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Abstract 
 

There exist various image de-noising techniques. 

Amongst them orthogonal wavelet is preferred one. 

However, the orthogonal wavelet transform is not 

better technique as proper clustering of wavelet 

coefficients is not possible in this technique. So a 

better image de-noising technique is needed to have 

a better SNR and greater image information. In this 

work, image de-noising by linear minimum mean 

square-error estimation (LMMSE) scheme is 

proposed and results show that this method 

outperforms some of the existing de-noising 

techniques. 
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1. Introduction 
 

Stastical modeling is very important for the 

effectiveness of signal processing. A wavelet 

transform (WT), can decorrelate random processes 

into independent coefficients, which can then be 

more effectively modeled statistically [7, 8, 19, 23, 

24]. WT can be successfully applied to coding and 

denoising. The first wavelet soft thresholding 

approach by Donoho and many wavelet-based 

denoising schemes are reported [2, 3, 5, 9, 12-28]. In 

threshold-based denoising schemes, a threshold is set 

to distinguish noise from the structural information. 

Thresholding can be classified into soft and hard 

ones, in which coefficients less than the threshold 

will be set to 0 but those above the threshold will be 

preserved. Donoho [2] first presented the wavelet 

shrinkage scheme with a universal threshold based on 

orthonormal wavelet bases. Since Donoho’s pioneer 

work, a numerous threshold-based denoising schemes 

have been proposed [3, 13, 17-21]. It is generally 

accepted that in each sub-band the image wavelet 

coefficients can be modelled as independent 

identically distributed random variables with 

generalized Gaussian distribution (GGD) with which 

Chang presented a near optimal soft threshold [20-23, 

26].   

Liu and Moulin [11] classified the wavelet statistical 

models into intrascale, interscale and hybrid ones. 

The denoising schemes in [16-26] benefit from 

intrascale models. Chang et al. [21] introduced a 

spatially adaptive wavelet thresholding scheme based 

on context modeling. M. K. Mıhçak et al. [16] 

estimated the second-order local statistics of each 

coefficient with a centered square-shaped window 

and developed linear minimum mean squared-error 

estimation (LMMSE) like denoising method. The 

denoising approach of Li and Orchard [26] is also 

LMMSE based but it models the wavelet coefficients 

as a mixture of edge and non-edge classes. In [5], a 

local contextual hidden Markov model (LCHMM) 

was proposed to capture the wavelet intrascale 

dependencies. Wavelet interscale models are also 

used in many other applications [1, 6, 10, 13-15, 17, 

28]. Shapiro [10] exploited this property and 

developed the well-known embedded zero tree 

wavelet image compression scheme. The property 

has been exploited for denoising [13, 17, 28] step 

estimation and edge detection. The wavelet interscale 

dependencies have also been represented by Markov 

models. Each coefficient was modelled as the product 

of a Gaussian random vector and a hidden multiplier 

variable to include adjacent scales in the conditioning 

local neighbourhood [6, 9, 11, 12, 15, and 26].The 

rest of this paper is organized as follows: In Section 

2, details of methodology are formulated. Section 3 

deals with the results and discussion. Finally, the 

concluding remarks are given in Section 4. 

 

2. Methodologies 
 

The LMMSE denoising schemes in and exploits the 

wavelet intrascale dependencies [16, 26]. An 

LMMSE-based denoising approach with an interscale 

model is presented by using over complete wavelet 

expansion (OWE). We have exploited the wavelet 

intrascale dependency to spatially classify the 

wavelet coefficients into several clusters adaptively. 

With OWE, in which there is no down sampling in 

the decomposition, each wavelet subband has the 

same number of coefficients as the input image. We 

combine the wavelet coefficients with the same 

spatial location across adjacent scales as a vector, to 

which the LMMSE is then applied. Such an operation 
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naturally incorporates the interscale dependencies of 

wavelet coefficients to improve the estimation. 

LMMSE is similar to soft thresholding strategy. 

Suppose the variable is scalar, instead of shrinking a 

noisy wavelet coefficient       (where    is the 

wavelet coefficient of noiseless signal and    is that 

of noise) with threshold    ̂      ( )      (   
   ), LMMSE modifies the coefficient with a 

factor    ̂        , where     
 (  

     
  )⁄  and 

   
 are the variances of signal and    noise, 

respectively. Obviously, is less than 1 so that    ̂  will 

be less than     .The energy of finally restored 

signal will be shrunk just likes in the soft 

thresholding schemes. The performance of proposed 

interscale LMMSE scheme is wavelet dependent [7, 

8].  

