
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

98

Low Power Implementation of Fast Fourier Transform Processor on FPGA

Shashank Gupta

Abstract

DFT(Discrete Fourier Transform) is a fundamental

principle of DSP whose applications vary from

Spectral analysis, Data compression, solving Partial

Differential Equations, convolution and

multiplication of large numbers. Despite its

enormous potential in theoretically solving many

DSP problems, it is of very little use in practical

because of its extremely expensive hardware

implementation. It is due to its complexity O(N
2
), N

being number of data points. To address this

problem Fast Fourier Transform (FFT) was

introduced. This algorithm uses the symmetry and

periodicity properties of Twiddle Factor involved

with DFT to reduce the number of calculations

drastically. For N=1024, FFT is more than 200

times faster than DFT. In this paper we focus on

implementing FFT for a processor, by applying

Cooley-Tukey Algorithm to improve the speed of

computation at expense of minimum power. This

paper discusses in detail about the core FFT block

and auxiliary blocks of Testbench like Buffer Ram,

Complex Multiplier and Bit Shifter. The simulation

has been done in Xilinx ISE with verification on

two different FPGA platforms. The correctness of

our algorithm is demonstrated via output waveforms

Keywords

Fast Fourier Transform, Butterfly Element, Complex

Multiplier, Radix-2 Algorithm.

1. Introduction

Discrete Fourier Transform is extremely important in

the area of frequency (spectrum) analysis because it

transforms a discrete signal in time domain to its

discrete frequency domain representation. It

decomposes a sampled signal in terms of sinusoidal

(complex exponential) components. This discrete-

time to discrete-frequency transformation is essential

or we wouldn‟t be able to compute Fourier transform

with a microprocessor or DSP based system.

Shashank Gupta, Department of Electronics Engineering,
Indian Institute of Technology, Banaras Hindu University,

Varanasi, India.

The properties - symmetry and periodicity of the

DFT are exploited to significantly reduce its

computational requirements. The resulting algorithm

is named as Fast Fourier Transforms (FFTs). It is the

speed and discrete nature of the FFT that allows us to

analyze a signal's spectrum with Matlab or in real-

time on the SR770 spectrum analyzer. [1]

The 'Radix 2' algorithms is particularly useful if N is

a power of 2 (N=2
p
). If we assume that algorithmic

complexity provides a direct measure of execution

time and that the relevant logarithm base is 2, then,

ratio of execution times for the DFT (complexity

O(N
2
)) vs. Radix 2 FFT (O(N log N))increases

tremendously with increase in N. FFT relies on the

recursive decomposition of an N point transform into

2 (N/2) point transforms. The above process of

decomposition can be applied to any composite (non

prime) N. The method is particularly simple if N is

divisible by 2 and if N is a regular power of 2, the

decomposition can be applied repeatedly until the

trivial '1 point' transform is reached. A sequence x(n)

of 256 complex-valued numbers will be computed by

256-point DFT and gives another seq. of data X(k) of

length 256 by following rule:

X(k) =  0 ≤ n ≤ 255 x(n) e
–j2πnk/256

; k = 0 to 255 (1)[3]

To simplify the notation, the complex-valued phase

factor e
–j2πnk/256

 is usually defined as W 256
n
, where

W 256 = cos(2π/256) – j sin(2π/256) (2)[3]

We see FFT algorithms take advantage of the

symmetry and periodicity properties of W256
n
 to

greatly reduce the number of calculations that the

DFT requires. A FFT implementation has the real and

imaginary components of WN
 n

 which are called

twiddle factors. In the processor for FFT256 a radix-

16 FFT algorithm is used. It divides DFT into two

smaller DFTs of the length 16, as it is shown in the

formula:

X(k) = X(16r+s) =

 0 ≤ m ≤ 15 W16
mr

 W256
ms

  0 ≤ m ≤ 15 x(16l+m) W16
sl
 ,

 r = 0 to 15, s = 0 to 15 (3)[4]

which shows that 256-point DFT is divided into two

smaller 16-point DFTs. This algorithm is illustrated

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

99

by the graph which is shown in the Fig.1. The input

complex data x(n) are represented by the 2-D array of

data x(16l+m). The columns of this array are

computed by 16-point DFTs. The results of them are

multiplied by the twiddle factors W256
ms

 and the

resulting array of data X(16r+s) is derived by

16-point DFTs of rows of the intermediate result

array.The 16-point DFT, named as the base FFT

operation, is implemented by the Winograd small

point FFT algorithm, which provides the minimum

additions and multiplications (only 10 complex

multiplications to the factor W16
sl
). As a result, the

radix-16 FFT algorithm needs only 256 complex

multiplications to the twiddle factors W256
ms

 and a set

of multiplications to the twiddle factors W16
sl
 instead

of 65536 complex multiplications in the original

DFT. So 896 complex multiplications will be

required for the well known radix-2 256-point FFT

algorithm. [4]

Figure 1: Graph of the FFT 256 algorithm

2. Salient Features of Processor

· 256 -point radix-8 forward and Inverse FFT.

