
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

49

Prevention of Cross-Site Scripting Vulnerabilities using Dynamic Hash

Generation Technique on the Server Side

Shashank Gupta
1
, Lalitsen Sharma

2
, Manu Gupta

3
, Simi Gupta

4

Lecturer in Department of Information Technology, MIET, Jammu (J&K)
1,4

 Associate Professor in Department of Computer Science and IT, Jammu University (J&K)
2

Assistant Professor in Department of Information Technology, MIET, Jammu (J&K)
3

Abstract

Cookies are a means to provide stateful

communication over the HTTP. In the World Wide

Web (WWW), once the user using web browser has

been successfully authenticated by the web server of

the web application, then the web server will

generate and transfer the cookie to the web browser.

Now each time, if the user again wants to send a

request to the web server as a part of the active

connection, the user has to include the

corresponding cookie in its request, so that the web

server associates the cookie to the corresponding

user. Cookies are the mechanisms that maintain an

authentication state between the user and web

application. Therefore cookies are the possible

targets for the attackers. Cross Site Scripting (XSS)

attack is one of such attacks against the web

applications in which a user has to compromise its

browser’s resources (e.g. cookies etc.). In this paper,

a novel technique called Dynamic Hash Generation

Technique is introduced whose aim is to make

cookies worthless for the attackers. This technique

is implemented on the server side whose main task

is to generate a hash of the value of name attribute

in the cookie and send this hash value to the web

browser. With this technique, the hash value of

name attribute in the cookie which is stored on the

browser’s database is not valid for the attackers to

exploit the vulnerabilities of XSS attacks.

Keywords

Cookies, HTTP, Cross-Site Scripting Attacks, Hash

function.

1. Introduction

Normally, users through web browsers request the

resources from the web server of the web application,

and the web server respond with the resources

through HTTP protocol [1] in which no sessions are

retained. Therefore, web applications generally use

cookies to provide a mechanism for creating stateful

HTTP sessions. Cookies are often used to store the

session ids [2] for the web applications that require

authentication. Since the cookies can both identify

and authenticate the users [3], this makes the cookies

a very interesting target for the attackers. Now-a-

days, Cross-Site Scripting (XSS) attack is a common

vulnerability which is being exploited in modern web

applications through the injection of advanced

HTML tags and Java Script functions. A weak input

validation on the web application causes the stealing

of cookies from the web browser’s database. In many

cases, the attacker who can obtain the valid cookies

from XSS attack can directly hijack the user’s

session.

Cross-Site Scripting attack continuously leads the

most wide spread web application vulnerabilities lists

(e.g. OWASP [4] etc.). XSS are broadly classified

into two main attacks which are Persistent and Non-

Persistent Attacks [5] [6]. Persistent attack (also called

as stored attack) holes exist when an attacker post the

malicious code on the vulnerable web application’s

repository. As a result, if the stored malicious code

gets executed by the victim’s browser, then stored

attack gets exploited on the victim’s web browser.

Secondly non-persistent attack (also called as

reflected attack) means that the vulnerable malicious

code is not persistently stored on a web server but it is

immediately displayed by the vulnerable web

application back to the victim’s web browser. If so,

then the malicious code gets executed on the victim’s

web browser and finally, victim’s browser has to

compromise its resources (e.g. cookies). The rest of

the paper is organized as follows. Section II discusses

the area related to proposed technique: Background of

cookies, architecture of exploiting the XSS attack and

recent work related to exploitation, detection and

prevention of XSS attacks. Section III discusses our

proposed technique. Section IV discusses the

corresponding results and analysis part of our

proposed technique. Finally we conclude and brief the

future work in section V.

2. Background and Related Work

Cookies

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

50

The cookies are generally used to store the session

IDs or personal sensitive information in the web

applications. The cookies are sent by the web

applications as a part of the response message using

Set-Cookie or SetCookie2 header. The Set-Cookie

header is used by the version 0 cookies and Set

Cookie2 header is used by the version 1 cookies. The

web browser stores the cookies in its repository and

includes the cookies with every subsequent request to

the web application. In general, there are two different

versions of cookie specifications in use [1]: Version 0

cookie (Netscape Cookie), and Version 1 cookie

(RFC 2965).

The version 0 cookie is the most widely used version.

