
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

7

FPGA Based Quadruple Precision Floating Point Arithmetic for

Scientific Computations

1
Mamidi Nagaraju,

2
Geedimatla Shekar

1
Department of ECE, VLSI Lab, National Institute of Technology (NIT), Calicut, Kerala, India

2
Asst.Professor, Department of ECE, Amrita Vishwa Vidyapeetham University Amritapuri, Kerala, India

Abstract

In this project we explore the capability and

flexibility of FPGA solutions in a sense to

accelerate scientific computing applications which

require very high precision arithmetic, based on

IEEE 754 standard 128-bit floating-point number

representations. Field Programmable Gate Arrays

(FPGA) is increasingly being used to design high

end computationally intense microprocessors

capable of handling floating point mathematical

operations. Quadruple Precision Floating-Point

Arithmetic is important in computational fluid

dynamics and physical modelling, which require

accurate numerical computations. However,

modern computers perform binary arithmetic,

which has flaws in representing and rounding the

numbers. As the demand for quadruple precision

floating point arithmetic is predicted to grow, the

IEEE 754 Standard for Floating-Point Arithmetic

includes specifications for quadruple precision

floating point arithmetic. We implement quadruple

precision floating point arithmetic unit for all the

common operations, i.e. addition, subtraction,

multiplication and division. While previous work

has considered circuits for low precision floating-

point formats, we consider the implementation of

128-bit quadruple precision circuits. The project

will provide arithmetic operation, simulation result,

hardware design, Input via PS/2 Keyboard interface

and results displayed on LCD using Xilinx virtex5

(XC5VLX110TFF1136) FPGA device.

Keywords

FPGA, Floating-point, Quadruple precision, Arithmetic.

1. Introduction

Integer arithmetic is common throughout

computation. Integers govern loop behavior,

determine array size, measure pixel coordinates on

the screen, determine the exact colors displayed on a

computer display, and perform many other tasks.

However, integers cannot easily represent fractional

amounts, and fractions are essential to many

computations. Floating-point arithmetic lies at the

heart of computer graphics cards, physics engines,

simulations and many models of the natural world.

Floating-point computations suffer from errors due to

rounding and quantization. Fast computers let

programmers write numerically intensive programs,

but computed results can be far from the true results

due to the accumulation of errors in arithmetic

operations. Implementing floating-point arithmetic in

hardware can solve two separate problems. First, it

greatly speeds up floating-point arithmetic and

calculations. Implementing a floating-point

instruction will require at a generous estimate at least

twenty integer instructions, many of them conditional

operations, and even if the instructions are executed

on an architecture which goes to great lengths to

speed up execution, this will be slow. In contrast,

even the simplest implementation of basic floating-

point arithmetic in hardware will require perhaps ten

clock cycles per instruction, a small fraction of the

time a software implementation would require.

Second, implementing the logic once in hardware

allows the considerable cost of implementation to be

amortized across all users, including users which may

not be able to use another software floating-point

implementation (say, because the relevant functions

are not publicly available in shared libraries).

Quadruple precision arithmetic increases the

accuracy and reliability of numerical computations

by providing floating-point numbers that have more

than twice the precision of double precision numbers.

This is important in applications, such as

computational fluid dynamics and physical

modelling, which require accurate numerical

computations. Most modern processors have

hardware support for double precision (64-bit) or

double-extended precision (typically 80-bit) floating-

point multiplication, but not for quadruple precision

(128-bit) floating-point arithmetic operations. It is

also true, however, that double precision and double

extended precision are not enough for many scientific

applications including climate modelling,

computational physics, and computational geometry.

The use of quadruple precision arithmetic can greatly

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

8

improve the numerical stability and reproducibility of

many of these applications. Due to these advantages

quadruple precision arithmetic can provide in

scientific computing applications, specifications for

quadruple precision numbers are being added to the

revised version of the IEEE 754 Standard for

Floating-Point Arithmetic. Recently, the use of

FPGA-based accelerators has become a promising

approach for speeding up scientific applications. The

computational capability of FPGAs is increasing

rapidly. A top-level FPGA chip from Xilinx Virtex-5

series contains 51840 logic Slices, 10368 Kbits

storage and 192 DSP processing blocks (25 × 18

MAC).

Initial plans for the floating-point unit envisioned

were ambitious. Full support for quadruple precision-

format IEEE 754 floating-point addition, subtraction,

multiplication, and division, along with full support

for exceptions. Floating-point unit functionality can

be loosely divided into the following areas, the Adder

module, Subtracter module the Multiplier module and

Division module. Together these modules compose

the internals of the FPU module, which encapsulates

all behavior in one location and provides one central

interface for calculation of floating point calculations.