 
 

Fig. 1: One stage decomposition of the 2-D OWE. 

 

  
  ,   

  and   
   are the wavelet coefficients at 

horizontal, vertical and diagonal directions.  From 

denoising point of view wavelet filters should have 

the following two properties. One is the capability of 

extracting signal information from noisy wavelet 

coefficients. A parameter M, which is based on the 

mutual information of noiseless wavelet coefficients 

and noisy wavelet coefficients, is defined M  is 

proportional to the performance of the scheme. The 

other is that the distribution of interscale image 

wavelet coefficients is sufficiently close to jointly 

Gaussian. A parameter, which measures the 

difference between the Gaussian and real signal 

density functions, is defined and is inversely 

proportional to the denoising performance. An 

optimal wavelet could be determined from a library 

of wavelets based on the M and E values [26]. 

Use of context modelling gives a local discrimination 

of image characteristics, such as edge structures and 

backgrounds, according to their spatial dependencies. 

We extend the context modelling to interscale 

wavelet coefficient vector variables. The statistics of 

wavelet coefficients are then estimated locally from 

each cluster. Experiments show that context 

modelling improves the denoising performance [26]. 

 

2.1. Interscale model and LMMSE-based 

denoising 

Bi-orthogonal wavelet transform (OWT) is 

translation variant due to the down sampling. This 

will cause some visual artifacts in threshold-based 

denoising. It has been observed that the OWE 

achieves better results in noise reduction and artifacts 

suppression. The denoising scheme presented adopts 

OWE, whose one stage two-dimensional (2-D) 

decomposition structure is shown in Fig. 1[courtesy 

from ref. 26]. The restored signal by OWE is an 

average of several circularly shifted denoised 

versions of the same signal by OWT, and by which 

the additive noise is better suppressed [17, 18, 20, 

26]. 

 

2.2. LMMSE of wavelet coefficients 

Let the original [26] signal   is corrupted with 

additive Gaussian white noise    

 g                  (1) 

where    (    ) . Applying the OWE to the noisy 

signal g, at scale   gives 

                     (2) 

where     is coefficients at scale  ,   , and      are the 

expansions of    and   , respectively. Here, the 

LMMSE of wavelet coefficients is employed instead 

of soft thresholding. Suppose the variance of     is    
  

and that of      is     
   . Since both are zero mean, the 

LMMSE of       is 

 ̂                                            (3) 

with 

  
   

 

  
     

                (4) 

Since     is Gaussian distributed and independent of 

    , if    is also of Gaussian distribution, it is well 

known that    will be Gaussian and (3) is equivalent 

to the optimal MMSE [4]. Unfortunately,    obeys in 

general the GGD model, which reduces to Gaussian 

only in very special cases. 

Referring to Fig. 1, term     
  can be written as 

     
        

              (5) 

where    is the convolution operator and filter   
  is 

  
       

           
         

             (6) 

Similarly, we have 

     
        

   ,      
        

                          (7) 

where    

  
       

           
         

    (8) 

  
       

           
         

           (9) 

Noise standard deviation of    at scale   in a direction 

(horizontal, vertical or diagonal) is 
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   ‖    ‖   (10) where      is the 

corresponding filter (    
  ,     

  or     
   ) and ‖ ‖  is 

the norm operator: ‖ ‖  √∑ ∑   (   )  . The 

standard deviation    
  of noiseless image    is 

estimated as follows   

 ̂  
     

    
                          (11) 

With 

   
  

 

   
∑ ∑   

  
   

 
   (   )             (12) 

Where M and N are the numbers of input image rows 

and columns. LMMSE is similar to soft thresholding 

in some sense. Notice that factor c is always less than 

1, thus the magnitude of estimated wavelet 

coefficient   ̂  would be less than that of    . This 

leads to the energy shrinkage of the restored signal, 

likewise in the soft thresholding schemes [26]. 