In such type of cookies, the cookies are identified by

the combination of following attributes: Name,

Domain and Path. The web server can use an arbitrary

string as the value of name attribute. The domain and

path attributes inform the web browser that the cookie

must be sent back to the server when requesting URL

of a given domain and path.

The version 1 cookie is an extended version of

version 0 cookie. In addition to identifying the

cookies by name, domain and path attributes as in the

version 0, the version 1 adds an additional ability to

identify the cookie by the port attribute as well. In

this type of cookie, the web server must set the

cookie using Set-Cookie2 header instead of using

Set-Cookie header. The browser still returns the

cookie using the Cookie header as the version 0

header but uses a different format [1]. Almost all the

modern browsers do not support the version 1 cookie

except opera browser [7] [8].

So, in this paper, we have performed the experiments

on modern web browsers which support version 0

cookies except opera browser.

Architecture of Exploiting the XSS Vulnerability

XSS attacks are those attacks against the web

applications which is often used to steal the cookies

from a web browser’s database. The following figure

1 is an architecture which shows the sequence of steps

of exploiting the XSS vulnerability by a malicious

attacker.

Figure 1: Architecture of Exploiting the XSS

Vulnerability

The above architecture contains three useful

commodities i.e. Attacker Domain, Victim Domain

and Vulnerable Web Application. Here are some

sequences of steps which will explain the above

architecture of exploiting the XSS attack:-

 Firstly the attacker has found that the

corresponding web application is vulnerable

to Cross-Site Scripting attack. After this,

attacker will post a malicious Java Script

Code on the Vulnerable Web Application

whose function is to steal cookies of the

victim’s account session.

 Secondly, the victim logs into the vulnerable

web application by giving the user-id and

password. As a result, the web server of web

application will generate and transfer the

cookie of that particular session to victim’s

web browser.

 In the third step, the victim browses the

malicious Java Script Code and gets

executed on its browser.

 In the fourth step, the Java Script Interpreter

of the victim’s browser gets invoked and

transfers the cookies of the victim’s session

to the attacker’s domain.

 Now lastly, these cookies will be utilized by

the attacker to get into the account of victim.

In this way, XSS attack gets exploited on the victim’s

domain. The related work on XSS attacks has been

surveyed focusing on some issues related to XSS

attacks. The survey has been divided into three

categories namely Exploitation, Detection and

Prevention of XSS attacks.

Exploitation of XSS Vulnerability

Recently, researchers have shown some basic ways to

demonstrate how XSS attacks can be used to control

and modify the functionality of a web page. Various

types of platforms (like Acunetix [9] etc.) are

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

51

available online to test or exploit some vulnerabilities

of XSS attack. Acunetix test website offers the

platform to a user who wants to exploit the

vulnerabilities of XSS attack. It is a way of limiting

security testing to only systems that we own, or have

permission to work with.

A. Detection of XSS Vulnerability

In static detection of XSS, testing is generally

performed by source code analysis. On the other hand,

in dynamic testing of XSS, known attacks are

executed against web applications. Recently,

researchers have proposed various detection

techniques to discover the XSS Attacks. In [10], a

Webmail XSS fuzzer called L-WMxD (Lexical based

Webmail XSS Discoverer), which works on a lexical

based mutation engine is an active defence system to

discover XSS before the webmail application is online

for service. The researchers have run the L-WMxD on

over 26 real-world Webmail applications and found

vulnerabilities in 21 Webmail services, including

some of the most widely used Yahoo-Mail. In [11], a

static analysis for finding XSS vulnerabilities has

been put forward that directly addresses weak input

validation. This approach combines work on tainted

information flow with string analysis.

Pixy [12] is a tool that performs data flow analysis on

PHP code to detect reflected XSS vulnerabilities.

Various prototype tools which are based on Pixy have

been implemented by the researchers and test on the

real world PHP programs. Similar approaches have

been adopted by commercial products like AppScan

[13], Nessus[14] and so on.

B. Prevention of XSS Vulnerability

Cross-site Scripting (XSS), the top most vulnerability

in the web applications, demands an efficient

approach on the server side as well as client side to

protect the users of the web application. In [15], an

application-level firewall is suggested, which is

located on a security gateway between client and

server and which applies all the security relevant

checks and transformations. Some server side

prevention approaches require the collaboration of

web browsers. One such example is BEEP (Browser-

Enforced Embedded Policies) [16], a mechanism that

modifies the browser so that it cannot execute the

malicious scripts. Security policies dictate what the

server sends to BEEP-enabled-browsers. Apart from

this, the researchers developed the WebSSARI (Web

Security via Static Analysis and Runtime Inspection)

tool [17], which performs type-based static analysis to

identify potentially vulnerable code sections and

instrument them with runtime guards.

