
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

227

Tag Based Client Side Detection of Content Sniffing Attacks with File

Encryption and File Splitter Technique

Syed Imran Ahmed Qadri
1
, Kiran Pandey

2

All Saints’ College of Technology, Bhopal
1,2

Abstract

In this paper we provide a security framework for

server and client side. In this we provide some

prevention methods which will apply for the server

side and alert replication is also on client side.
Content sniffing attacks occur if browsers render

non-HTML files embedded with malicious HTML

contents or JavaScript code as HTML files. This

mitigation effects such as the stealing of sensitive

information through the execution of malicious

JavaScript code. In this framework client access the

data which is encrypted from the server side. From

the server data is encrypted using private key

cryptography and file is send after splitting so that

we reduce the execution time. We also add a tag bit

concept which is included for the means of checking

the alteration; if alteration performed tag bit is

changed. Tag bit is generated by a message digest

algorithm. We have implemented our approach in a

java based environment that can be integrated in

web applications written in various languages.

Keywords

Content sniffing, Encryption, Decryption, Message

Digest, Tag Bit

1. Introduction

In today’s scenario we rely on web-based programs

or web applications to perform many essential

activities. They usually reside on a server-side and

are accessed from its client-side. There are some

approaches which is either applied on client side as

well as the server side but overall the approaches are

not well enough to protect with the vulnerabilities. As

a result users are fear and sometimes he/she may be

suffering from those vulnerabilities.

The above scenario might result in stealing of session

information and generation of anomalous runtime

behaviors. The situation further worsens when many

web-based programs are deliberately designed and

deployed to mimic trusted websites that have explicit

authentication mechanisms and employ active session

information to perform for stealing personal

information for example phishing websites [1]

instead of providing legitimate functionalities. Thus,

the mitigation of web-based security vulnerability

exploitations is extremely important to reduce some

of the consequences.

For this reason we study a number of common

program security problems and vulnerabilities [2][3].

Our study focuses that the number of web-based

attacks has increased in recent years [4][5], existing

research has addressed a subset of security

vulnerabilities in web applications for example SQL

Injection. After observation from several research by

different authors, we analyze there are several

numbers of vulnerabilities are still in the

communication process when we want to access data

from the web. We believe that if we prevent the

attack from the server side and it will be notified to

the client then we can prevent the attack.

The remaining of this paper is organized as follows.

In Section 2 we discuss about problem domain. The

Evolution and recent scenario in section 3.In section

4 we discuss about proposed approach. In section 5

we discuss about result analysis. The conclusions and

future directions are given in Section 6. Finally

references are given.

2. Problem Domain

There are several attack detection approaches that are

deployed at program runtime [6][7][8][9][10]. We

identify several limitations for these approaches.

First, most of the attack detection approaches rely on

the modification of both server and client-side

environments and the exchange of sensitive

information between the two sides. Second, existing

approaches do not adequately address some attack

types like injecting legitimate JavaScript code and

content sniffing. Third, most approaches assume that

web based programs are trusted and legitimate. But in

the real scene this assumption does not hold in many

cases such as suspected phishing websites that are

deliberately designed to steal personal credential

information. Taking consideration on the above point,

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

228

there are some considerations for the research

orientation:

 Is it is possible to detect an automatic

system which automatically enable the tag

bit and the associated clients if the client is

the part of the network.

 Are we detecting attacks at the client-side

without any a priori information from

remote site?
 As a part of security we observe the need a

proper security in the form of encryption and

decryption.

 Are we reducing the overhead of transferred

data by applying some file splitting

technique?

We come with the solution in the subsequent section.

3. Evolution and Recent Scenario

In 2009, Adam Barth et al. [11] focused on Cross-site

scripting defenses often on HTML documents,

neglecting attacks involving the browser’s content

sniffing algorithm, which can treat non-HTML

content as HTML. Web applications, such as the one

that manages this content, must defend themselves

against these attacks or risk authors uploading

malicious papers that automatically submit stellar

self-reviews. In this research, they formulate content-

sniffing XSS attacks and defenses. They study

content sniffing XSS attacks systematically by

constructing high fidelity models of the content-

sniffing algorithms used by four major browsers.

They compare these models with Web site content

filtering policies to construct attacks. To defend

against these attacks, we propose and implement a

principled content-sniffing algorithm that provides

security while maintaining compatibility. Their

principles have been adopted, in part, by Internet

Explorer 8 and, in full, by Google Chrome and the

HTML 5 working group.