A keyboard is interfaced with Floating Point Unit to

feed the 128 bit input operands making use of the ps2

interface available on the FPGA board. The 128 bit

output is displayed on the 16*2 LCD present on the

FPGA board. Field Programmable Gate Array

(FPGA) is a silicon chip with unconnected logic

blocks, these logic blocks can be defined and

redefined by user at any time. FPGAs are

increasingly being used for applications which

require high numerical stability and accuracy. With

less time to market and low cost, FPGAs are

becoming a more attractive solution compared to

Application Specific Integrated Circuits (ASIC).

FPGAs are mostly used in low volume applications

that cannot afford silicon fabrication or designs

which require frequent changes or upgrades. In

FPGAs, the bottleneck for designing efficient

floating-point units has mostly been area. With

advancement in FPGA architecture, however, there is

a significant increase in FPGA densities. Devices

with millions of gates and frequencies reaching up to

500 MHz are becoming more suitable for floating-

point arithmetic reliant applications.

2. Floating Point Numerical

Representation

The IEEE 754 standard specifies that a quadruple

precision number consists of a 1-bit sign, a 15-bit

biased exponent, and a 112-bit significant. The

quadruple precision number format is shown in fig.

2.1.

Fig. 2.1: Quadruple Precision Format

E is an unsigned biased number and the true exponent

e is obtained as e=E-Ebias with Ebias=16383. For

quadruple precision numbers value of E ranges from

0 to 32767.The number zero is represented with E=0

and f=0.An exponent E=2047 and f=0 represents

infinity. The fraction f represents a number in the

range [0,l) and the significant S is given by S=l.f and

f is in the range [1,2).The actual value of the

quadruple precision floating point number is the

following:

Value = -1
(sign bit)

 x 2
(exponent – 16383)

 x 1.(mantissa).

The basic format is described in IEEE 754 format,

quadruple precision using 128-bits. Floating-point

arithmetic as differs in a number of ways from

standard integral arithmetic. Floating-point arithmetic

is almost always inexact. Only floating point

numbers which are the sum of a limited sequence of

powers of two may be exactly represented using the

format specified by IEEE 754. This contrasts with

integer arithmetic, where (for example) the sum or

product of two numbers always equals their exact

value sum, excluding the rare case of overflow. For

example, in IEEE arithmetic 0.1 + 0.2 is not equal to

0.3, but rather is equal to 0.3000000000000004. This

has many subtle ramifications, with the most

common being that equality comparisons should

almost never be exact. They should instead be

bounded by some epsilon. Another difference

between floating-point and integer numbers is that

floating-point numbers include the special values

positive and negative infinity, positive and negative

zero, and not-a-number (NaN). These values are

produced in certain circumstances by calculations

with particular arguments. For example, infinity is

the result of dividing a large positive number by a

small positive number. A third difference is that

floating-point operations can sometimes be made safe

against certain conditions which may be considered

errors. In particular, floating-point exceptions provide

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

9

a mechanism for detecting possibly-invalid

operations such as the canonical division by zero,

overflow to an infinity value, underflow to a number

too small to be represented or inexact when the result

of a calculation isn't exactly equal to the

mathematical result of the calculation.

2.1. IEEE 754 Quadruple Precision Floating-

Point Encoding

The mapping from an encoding of a quadruple-

precision floating-point number to the number‟s

value is summarized in Table 2.2.

2.1.1 Normalized numbers

A floating-point number is said to be normalized if

the exponent field contains the real exponent plus the

bias other than 0x7FFF and 0x0000. For all the

normalized numbers, the first bit just left to the

decimal point is considered to be 1 and not encoded

in the floating-point representation and thus also

called the implicit or the hidden bit. Therefore the

quadruple precision representation only encodes the

lower 112 bits.

2.1.2 Denormalized numbers

A floating-point number is considered to be

denormalized if the exponent field is 0x0000 and the

fraction field doesn‟t contain all 0‟s. The implicit or

the hidden bit is always set to 0. Denormalized

numbers fill in the gap between zero and the lowest

normalized number.

2.1.3 Infinity

In quadruple precision representation, positive

infinity is represented by sign bit is „0‟, exponent

field of 0x7FFF and the whole fraction field of

0‟s.The negative infinity is represented by sign bit is

„1‟, exponent field of 0x7FFF and the whole fraction

field of 0‟s.