On the client side, researchers have developed the

Noxes [18] which acts as a personal firewall that

allows or blocks the connections to websites on the

basis of filter rules, which are generally user-specified

URL white-list and blacklist websites. When the

browser sends a HTTP request to an unknown

website, Noxes immediately alerts the client, who

chooses to permit or deny the connection, and

remembers the client’s action for future use. Another

client side approach is presented in [19], which aims

to identify the information leakage using tainting of

input data in the browser. In [20], a mechanism for

detecting malicious java script is proposed. The

system consists of a browser-embedded script

auditing component, and IDS that processes the audit

logs and compares them to signatures of known

malicious behavior or attacks. Several server-side

countermeasures do exists, but such techniques have

not been universally applied because of their

deployment overhead. On the other hand, existing

client side solutions degrade the performance of

client’s system resulting in poor web surfing

experience. The necessity to install updates or

additional components on each user’s web browser or

workstation also degrade the performance of client

side solutions.

The solutions mentioned above regarding prevention

of XSS attack cannot prevent the XSS attack

completely. So, in the next section we have proposed

a new technique which is implemented on the server

side, whose aim is not to protect the cookies from

XSS attack, but make the cookies worthless for the

attackers.

3. Proposed Method

In this section, we present a novel procedure called

Dynamic Hash Generation Technique, whose main

objective is to make the cookies useless for the

attackers. This approach is easily implemented on the

web server without any changes required on the web

browser. With this technique, the web server will

produce a hash of value of name attribute in the

cookie and send this hash value to the browser, so the

browser will keep the hash value of cookie in its

database rather than the original value. Now each

time, if the browser wants to reconnect as a part of

active connection, the browser has to include the hash

cookie value into its corresponding request so that the

web server will also rewrite this hash cookie value to

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

52

the original value, which is generated by the web

server. Rewriting of hash value to original value is

necessary to be done at the server side, so that the user

at the browser side will get authenticated by the web

server. As the browser stores the hash value of

cookies, so even the XSS attack can steal the cookies

from browser’s database, the cookies cannot be used

later to hijack or take off the user’s session.

We have conducted the experiments on version 0

cookies in which three attributes (name, domain and

path) are specified for the identifying the cookies

uniquely. Following Table 1 is used for storing the

cookies of version 0 on the server side.

Table 1: Original and Hash Value of Cookie

Name Domain Path Original

Value

Hash

Value

Cookie

1

www.ace.gov.i

n

/loc1 789pqrs +#2g&

)@

Cookie

2

www.lal.ac.in /loc2 432frtg *$67+

e#

In this paper, we have used the Dynamic Hashing

Generation Technique on the server side, which is

used to generate the hash of value of name attribute in

the cookie. All the other attributes (i.e. domain and

path attributes as shown in the Table 1) will remain

same. Following are some of the steps which are used

to explain the Dynamic Hashing Generation

Technique:-

 The user on the web browser side submits

the user-id and password to the web server of

the web application.

 The web server submits the corresponding

information from the browser and generates

a cookie.

 Now the web server will dynamically

generate the hash of value of the name

attribute in the cookie and store both these

values (original as well as hash value) in the

form of a table on the server side.

 Subsequently, the web server will send the

hash value of the name attribute in the cookie

to the web browser.

 The web browser will store this hash value

into its repository.

Since the cookies (hash version) at the browser’s

database now are not valid for the web applications.

Therefore XSS attack will not be able to impersonate

the user using stolen cookies which are converted into

its hash form. Now if the browser wants to reconnect

to the web server as a part of the active connection, it

has to include cookie (hash value) with its

corresponding request to the web server. The web

server will use the information in the table to rewrite

back the values of name attribute in the cookie (sent

by the web browser) to the original value generated by

the web server as shown in the Figure 2.