 

2.3. Interscale wavelet model-based LMMSE 
we would make no use of the measurements at the 

finer scale to estimate the signal at the coarser scale, 

and    is estimated only by measurements at scales   

and      . We assemble the points with the same 

orientation at scales   and     as a vector 

  ⃑⃑⃑⃑  ⃑(   )  [  (   )     (   )]
 
        (13) 

Thus 

  ⃑⃑⃑⃑  ⃑      ⃑⃑⃑⃑     ⃑⃑⃑              (14) 

With   ⃑⃑⃑  (   )  [  (   )       (   )]
 
           

  ⃑⃑⃑  (   )  [  (   )       (   )]
 
          (15) 

  ⃑⃑⃑    is a Gaussian noise vector independent of     ⃑⃑⃑⃑ . The 

LMMSE of     ⃑⃑⃑⃑  is then 

  ⃑⃑⃑  ̂    (     )
  

  ⃑⃑⃑⃑  ⃑                      (16) 

where    and    are the covariance matrices of  

   ⃑⃑⃑⃑  and    ⃑⃑⃑   , respectively 

    *  ⃑⃑⃑     ⃑⃑⃑  
 
+   [

  
       

          
 ] 

    [  ⃑⃑⃑      ⃑⃑⃑   
 ]   [

  
       

          
 ]

  

    (17)                                          

Let us compute the components of noise covariance 

matrix    first. The diagonal element  [  
 ]  is equal 

to   
   which can be obtained by [3]. Noise variables 

   and      are the projections of   on different 

wavelet subspaces. They are correlated with 

correlation coefficient   

       
√∑ ∑      (   )      (   )         

‖    ‖  ‖  ‖
           (18) 

    and        are jointly Gaussian and their density 

is(       )  

 

    √        
                  

     

 (        
 )

[
  
 

  
  

              

      
 

    
 

    
 ] (19) 

Thus, the expectation   [      ] is 

 [      ]                             (20)   

Each of the components of matrix    is estimated by  

 [    ]   [    ]   [    ]          (21) 

where           and  [    ]  is computed as 

 [    ]     
 

   
∑ ∑   

 
   

 
   (   )            (22) 

After the LMMSE result  ⃑ ̂  is obtained, only the 

component    ̂ is extracted. Estimation of  ̂    would 

be obtained from the LMMSE result   ⃑ ̂    [26]. 

 

2.4. Optimal wavelet basis selection 
The denoising performance of the proposed 

LMMSE-based scheme varies with different wavelet 

filters. Ideally, a good wavelet filter for denoising 

should meet the following two requirements. One is 

the interscale model’s ability in extracting signal 

information from noisy wavelet coefficients. The 

other is a high degree of agreement between the 

distribution of wavelet coefficients and Gaussian 

distribution.  

 

2.4.1. Signal information extraction criterion 
The mutual information [26] of      and   is defined 

as  (   )  ∑ ∑  (   )    
 (   )

 ( ) ( )           (23)      

The higher  (   ) is, the more information   could 

provide to estimate   or vice-versa. If   is a function 

of   ,  (   ) will be infinite. Otherwise, if    is 

independent with  , obviously  (   ) is zero.We take 

the mutual information of    ⃑⃑⃑⃑   and   ⃑⃑⃑⃑  ⃑ as a measure to 

evaluate how much signal information could be 

exploited   ⃑⃑⃑⃑  ⃑ from to estimate    ⃑⃑⃑⃑  .We have derived 

that   ⃑⃑⃑   is Gaussian with covariance matrix   . The 

covariance matrix of    ⃑⃑⃑⃑  is    and we assume    ⃑⃑⃑⃑  is 

also Gaussian. Since   ⃑⃑⃑⃑  ⃑      ⃑⃑⃑⃑     ⃑⃑⃑    , the mutual 

information of   ⃑⃑⃑⃑  ⃑ and    ⃑⃑⃑⃑  is [25]                       

    (   ⃑⃑⃑⃑    ⃑⃑⃑⃑  ⃑ )  
 

 
   (

|     |

|  |
) (24) where     

represents the determinant of a matrix. The criterion 

   is proportional to the performance of the proposed 

denoising scheme. A properly selected wavelet 

should yield a significant value of    , which means 

noisy coefficients   ⃑⃑⃑⃑  ⃑ could give significant 

information to estimate original signal    ⃑⃑⃑⃑ . Since the 

image wavelet coefficients are subjected to GGD, the 

distribution of     ⃑⃑⃑⃑  would be of some difference with 
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bivariate Gaussian function. The errors so caused 

could be generalized into the following criterion [26]. 