2.1.4 Not a Number (NaN)

In quadruple precision representation, NaN is

represented by at least one of the mantissa bits must

be nonzero. Otherwise, it would be interpreted as

infinity. The sign bit can be 1 or 0, exponent field of

0x7FFF and the fraction field that doesn‟t include all

0‟s and the lower 111 bits of the mantissa can be any

value, as long as it is nonzero for the NaN.

2.1.5 Zero

In double-precision representation, zero is

represented by exponent field of 0x0000 and the

whole fraction field of 0‟s. The sign bit represents -0

and +0, respectively.

3. Hardware Implementation

The block diagram of hardware implementation of

Floating Point Unit is shown the fig. 3.1. The inputs

to the Unit are clock, reset, enable, rounding mode,

operation mode and two operands. Based on the

inputs applied the output from the one of the chosen

module. At the output 128 bit result is available. The

block Floating Point Unit consists of separate

modules for performing addition, subtraction,

multiplication and division which is shown in the

fig.3.2.

Fig. 3.1: Hardware Implementation

Fig. 3.2: Floating Point Unit.

3.1. Block Diagram of the Project

The input operands A and B are given from the

keyboard via PS/2 interface available on FPGA

board. Since operands A and B are of 128 bits it takes

long time to give binary input of 256 bits serially. So,

the hexadecimal input of operands A and B is given

through the keyboard. By giving hexadecimal input

we need to enter only 64 keys which reduce the time

to enter the input. The time gap between the two

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

10

consecutive key presses is 3 seconds. The block

diagram is shown in the fig. 3.3.The input from the

keyboard which reaches the FPGA is respective scan

code of the key pressed. A module is designed which

converts scan code into hexadecimal format. A 128

bit Memory which consists of 32 locations of each 4

bits width is used to store the input operands. A reset

switch is provided which can reset the memory. After

entering either

Fig. 3.3: Block Diagram of the Project

Operand A or operand B we can reset the memory so

that the next input operand of 128 bit can be stored in

the memory. Based on the select input from dip

switch the 128 bit data can be passed to either

operand A or operand B. The result which is obtained

from the Floating Point Unit is displayed using LCD

available on the FPGA. The result is also in the

hexadecimal format. There are 32 locations available

in the LCD so, the output of 128 bit is displayed in

these 32 locations in hexadecimal format. The input

operands are given through keyboard. The signals

enable, ABsel, fpu_op, memoryrst are given through

dip switches available on FPGA board. The signal rst

is given through push button.

Fig. 3.4: The Top Module the Project

The output of 128 bit data is displayed on LCD in

hexadecimal format. All the 32 locations present on

LCD are used.

4. Results and Comparison

The code is written using Very High Speed

Integrated Hardware Description Language (VHDL).

VHDL code for floating point addition, subtraction,

multiplication, division is written and simulation

results are obtained using Xilinx 12.2 ISE tool.

Clock, reset, enable, two input operands and output

can be seen in the simulation plots. The hexa decimal

representation is used in simulation plots. The clock

period used is 10 ns which is same as Virtex5

(XC5VLX110T) FPGA.

4.1. Addition

The simulation result for the addition operation is

shown in the fig. 5.1. The signal fpu_op is 000 for

addition operation. The operands A and B are

represented in hexadecimal format. The operand A is

(2
^265

 * 1.5) and operand B is (2
^281

 * 1.5). The

result of the addition operation is (2
^281

 *

1.500022888). The result shown in the simulation

plot is in hexadecimal format.

The addition operation is taking 25.5 clock cycles to

complete the operation and produce the result. The

clock period is 10 nano seconds. The two markers

shown in the plot indicates start of enable signal and

result obtained.

Fig. 4.1: Simulation plot for Addition

4.2. Subtraction

The simulation result for the subtraction operation is

shown in the fig. 5.2. The signal fpu_op is 001 for

subtraction operation. The operands A and B are

represented in hexadecimal format. The operand A is

(2
^265

 * 1.5) and operand B is (2
^281

 * 1.5). The

result of the subtraction operation is (- 2
^281

 *

1.499977111). The result shown in the simulation

plot is in hexadecimal format. The result is negative

so, the sign bit is 1 in this case.

The subtraction operation is taking 26.5 clock cycles

to complete the operation and produce the result. The

clock period is 10 nano seconds. The two markers

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

11

shown in the plot indicates start of enable signal and

result obtained.

