)

  x  2
(exponent – 16383) 

 x  1.(mantissa). 

 

The basic format is described in IEEE 754 format, 

quadruple precision using 128-bits. Floating-point 

arithmetic as differs in a number of ways from 

standard integral arithmetic. Floating-point arithmetic 

is almost always inexact. Only floating point 

numbers which are the sum of a limited sequence of 

powers of two may be exactly represented using the 

format specified by IEEE 754. This contrasts with 

integer arithmetic, where (for example) the sum or 

product of two numbers always equals their exact 

value sum, excluding the rare case of overflow. For 

example, in IEEE arithmetic 0.1 + 0.2 is not equal to 

0.3, but rather is equal to 0.3000000000000004. This 

has many subtle ramifications, with the most 

common being that equality comparisons should 

almost never be exact. They should instead be 

bounded by some epsilon. Another difference 

between floating-point and integer numbers is that 

floating-point numbers include the special values 

positive and negative infinity, positive and negative 

zero, and not-a-number (NaN). These values are 

produced in certain circumstances by calculations 

with particular arguments. For example, infinity is 

the result of dividing a large positive number by a 

small positive number. A third difference is that 

floating-point operations can sometimes be made safe 

against certain conditions which may be considered 

errors. In particular, floating-point exceptions provide 
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a mechanism for detecting possibly-invalid 

operations such as the canonical division by zero, 

overflow to an infinity value, underflow to a number 

too small to be represented or inexact when the result 

of a calculation isn't exactly equal to the 

mathematical result of the calculation.  

 

2.1. IEEE 754 Quadruple Precision Floating-

Point Encoding 

The mapping from an encoding of a quadruple-

precision floating-point number to the number‟s 

value is summarized in Table 2.2. 

 

2.1.1 Normalized numbers 

A floating-point number is said to be normalized if 

the exponent field contains the real exponent plus the 

bias other than 0x7FFF and 0x0000. For all the 

normalized numbers, the first bit just left to the 

decimal point is considered to be 1 and not encoded 

in the floating-point representation and thus also 

called the implicit or the hidden bit. Therefore the 

quadruple precision representation only encodes the 

lower 112 bits. 

 

2.1.2 Denormalized numbers 

A floating-point number is considered to be 

denormalized if the exponent field is 0x0000 and the 

fraction field doesn‟t contain all 0‟s. The implicit or 

the hidden bit is always set to 0. Denormalized 

numbers fill in the gap between zero and the lowest 

normalized number. 

 

2.1.3  Infinity  

In quadruple precision representation, positive 

infinity is represented by sign bit is „0‟, exponent 

field of 0x7FFF and the whole fraction field of 

0‟s.The negative infinity is represented by sign bit is 

„1‟, exponent field of 0x7FFF and the whole fraction 

field of 0‟s. 

 

2.1.4 Not a Number (NaN) 

In quadruple precision representation, NaN is 

represented by at least one of the mantissa bits must 

be nonzero. Otherwise, it would be interpreted as 

infinity. The sign bit can be 1 or 0, exponent field of 

0x7FFF and the fraction field that doesn‟t include all 

0‟s and the lower 111 bits of the mantissa can be any 

value, as long as it is nonzero for the NaN. 

 

2.1.5 Zero 

In double-precision representation, zero is 

represented by exponent field of 0x0000 and the 

whole fraction field of 0‟s. The sign bit represents -0 

and +0, respectively. 

3. Hardware Implementation 
 

The block diagram of hardware implementation of 

Floating Point Unit is shown the fig. 3.1. The inputs 

to the Unit are clock, reset, enable, rounding mode, 

operation mode and two operands. Based on the 

inputs applied the output from the one of the chosen 

module. At the output 128 bit result is available. The 

block Floating Point Unit consists of separate 

modules for performing addition, subtraction, 

multiplication and division which is shown in the 

fig.3.2. 

 

 
 

Fig. 3.1: Hardware Implementation 

 

 
 

Fig. 3.2: Floating Point Unit. 

 

3.1. Block Diagram of the Project 

The input operands A and B are given from the 

keyboard via PS/2 interface available on FPGA 

board. Since operands A and B are of 128 bits it takes 

long time to give binary input of 256 bits serially. So, 

the hexadecimal input of operands A and B is given 

through the keyboard. By giving hexadecimal input 

we need to enter only 64 keys which reduce the time 

to enter the input. The time gap between the two 
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consecutive key presses is 3 seconds. The block 

diagram is shown in the fig. 3.3.The input from the 

keyboard which reaches the FPGA is respective scan 

code of the key pressed. A module is designed which 

converts scan code into hexadecimal format. A 128 

bit Memory which consists of 32 locations of each 4 

bits width is used to store the input operands. A reset 

switch is provided which can reset the memory. After 

entering either  

 

 
 

Fig. 3.3: Block Diagram of the Project 

 

Operand A or operand B we can reset the memory so 

that the next input operand of 128 bit can be stored in 

the memory. Based on the select input from dip 

switch the 128 bit data can be passed to either 

operand A or operand B. The result which is obtained 

from the Floating Point Unit is displayed using LCD 

available on the FPGA. The result is also in the 

hexadecimal format. There are 32 locations available 

in the LCD so, the output of 128 bit is displayed in 

these 32 locations in hexadecimal format. The input 

operands are given through keyboard. The signals 

enable, ABsel, fpu_op, memoryrst are given through 

dip switches available on FPGA board. The signal rst 

is given through push button. 