Figure 2: Dynamic Hash Generation Technique

4. Results and Analysis

We have tested our proposed technique on four

modern web browsers like Google Chrome, Firefox,

IE v8 and Safari by using the services of XAMPP

server. We have evaluated our approach with the

version 0 cookies using all these browsers on the

following test cases:

 Set-Cookie: SID = pqrs123

 Set-Cookie: SID = abcd456; Domain =

.trial.com

 Set-Cookie: SID = stuv890; Domain =

.trial.com; Path = /area1

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

53

 Set-Cookie: SID = lmno678; Domain =

.trial.com; Path = /area2

 Set-Cookie: SID = ijkl456; Domain =

.trial.com; Path = /area1

We have also evaluated our approach with the real

time web applications on the internet and the results

showed that our proposed technique worked well. We

have seen in our experiments that the web server

successfully generate the hash of the value of name

attribute in cookie and browser stores and returns this

value to the web server on every subsequent request.

We have also tried to steal the cookies from a

browser’s database by exploiting the vulnerabilities of

XSS attacks on the browser side and the results

showed that stolen cookie in the form of hash value

cannot impersonate the user.

The efficiency of our proposed technique and their

corresponding results has been described in the form

of associated strengths and weaknesses which is

elaborated as below:

C. Strengths

 The proposed technique described above

does not affect the performance of client side

web browser resulting in superior web

surfing experience.

 This technique does not suffer from single

point of failure. As the web server fails for

some time, in any case, it will not send the

original cookies to the browser.

 Even if attacker will perform the XSS attack

to steal the cookies from the browser’s

repository, the attacker will get the hash

version of the cookies, which are not

appropriate to impersonate the user.

 This approach is compatible with all the

modern web browsers like Google Chrome

v6, Firefox v3, Internet Explorer v8, Safari

v4 etc.

 The proposed technique works well with the

version 0 cookies and does not have any side

effects on the HTTP protocol.

 Since XSS vulnerability exists in all types of

platforms, so we have tried to make our

proposed technique as platform independent

and it has been implemented on various

platform independent browsers, so it can be

used with other operating systems with fewer

changes.

D. Weaknesses

 The results have shown that this server side

solution degrades the performance of the

whole system.

 Generating the hash code of cookie on the

server side adds more latency and increases

the response time.

 Our approach does not work well with the

version 1 cookie as this version adds an

additional attribute (i.e. port number) for the

identification of cookies.

 Our proposed technique does not able to

intercept the HTTPs and SSL connections.

 Our approach has faced the problems with

some of the real time websites while

producing the hash value of the cookie in the

HTTP header.

5. Conclusion and Future Work

This paper has presented the Dynamic Hash

Generation technique, whose main purpose is to

make the cookies worthless for the attackers even if

the attacker successfully exploits the vulnerabilities

of XSS attacks on the victim’s web browser. This

technique has been implemented on the web server

and the results showed that our technique worked

well with the Version 0 cookies on all the modern

web browsers except opera.

Currently we are working on how our proposed

technique works with the Version 1 cookies on the

real world websites. In future, we would also like to

develop an analysis on the web browser side to

discover the set of strings that can cause their java

script interpreter to be invoked.

References

[1] D. Gourley, B. Totty, M. Sayer, S. Reddy, and A.

Aggarwal, HTTP The Definitive Guide, 1st ed.,

O’Reilly Media, US, 2002.

[2] D. Kristol, “HTTP State Management

Mechanism,”, in Internet Society, 2000.

Available: http:// www.ietf.org/rfc/rfc2965.txt

[3] “Cross Site Scripting Techniques and

mitigation,”, GovCertUK, revision 1.0, October

2009. Available: www.govcertuk.gov.uk.

[4] Open Web Application Security Project, “The ten

most critical web application security

vulnerabilities”, 2007,

www.owasp.org/index.php/OWASP_Top_Ten_Pr

oject

[5] J. Garcia-Alfaro and G. Navarro-Arribas,

“Prevention of Cross-Site Scripting Attacks on

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-3 Issue-5 September-2012

54

Current Web Applications,”, Available:

http://hacks-galore.org/guille/pubs/is-otm-07.pdf

[6] S. Saha, “Consideration Points: Detecting Cross-

Site Scripting,” (IJCSIS) International Journal of

Computer Science and Information Security,Vol.

4, No. 1 & 2, 2009.

[7] UW Staff Web server [Online]. Available:

http://staff.washington.edu/fmf/2009/06/19/settin

g-cookies/.