Fig. 4.2: Simulation plot for Subtraction

4.3. Multiplication

The simulation result for the multiplication operation

is shown in fig. 5.3. The signal fpu_op is 010 for

multiplication operation. The operands A and B are

represented in hexadecimal format. The operand A is

(2
^265

 * 1.5) and operand B is (2
^-15

 * 1.75). The

result of the multiplication operation is (2
^251

 *

1.3125). The result shown in the simulation plot is in

hexadecimal format. The multiplication operation is

taking 29.5 clock cycles to complete the operation

and produce the result. The clock period is 10 nano

seconds. The two markers shown in the plot indicates

start of enable signal and result obtained.

Fig. 4.3: Simulation plot for Multiplication

4.4. Division

The simulation result for the division operation is

shown in the fig. 5.4. The signal fpu_op is 011 for

division operation. The operands A and B are

represented in hexadecimal format. The operand A is

(2
^265

 * 1.5) and operand B is (2
^-15

 * 1.75). The

result of the division operation is (2
^279

 *

1.714285671). The result shown in the simulation

plot is in hexadecimal format.

The division operation is taking 128 clock cycles to

complete the operation and produce the result. The

clock period is 10 nano seconds. The two markers

shown in the plot indicates start of enable signal and

result obtained.

Fig. 4.4: Simulation plot for Division

4.5. Device Utilization Summery using FPGA

The design summary of the top level module is

shown in the Table 4.1.

Table 4.1: Design Summary of Quadruple

Precision Floating Point Unit

4.6. Comparison with different FPGA device

resources

This design implemented on Virtex5 FPGA. Using

with advanced architecture and effective utilization

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

12

of the LUTs and DSP48 in the design helped in

reducing area and complexity.

Table 4.2: Comparison of different FPGA

resources

FPGA Slice LUT Frequency

Virtex 4 29274

57045

10.154MHz

Virtex 5 8415

31859

9.873MHz

Above table shown the comparison between Virtex 4

which contain two 4-input LUTs and Virtex5 in

which four 6-input LUTs. It is usually the number of

LUT‟s that is a bottleneck for FPGA design. From

this perspective, it could be stated that one Virtex 5

slice can substitute 8 Virtex 4 slices. However in

real-world designs it is impossible to utilize all the

resources. But we succeeded by using optimum

utilization of the FPGA resource with Keyboard,

LCD and LED Interfacing.

5. Conclusion

A Quadruple Precision Floating Point Arithmetic

Unit is implemented on FPGA (Field Programmable

Gate Array) kit Xilinx Virtex5

(XC5VLX110TFF1136). Floating Point Arithmetic

circuits can be extremely useful in the FPGA based

implementation of complex systems that benefit from

the re-programmability and parallelism of the FPGA

device. The testing of the core is done by providing

the facility to give input in the hexadecimal format

through the keyboard. The output can be observed on

the LCD in the hexadecimal format. The project can

be extended to 256 bit floating point arithmetic unit.

And the operations can be increased by including

square root operation, etc.

References

[1] Yong Dou, Yuanwu Lei, Guiming Wu, Song

Guo, Jie Zhou, Li Shen, “FPGA Accelerating

Double/Quad-Double High Precision Floating-

Point Applications for ExaScale Computing”,

ICS‟10, June 2–4, 2010, Tsukuba, Ibaraki, Japan.

[2] Akkas, A., Schulte, M.J., “A Quadruple Precision

and Dual Double Precision Floating-Point

Multiplier”, IEEE Proc. Digital System Design,

pp.76-81, 2003.

[3] Virtex-5 FPGA User GuideUG190 (v5.3) May

17, 2010, www.xilinx.com.

[4] D. H. Bailey., “High-precision floating-point

arithmetic in scientific computation”, Computing

in Science and Engineering, 7(3):54–61, January

2005.

Geedimatle Shekar was born in

Kompally, Andhra Pradesh, on 9th

November 1988. I completed my

M.Tech in embedded design from

National Institute of Technology (NIT)-

Calicut. Presently working as an

Assistant Professor at Amrita Vishwa

Vidyapeetham University- Amritapuri

Campus. His field of interest includes Embedded and

VLSI design.

Mamidi Nagaraju was born in Pale

Annavaram, Andhra Pradesh, on 15th

May 1985. Presently, working with

SMDP-II Project at National Institute

of Technology, Calicut. He completed

his P.G Diploma in VLSI Design from

DOEACC-Calicut. He was successfully

published six papers in IEEE National

and International Conferences. His field of interest includes

FPGA and ASIC Design.

Auth or‟s Photo