In 2010, Zubair M. Fadlullah et al. [12] propose an

anomaly-based detection system by using

strategically distributed monitoring stubs (MSs).

They have categorized various attacks against

cryptographic protocols. The MSs, by sniffing the

encrypted traffic, extract features for detecting these

attacks and construct normal usage behavior profiles.

Upon detecting suspicious activities due to the

deviations from these normal profiles, the MSs notify

the victim servers, which may then take necessary

actions. In addition to detecting attacks, the MSs can

also trace back the originating network of the attack.

They call our unique approach DTRAB since it

focuses on both Detection and TRAceBack in the MS

level. The effectiveness of the proposed detection and

traceback methods are verified through extensive

simulations and Internet datasets.

In 2011, Misganaw Tadesse Gebre et al. [13]

proposed a server-side ingress filter that aims to

protect vulnerable browsers which may treat non-

HTML files as HTML files. Their filter examines

user uploaded files against a set of potentially

dangerous HTML elements (a set of regular

expressions). The result of their experiment shows

that the proposed automata-based scheme is highly

efficient and more accurate than existing signature-

based approach.

In 2011, Anton Barua et al. [14] developing a server

side content sniffing attack detection mechanism

based on content analysis using HTML and

JavaScript parsers and simulation of browser

behavior via mock download tests. They have

implemented our approach in a tool that can be

integrated in web applications written in various

languages. In addition, they have developed a

benchmark suite for the evaluation purpose that

contains both benign and malicious files. They have

evaluated our approach on three real world PHP

programs suffering from content sniffing

vulnerabilities. The evaluation results indicate that

their approach can secure programs against content

sniffing attacks by successfully preventing the

uploading of malicious files.

4. Proposed Approach

In this paper we have proposed a secure server client

environment for detecting content sniffing attack.

This approach provides the security in the server side

and alert the client which reduces the non-secure

violation with data use. In this approach client want

to establish a secure connection from the server for

gathering data from the server. Client simply requests

the data and the admin provides the available

resources from the server database. Admin first

encrypt the data by Private key cryptography, which

uses the same key to encrypt and decrypt the

message. This type is also known as symmetric key

cryptography. In java we can use Base64 encoding

and decoding as defined by RFC 2045 which provide

a symmetric key encryption. With symmetric

encryption, both parties use the same key for

encryption and decryption purposes. Each user must

possess the same key to send encrypted messages to

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

229

each other. The sender uses the key to encrypt their

message, and then transmits it to the receiver. The

receiver, who is in procession of the same key, uses it

to decrypt the message.

The security of this encryption model relies on the

end users to protect the secret key properly. If an

unauthorized user were able to intercept the key, they

would be able to read any encrypted messages sent

by other users. It’s extremely important that the users

protect both the keys themselves, as well as any

communications in which they transmit the key to

another person.

Symmetric is conceptually simple. It’s the “secret

decoder ring” model. The same “secret decoder ring”

is used to encrypt and decrypt messages.

Conceptually you might think of it as similar to

physical lock, perhaps a door lock. The same key is

used to lock and unlock the door. Java supports

encryption based on base 64.

Content-Transfer-Encoding from RFC 2045

Multipurpose Internet Mail Extensions (MIME) Part

One: Format of Internet Message Bodies by Freed

and Borenstein. The class can be parameterized in the

following manner with various constructors:

URL-safe mode: Default off.

Line length: Default 76. Line length that aren't

multiples of 4 will still essentially end up being

multiples of 4 in the encoded data.

Line separator: Default is CRLF ("\r\n")

Since this class operates directly on byte streams, and

not character streams, it is hard-coded to only

encode/decode character encodings which are

compatible with the lower 127 ASCII chart (ISO-

8859-1, Windows-1252, UTF-8, etc).

Creates a Base64 codec used for decoding (all

modes) and encoding in URL-unsafe mode.

When encoding the line length is 0 (no chunking),

and the encoding table is

STANDARD_ENCODE_TABLE. When decoding

all variants are supported. Base64.

Public Base64 (boolean urlSafe) [java Supported

Encryption]

Creates a Base64 codec used for decoding (all

modes) and encoding in the given URL-safe mode.

When encoding the line length is 76, the line

separator is CRLF, and the encoding table is

STANDARD_ENCODE_TABLE. When decoding

all variants are supported.