[8] Wikipedia website [Online]. Available:

http://en.wikipedia.org/wiki/Talk%3AHTTP

cookie.

[9] Acunetix, “http:// www.acunetix.com/”.

[10] Zhushou Tang, Haojin Zhu, Zhenfu Cao, Shuai

Zhao, L-WMxD: Lexical Based Webmail XSS

Discoverer, IEEE Conference on Computer

Communications Workshops (INFOCOM

WKSHPS), pp. 976-981, 2011.

[11] Gary Wassermann, Zhendong Su, Static

Detection of Cross-Site Scripting Vulnerabilities,

ACM/IEEE 30th International Conference on

Software Engineering (ICSE), pp. 171-180,

2008.

[12] N. Jovanovic, C. Kruegel and E. Kirda, Precise

alias analysis for static detection of web

application vulnerabilities. In: ACMSIGPLAN

Workshop on Programming languages and

Analysis for Security, Ottawa, Canada, 2006.

[13] AppScan,http://www01.ibm.com/software/awdto

ols/appscan/.

[14] Nessus, http://www.nessus.org/.

[15] D. Scott and R. Sharp. Abstracting Application-

level Web Security. In 11th World Wide Web

Conference, 2002.

[16] M. T. Louw and V. N. Venkatakrishnan,

“Blueprint: Robust Prevention of Cross-Site

Scripting Attacks for Existing Browsers”, Proc.

30th IEEE Symp. Security and Privacy (SP 09),

IEEE CS, pp. 331-346, 2009.

[17] W. Halfond, A. Orso, and P. Manolios, “WASP:

Protecting Web Applications Using Positive

Tainting and Syntax-Aware Evaluation”, IEEE

Trans. Software Eng., pp. 65-81, Jan. 2008.

[18] E. Kirda et al., “Client-Side Cross-Site Scripting

Protection,” Computers & Security, pp. 592-604,

Oct. 2009.

[19] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel,

E. Kirda, and G. Vigna. Cross site scripting

prevention with dynamic data tainting and static

analysis. In 14th Annual Network and Distributed

System Security Symposium (NDSS), 2007.

[20] O. Hallaraker and G. Vigna, Detecting Malicious

JavaScript Code in Mozilla. In Proceedings of the

IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS), 2005.

Shashank Gupta was born in Jammu

on 25th September, 1987. He has

completed his graduation in B.E. (I.T.)

from Pune University, Pune. He has

also qualified the GATE 2010 with 94

percentile. He has obtained his M.Tech.

(CSE) degree, specialization in

Information Security from Central

University of Rajasthan, Ajmer. He is currently working as

a Lecturer in the department of Information Technology in

Model Institute of Engineering and Technology, Jammu.

His area of interest includes Cryptography, Network

Security, Theory of Computation and Database.

Lalit Sen Sharma was born in the

district of Bilaspur, Himachal Pradesh,

India, on April 12, 1969. He has

obtained Master of Science in

Mathematics and MCA from Guru

Nanak Dev University, Amritsar

(India). He has also obtained Doctorate of Philosophy

(PhD) from Guru Nanak Dev University in 2008.

Currently, he is working as an Associate Professor in the

department of Computer Science and Information

Technology in University of Jammu, India. He has been

teaching to postgraduate students in computer applications

for fifteen years. He is a life member of Indian Science

Congress Association, Institute of Electronics and

Communication Engineer, India and National HRD

network, India. His area of interest includes data

communication and networking, internet and web services.

He has also organized workshops and acted as a member of

organizing committee to organize national conferences.

Manu Gupta was born in Jammu on 1st

October, 1982. He has completed its

B.tech. (I.T.) from U.P. Technical

University in 2004. He has obtained

M.Tech. (I.T.) from Punjab Technical

University (PTU) in 2011. Currently he

is working as an Assistant Professor in

Department of I.T. in M.I.E.T. Jammu. His area of interest

includes Cryptography and Network Security.

Simi Gupta was born on 14th January,

1983 in Jammu. She has completed its

B.tech. (I.T.) from Model Institute of

Engineering and Technology, Jammu.

She is also pursuing the M.Tech.(CSE).

Currently she is working as a Lecturer

in M.I.E.T., Jammu. Her area of Interest

includes Digital Logic, Web technologies.

Author’s Photo

Autr’s Photo