· Pipelined mode operation, each result is outputted

in one clock cycle with the latent delay from input to

output being equal to 580 clock cycles where

simultaneous loading/ downloading are supported.

· Input data, output data, and coefficient widths are

parameterisable in range 8 to 16 and more.

· 2 and 3 data buffers have been used.

· FFT for 10 bit data and coefficient width is

calculated on Xilinx XC4SX25-12 FPGA at 250MHz

clock cycle, and on Xilinx XC5SX25-12 FPGA at

300 MHz clock cycle, respectively. [5]

· FFT unit for 10 bit data and coefficients, and 2 data

buffers occupies 1652 CLB slices, 4DSP48 blocks,

and 2.5 kb of RAM in Xilinx XC4SX25 FPGA, and

670 CLB slices 4 DSP48E blocks, and 2.5 kb of

RAM in Xilinx XC5SX25 FPGA, data buffers are

implemented on the distributed RAM.

Excessive pipelined calculations: A datapath called

FFT16 computes every base FFT operation. This

datapath will calculate the 16-point DFT in a

pipelined manner. Therefore in each clock cycle one

complex number is read from the input data buffer

RAM and the complex result is written in the output

buffer RAM. The 16-point DFT algorithm is divided

into several stages which are implemented in the

stages of the FFT16 pipeline. An increased clock

frequency up to 200 MHz and higher would be

supported. The latent delay of the FFT16 unit from

input of the first data to output of the first result is

equal to 30 clock cycles.[7]

Computations of high precision: The result

truncation after multiplication to the factors W256
ms

serves as the main error source in computation. Since

most of the base FFT calculations are additions, they

can be calculated without errors. The FFT results

have the data bit width which is higher in 4 digits

than the input data bit width. This provides the high

data range of results when the input data is the

sinusoidal signal. The maximum result error is less

than the 1 least significant bit of the input data. To

provide the proper bandwidth of the resulting data,

the normalizing shifters have been attached to the

outputs of FFT16 pipelines. The overflow detector

outputs provide the opportunity to assign the proper

shift left bit number for these shifters.[6]

Low hardware volume: The FFT256 processor has

the minimum multiplier number equal to 4. This fact

makes this core attractive to implement in ASIC.

When configuring in Xilinx FPGA, these multipliers

are implemented in 4 DSP48 units respectively. We

can select the input data, output data, and coefficient

widths which provide application dynamic range

needs. This can minimize both logic hardware and

memory volume.[7]

3. Radix–2 Algorithm (Cooley-Tukey

Algorithm) & The Butterfly

element

The radix-2 decimation-in-frequency (DIF) FFT is an

important algorithm obtained by the divide & conquer

approach. Fig.2 shows the first stage of the 8-point

DIF algorithm. This whole process involves log2N

stages of decimation and each stage involves N/2

butterflies of the type shown in Fig. 3. Consequently,

(N/2) log2N complex multiplications shall be required

for the N-point DFT compute via this algorithm. We

observe that the output sequence occurs in bit-

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

100

reversed order with respect to the input. Furthermore,

if we are not rigid in the requirement of having

computations occurrence in place, it is also possible to

have both the input and output in normal order.[3]

Finally the algorithm is modified for co-efficient

reordering, depending on the relative Hamming

distances between them. This reordering minimizes

switching activity and hence lowers the power

consumption overall.[2]

Figure 2: I
st
 stage of the 8-point DIF algorithm

Figure 3: Butterfly element of Processor

4. Processor Architecture

There are 2 ways to implement the stages say for

8-point FFT. Two extreme cases are presented:

A) REUSE SINGLE Way – Involves only one

stage iteratively, once for every decimation.