Parameters:

urlSafe - if true, URL-safe encoding is used. In most

cases this should be set to false.

Then we split the file according to the length which

reduces the complexity span and send to the user. We

also provide a tag bit checking based which alerts the

client if any content based alteration is done. We also

provide the memory buffer which detects the content

alteration; this is done by any message digest

algorithm.

MD5 algorithm was developed by Professor Ronald

L. Rivest in 1991. According to RFC 1321, “MD5

message-digest algorithm takes as input a message of

arbitrary length and produces as output a 128-bit

"fingerprint" or "message digest" of the input …The

MD5 algorithm is intended for digital signature

applications, where a large file must be "compressed"

in a secure manner before being encrypted with a

private (secret) key .[Figure 1]

Figure 1: Message Digest

The flowchart for this algorithm is shown in Figure 2.

Figure 2: Flowchart for Message Digest

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

230

In a content sniffing attack, rendering of downloaded

non-HTML files result in the generation of HTML

pages or the execution of JavaScript code at victim’s

browser. The files are uploaded by attackers that

contain malicious payloads. These files seem benign

when we consider their content types or Multipurpose

Internet Mail Extension (MIME) information. For

example, a GIF file having a MIME image/gif might

contain JavaScript code (<script>...</script>). An

attack occurs when a victim’s browser renders a non-

HTML file as an HTML file. A successful attack

might result in severe consequences such as stealing

of session information and passing information to

third party websites.

Browsers employ content sniffing algorithms to

detect file content types and render them accordingly

by scanning the initial bytes of a downloaded file to

identify the MIME type. For example, Internet

Explorer 7 examines the first 256 bytes of a file for

specific signatures that represent specific file types.

Internet Explorer 7 treats a file as image/gif, if the file

begins with GIF87 or GIF89. Firefox performs the

same, if the file begins with GIF8. Browsers also

differ in ways they search for HTML tags for

matching with HTML signatures and enforcing the

rules when response contents are sniffed as HTMLs.

For example, Google Chrome does not sniff a file as

an HTML when the Content-Type header is known,

text/plain, or application/octet-stream. However,

Internet Explorer 7 sniffs a file as an HTML, if the

first 256 bytes contain any of the predefined

signatures such as <html> and <script>. These

inconsistencies among widely used browsers

motivate attackers performing content sniffing

attacks.

Table 1: Examples of File and MIME Types

File Type MIME Type

HTML text/html

Textual data text/plain

JavaScript application/JavaScript

Arbitrary binary data application/octet-stream

Portable Document Format application/pdf

GIF image image/gif

JPEG image image/jpeg

In a content sniffing attack, an attacker exploits the

difference between a website’s file upload filter

(assuming that a website is legitimate) and a

browser’s content sniffing algorithm. An attacker

uploads a seemingly benign file to a website that

accepts the uploaded file and does not check the

contents. Later, a victim views the file by

downloading it in his/her browser. A typical response

by a server with respect to a file request from a

browser contains two parts: response header and

response body. A response body contains the actual

resource that has been requested. A response header

defines various characteristics of the response body.

It is possible to provide more malicious payloads that

can access a web program’s session or cookie

information and transfer to third party websites. This

simple example illustrates some idea about different

ways of performing content sniffing attacks.

However, setting wrong Content-Type information

might not always result in content sniffing attacks. A

sample code for uploading and testing are given

below.

Algorithm:

Step 1: Append padding bits

The input message is "padded" (extended) so that its

length (in bits) equals to 448 mod 512. Padding is

always performed, even if the length of the message

is already 448 mod 512.

Step 2: Append length

A 64-bit representation of the length of the message

is appended to the result of step1. If the length of the

message is greater than 2^64, only the low-order 64

bits will be used.

Step 3: Initialize MD buffer

A four-word buffer (A, B, C, D) is used to compute

the message digest. Each of A, B, C, D is a 32-bit

register. These registers are initialized to the

following values in hexadecimal, low-order bytes

first):

word A: 01 23 45 67

word B: 89 ab cd ef

word C: fe dc ba 98

word D: 76 54 32 10

Step4:

It processes the message in 16-word blocks Four

functions will be defined such that each function

takes an input of three 32-bit words and produces a

32-bit word output.