 

2.4.2. Distribution error criterion 

The distribution of wavelet coefficients is often 

modeled as GGD [20] 

      
( )   (    ) 

 ( (    )   ) ,     

                                    (25) 

 (    )    
  [

 (
 

 
)

 (
 

 
)
]

 

 

   (    )  
  (    )

  (
 

 
)

      (26) 

    where   is the standard deviation of x,   is the 

shape parameter and Γ( )  ∫         

 
   is the 

Gamma function. GGD is zero-mean and degenerates 

to Gaussian distribution only when    . The 

Gaussian function 

     
 

 

√    
 

   

                      (27)  

  (       )  

 

     
     

√    
 
  

  

 (    
 )

[
  

 

   
  

         

   
     

 
    

 

     
 ]

  (28) 

where      is calculated as 

      
 [      ]

   
     

 
 

       
     

 ∑ ∑   
 
   

 
   (   )  

    (   )      (29) 

We define the distribution error criterion as a kind of 

Hellinger distance    √∫∫(    )
 
                                  

(30) 

When   and    are identical, the measurement    will 

reach the minimum 0. The higher the error   ̃    
   , the higher the value of     , which implies that    

worse approximates a joint Gaussian distribution, and 

then the LMMSE will be much inferior to the 

MMSE. So a good wavelet should yield a small    

[26].A block diagram of proposed modeling is shown 

in Fig. 2.  

 

3. Results and Discussions 
 

 This section compares the results from different 

wavelet for proposed scheme in terms of SNR. The 

noisy images are simulated by adding Gaussian white 

noise on the original images. In threshold-based (hard 

or soft) de-noising schemes, the wavelet coefficients 

whose magnitudes are below a threshold will be set 

to 0. The corresponding pixels are generally noise 

predominated and thus the thresholding of these 

coefficients is safely a structure-preserving de-

noising process. We apply the LMMSE only to those 

coefficients above a threshold and shrink those below 

the threshold to 0. It should be noted that the images 

used here are 256 x256, while the images used in 

750x550x3. At the same noise level, the denoising 

results of high resolution images are much better than 

those of low resolution images. Fig 3 shows original 

images and Fig 4 represents images after noise 

addition .De-noised images are shown in Fig 5 and 

the comparisons of SNR ratios and mean square 

errors are given in Table 1. 

 

 
 

Fig. 2: Proposed modeling. 
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Fig. 3: Original images 
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Fig. 4: Images after noise addition. 
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Fig. 5: De-noised images. 

 

 

Table 1: Comparisons of SNR ratios and mean 

square errors.  

 

Name Origin

al 

(SNR) 

Noisy 

Image 

(SNR) 

De-

Noisy 

Image 

(SNR) 

Mean 

 Sq.  

Error 

Baboon 36.05 32.9016 36.0665 48.40 

Lena  37.27 32.4739 37.2572 33.14 

DNA 31.72 29.3680 31.7399 58.22 

Abdul 

Kalam 

39.55 33.0122 39.6156 22.21 

Logo 

Matlab 

40.04 33.4299 40.0251 21.84 

Peeper 36.16 32.0965 36.2385 36.26 

Earth 34.33 28.1389 34.3622 24.05 

Fabric 42.11 37.3835 42.1257 33.64 

 

4. Conclusions 
 

Wavelet-based LMMSE scheme for image denoising 

along with OWE is used for determination of the 

optimal wavelet basis. To explore the strong inter-

scale dependencies of OWE, we combine the pixels 

at the same spatial location across scales as a vector 

and apply LMMSE to the vector. Compared with the 

LMMSE within each scale, the inter-scale model 

exploits the dependency information distributed at 

adjacent scales. The performance of the proposed 

scheme is dependent on the selection of the wavelet 

bases. Two criteria, the signal information extraction 

criterion and the distribution error criterion, are 

proposed to measure the de-noising performance. The 

optimal wavelet that achieves the best tradeoff 

between the two criteria can be determined from a 

library of wavelet bases. Experiments show that the 

proposed scheme outperforms some of the existing 

de-noising techniques. 
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