 

 
 

Fig. 3.4: The Top Module the Project 

 

The output of 128 bit data is displayed on LCD in 

hexadecimal format. All the 32 locations present on 

LCD are used. 

 

4. Results and Comparison 
 

The code is written using Very High Speed 

Integrated Hardware Description Language (VHDL). 

VHDL code for floating point addition, subtraction, 

multiplication, division is written and simulation 

results are obtained using Xilinx 12.2 ISE tool. 

Clock, reset, enable, two input operands and output 

can be seen in the simulation plots. The hexa decimal 

representation is used in simulation plots. The clock 

period used is 10 ns which is same as Virtex5 

(XC5VLX110T) FPGA. 

 

4.1. Addition 

The simulation result for the addition operation is 

shown in the fig. 5.1. The signal fpu_op is 000 for 

addition operation. The operands A and B are 

represented in hexadecimal format. The operand A is   

(2
^265

 * 1.5) and operand B is   (2
^281

 * 1.5). The 

result of the addition operation is (2
^281

 * 

1.500022888). The result shown in the simulation 

plot is in hexadecimal format. 

 

The addition operation is taking 25.5 clock cycles to 

complete the operation and produce the result. The 

clock period is 10 nano seconds. The two markers 

shown in the plot indicates start of enable signal and 

result obtained. 

 

 
 

Fig. 4.1: Simulation plot for Addition 

 

4.2. Subtraction 

The simulation result for the subtraction operation is 

shown in the fig. 5.2. The signal fpu_op is 001 for 

subtraction operation. The operands A and B are 

represented in hexadecimal format. The operand A is   

(2
^265

 * 1.5) and operand B is   (2
^281

 * 1.5). The 

result of the subtraction operation is (- 2
^281

 * 

1.499977111). The result shown in the simulation 

plot is in hexadecimal format. The result is negative 

so, the sign bit is 1 in this case. 

 

The subtraction operation is taking 26.5 clock cycles 

to complete the operation and produce the result. The 

clock period is 10 nano seconds. The two markers 
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shown in the plot indicates start of enable signal and 

result obtained. 

 

 
 

Fig. 4.2: Simulation plot for Subtraction 

 

4.3.  Multiplication 

The simulation result for the multiplication operation 

is shown in fig. 5.3. The signal fpu_op is 010 for 

multiplication operation. The operands A and B are 

represented in hexadecimal format. The operand A is   

(2
^265

 * 1.5) and operand B is   (2
^-15

 * 1.75). The 

result of the multiplication operation is (2
^251

 * 

1.3125). The result shown in the simulation plot is in 

hexadecimal format. The multiplication operation is 

taking 29.5 clock cycles to complete the operation 

and produce the result. The clock period is 10 nano 

seconds. The two markers shown in the plot indicates 

start of enable signal and result obtained. 

 

 
 

Fig. 4.3: Simulation plot for Multiplication 

 

4.4. Division 

The simulation result for the division operation is 

shown in the fig. 5.4. The signal fpu_op is 011 for 

division operation. The operands A and B are 

represented in hexadecimal format. The operand A is   

(2
^265

 * 1.5) and operand B is   (2
^-15

 * 1.75). The 

result of the division operation is (2
^279

 * 

1.714285671). The result shown in the simulation 

plot is in hexadecimal format.  

 

The division operation is taking 128 clock cycles to 

complete the operation and produce the result. The 

clock period is 10 nano seconds. The two markers 

shown in the plot indicates start of enable signal and 

result obtained. 

 

 
 

Fig. 4.4: Simulation plot for Division 

 

4.5. Device Utilization Summery using FPGA 

The design summary of the top level module is 

shown in the Table 4.1. 

 

Table 4.1: Design Summary of Quadruple 

Precision Floating Point Unit 

 

 
 

4.6. Comparison with different FPGA device 

resources 

 

This design implemented on Virtex5 FPGA. Using 

with advanced architecture and effective utilization 
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of the LUTs and DSP48 in the design helped in 

reducing area and complexity. 

 

Table 4.2: Comparison of different FPGA 

resources 

 

FPGA Slice LUT Frequency 

Virtex 4 29274 

  

57045 

 

10.154MHz 

 

Virtex 5 8415 

 

31859 

 

9.873MHz 

 

 

Above table shown the comparison between Virtex 4 

which contain two 4-input LUTs and Virtex5 in 

which four 6-input LUTs. It is usually the number of 

LUT‟s that is a bottleneck for FPGA design. From 

this perspective, it could be stated that one Virtex 5 

slice can substitute 8 Virtex 4 slices. However in 

real-world designs it is impossible to utilize all the 

resources. But we succeeded by using optimum 

utilization of the FPGA resource with Keyboard, 

LCD and LED Interfacing. 

 

5. Conclusion 
 

A Quadruple Precision Floating Point Arithmetic 

Unit is implemented on FPGA (Field Programmable 

Gate Array) kit Xilinx Virtex5 

(XC5VLX110TFF1136). Floating Point Arithmetic 

circuits can be extremely useful in the FPGA based 

implementation of complex systems that benefit from 

the re-programmability and parallelism of the FPGA 

device. The testing of the core is done by providing 

the facility to give input in the hexadecimal format 

through the keyboard. The output can be observed on 

the LCD in the hexadecimal format. The project can 

be extended to 256 bit floating point arithmetic unit. 

And the operations can be increased   by including 

square root operation, etc.  
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