F (X, Y, Z) = XY or not (X) Z

G (X, Y, Z) = XZ or Y not (Z)

H (X, Y, Z) = X xor Y xor Z

I (X, Y, Z) = Y xor (X or not (Z))

For maintain the information we create two types of

databases one from the server side and one from the

client side. In server side we maintain two copies of

the same table one for Before Send and other for after

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

231

send. E/D is the encryption decryption key. If the

content is altered automatically tag bit is 1 which

implies that there is a change in the file. It is

automatically alerted to the client, so those clients

rerequest the data from the server. Server also

maintain the time of sending and receiving of files.

Table 2: Server Side Database (Before Send)

N
a

m
e

T
a

g

C
o

u
n

t

M
et

h
o

d
s

J
a

v
a

S
cr

ip

t

P
H

P

L
O

C

E
/D

 K
ey

T
a

g
 B

it

Ab.html 2 5 12 10 150 0

Pq.html 6 7 2 5 200 0

Rs.html 3 8 4 7 180 0

Table 3: Server Side Database (After Send)

Name Tag

Count

Meth

ods

Java

Script

PHP LOC Tag

Bit

Ab.html 2 5 12 10 150 0

Pq.html 6 7 2 5 200 1

Rs.html 3 8 4 7 180 0

Table 4: Client Database (Before Send)

Name Time E/D

Key

Tag

Bit

Ab.html 2 NA 0

Pq.html 1 NA 1

Rs.html 3 NA 0

5. Result Analysis

The result produce by the above algorithm is shown

in Figure 5 to Figure 7. When a client sends a request

to the server. Server first assign a key to the client for

the particular web file and the tag bit is set to be

1.This phenomena is shown in Figure 5.Then server

decompose and encrypt it for the purpose of sending

data. In this stage if any content sniffer change or

delete the data, it is automatically replicated to the

server and the tag bit is changed to 0 instead of 1

which shows that the values are changed by the

outsiders. Then server replicates the tag bit to client

also so that client must aware of that data changes

and beware of the use of data. Our server alerts times

shows this mechanism with time calculation when

server knows the information about the change data.

The time period which our mechanism shows is in

millisecond which shows that it is better than the

previous mechanism.

Figure 6 shows the data which was send to the client.

Some of the data was attacked and some was not

which will be identify by the tag bit. The time of

attack is shown in table 8.

Table 5: Data before Send from the Server

beforesend

fname tagcount js php loc tag key

file1.html 101 33 0 365 1 iC0Ye9

file2.html 146 48 0 530 1 iI8Ca9

file4.html 451 150 0 1651 1 uK7Pa2

file3.html 385 128 0 1409 1 vF4Ix8

file4.html 451 150 0 1651 1 bO6Ai4

file5.html 493 164 0 1805 1 rK5Ej7

Table 6: Data after Send from the Server

AFTERSEND

F
N

A
M

E

T
A

G
C

O

U
N

T

JS

P
H

P

L
O

C

T
A

G

K
E

Y

S
E

N
D

IN

G
T

IM
E

R
E

C
T

IM

E

file1.html 101 33 0 365 1 iC0Ye9 10:39:40:7 10:39:40:54

file2.html 146 48 0 530 1 zP6Xl4 10:44:2:586 10:44:2:649

file3.html 385 128 0 1409 1 xI5Ux5 10:46:12:67 10:46:12:116

file4.html 451 150 0 1651 1 bO6Ai4 10:54:55:506 10:54:55:569

file5.html 493 164 0 1805 1 rK5Ej7 11:2:17:174 11:2:18:237

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

232

Table 7: Data after Attack

afterattack

fname size attacktime servertime

file1.html 2822 10:40:1:332 10:40:1:480

file2.html 4104 10:44:22:461 10:44:22:650

file3.html 10945 10:46:28:431 10:46:28:610

file4.html 12826 11:1:23:570 11:1:23:713

file5.html 14023 11:2:45:231 11:2:45:370

6. Conclusion and Future Direction

Web-based attacks due to program security

vulnerabilities are huge concerns for users. While

performing seemingly benign functionalities at the

browser-level, users might become victims without

their knowledge. These might lead to unwanted

malicious effects such as the execution of JavaScript

code that accesses and transfers credential

information to unwanted websites and the filling of

forms that result in stealing login credentials. In this

paper, we address the mitigation of some of these

exploitations by developing automatic attack

detection approaches at both server and client-sides.

Our future work on content sniffing attack detection

includes identifying ways to reduce the overhead for

large files. We plan to evaluate our approach for

some other file types such as flash. We convert the

MIME type of any file into HTML manually. We

plan to find an automated way to perform the MIME

type conversion. The future work also includes the

automated identification of file upload procedures to

integrate our filter.

References

[1] D. Geer, “Security Technologies Go Phishing,”

Computer Archive, Volume 38, Issue 6, June

2005, pp. 18-21.

[2] H. Shahriar and M. Zulkernine, “Mitigating

Program Security Vulnerabilities: Challenges and

Approaches,” ACM Computing Surveys, Vol. 44,

Issue 3, September 2012.

[3] H. Shahriar and M. Zulkernine, “Taxonomy and

Classification of Automatic Monitoring of

Program Security Vulnerability Exploitations,”

Journal of Systems and Software, Elsevier

Science, Vol. 84, Issue 2, February 2011, p. 250-

269.

[4] Z. Mao, N. Li, and I. Molloy, “Defeating Cross-

Site Request Forgery Attacks with Browser -

Enforced Authenticity Protection,” Proc. of

Financial Cryptography and Data Security,

Barbados, Feb 2009, p. 238-255.

[5] Phishing Activity Trends Report, 2010, Accessed

from

www.antiphishing.org/reports/apwg_report_Q1_

2010.pdf.

[6] Y. Zhang, J. Hong, and L. Cranor, “CANTINA:

A Content-based Approach Detecting Phishing

Websites,” Proc. of the 16th International

Conference on World Wide Web (WWW),Banff,

Alberta, Canada, May 2007, pp. 639-648.

[7] M. Alalfi, J. Cordy, and T. Dean, “WAFA: Fine-

grained Dynamic Analysis of Web Applications,”

Proc. of the 11th International Symposium on

Web Systems Evolution (WSE), Edmonton,

Canada, Sept 2009, pp. 41-50.

[8] M. Gundy and H. Chen, “Noncespaces: Using

Randomization to Enforce Information Flow

Tracking and Thwart Cross-site Scripting

Attacks,” Proc. of the 16th Annual Network and

Distributed System Security Symposium (NDSS),

San Diego, California, USA, February 2009.

[9] Y. Nadji, P. Saxena, and D. Song, “Document

Structure Integrity: A Robust Basis for Crosssite

Scripting Defense,” Proc. of the 16th Annual

Network and Distributed System Security

Symposium (NDSS), San Diego, California,

USA, February 2009.

[10] T. Jim, N. Swamy, and M. Hicks, “Defeating

Script Injection Attacks with Browser- Enforced

Embedded Policies,” Proc. of the 16th

International Conference on World Wide Web,

Banff, Alberta, Canada, May 2007, pp. 601-610.

[11] Adam Barth, Juan Caballero and Dawn Song,

“Secure Content Sniffing for Web Browsers, or

How to Stop Papers from Reviewing

Themselves”, 2009 30th IEEE Symposium on

Security and Privacy.

[12] Zubair M. Fadlullah, Tarik Taleb, Athanasios V.

Vasilakos, Mohsen Guizani and Nei Kato,

“DTRAB: Combating Against Attacks on

Encrypted Protocols through Traffic-Feature

Analysis”, IEEE/ACM Transactions on

Networking, VOL. 18, NO. 4, AUGUST 2010.

[13] Misganaw Tadesse Gebre, Kyung-Suk Lhee and

ManPyo Hong, “A Robust Defense Against

Content-Sniffing XSS Attacks”, IEEE 2010.

[14] [Anton Barua, Hossain Shahriar, and Mohammad

Zulkernine, “Server Side Detection of Content

Sniffing Attacks”, 2011 22nd IEEE International

Symposium on Software Reliability Engineering.

Syed Imran A. Qadri: He received his

B.E. degree in Computer Science &

Engineering from Rajiv Gandhi

Prodyogiki Vishwavidyalaya, Bhopal,

M.P , India in 2009. Presently he is

pursuing his M. Tech. degree in

Computer Science & engineering from

Rajiv Gandhi Prodyogiki

Vishwavidyalaya, Bhopal, M.P, India.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

233

Dr. Kiran Pandey: She Received her B.E. in Computer

Science & Engineering From KNMIET Gaziabaad India in

2002 and PhD. in Artificial Intelligence from BHU

Banaras, India, in 2011. She is currently working as

Professor with the Department of Computer Science &

Engineering at All Saints’ College Of Technology, Bhopal,

India, from June 2012 to till date, her professional research

interests include Artificial Intelligence, Network Security

and Data Mining.