This circuit is hardware efficient as there is

need of only one set of 12-bit adders and

subtractors. The first stage requires only 2

CORDICs(COordinate Rotation DIgital

Computer)[8]. Each CORDIC computation

takes 8 clock pulses. The second and third

stages do not require any CORDIC,

although in this structure using CORDIC

they will need to rotate data by 0
0
 or -90

0
,

which will take 16 (8 for the second and 8

for third stage) clock pulses. The entire

process of rotation by 0
o
 or -90

o
 can rather

be easily achieved by 2‟s complement and

BUS exchange which would require much

less hardware. Besides, while one set of data

is being computed, we are left with no

option but to wait for it to get completely

processed for 36 clock cycles before

inputting the next dataset. So, the total

computation time spent will be= 24 clock

cycles with sixteen 12 bit adders and

subtractors needed.

B) FULLY SPREAD Way – Involves three

separate stages, one each for every

decimation. This other extreme needs 3 sets

of sixteen, 12-bit adders. The complexity of

implementation would definitely be reduced

and delay would drastically cut down as

each stage would be separated from the

other by a bank of registers. This will be

further aided by one data set serially

streamed into the input registers after 8

clock pulses of the previous set. The net

effect is that at a time we can have 3 stages

working simultaneously.

However, this architecture is not taken into

consideration as a valid option simply because of the

immense hardware required. Besides, it would give

improvement of merely 1 clock cycle over the

architecture discussed below which we have used in

terms of the total time taken. Thus, Time Taken for

computation = 8 clock cycles No. of 12 bit adders

and subtractions = 40 A Comparison has been made

in Fig. 4.

Figure 4: Analysis of 2 extreme implementation

methods

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

101

Figure 5: Block Diagram for the Processor

5. FFT Code and implementation

The datapath FFT16 implements the 16-point FFT

algorithm in the pipelined mode. For 46 clock cycles,

16 input complex data are calculated but each new 16

complex results are outputted every16 clock cycles.

Calculations by our Algorithm are: [4]

t1:=x(0) + x(8); m4:=x(0) – x(8);

t2:=x(4) + x(12); m12:= – j*(x(4)–x(12));

t3:=x(2) + x(10); t4:=x(2) – x(10);
t5:=x(6) + x(14); t6:=x(6) – x(14);

t7:=x(1) + x(9); t8:=x(1) – x(9);

t9:=x(3) + x(11); t10:=x(3) – x(11);
t11:=x(5) + x(13); t12:=x(5) – x(13);

t13:=x(7) + x(15); t14:=x(7) – x(15);

t15:=t1 + t2; m3:= t1 – t2;
t16:=t3 + t5; m11:= –j*(t3 – t5);

t17:=t15 + t16; m2:= t15 – t16;

t18:=t7 + t11; t19:= t7 – t11;
t20:=t9 + t13; t21:= t9 – t13;

t22:=t18 + t20; m10:= – j*(t18 – t20);
t23:=t8 + t14; t24:= t8 – t14;

t25:=t12 + t10; t26:= t12 – t10;

m0:=t17 + t22; m1:=t17 – t22;
m13:= –j* sin(p/4)*(t19 + t21); m5:= cos(p/4)*(t19 – t21);

m6:= cos(p/4)*(t4 – t6); m14:=–j* sin(p/4)*(t4 + t6);

m7:= cos(3p/8)*(m24+m26); m15:= –j* sin(3p/8)*(t23 + t25);
m8:= (cos(p/8) + cos(3p/8))*t24; m16:= –j* (sin(p/8) –

 sin(3p/8))*t23;

m9:=– (cos(p/8) - cos(3p/8))*t26; m17:= –j*(sin(p/8) +
 sin(3p/8))*t25;

s7:= m8 – m7; s15:= m15 – m16;

s8:= m9 – m7; s16:= m15 – m17;
s1:=m3 + m5; s2:=m3 – m5;

s3:=m13 + m11; s4:=m13 – m11;

s5:=m4 + m6; s6:=m4 – m6;
s9:=s5 + s7; s10:=s5 – s7;

s11:=s6 + s8; s12:=s6 – s8;

s13:=m12 + m14; s14:=m12 – m14;
s17:=s13 + s15; s18:=s13 – s15;

s19:=s14 + s16; s20:=s14 – s16;

y(0):=m0; y(8):=m1;
y(1):=s9 + s17; y(15):=s9 – s17;

y(2):=s1 + s3; y(14):=s1 – s3;

y(3):=s12 – s20; y(13):=s12 + s20;
y(4):=m2 + m10; y(12):=m2 – m10;

y(5):=s11 + s19; y(11):=s11 – s19;

y(6):=s2 + s4; y(10):=s2 – s4;

y(7): =s10 – s18; y(9):=s10 + s18;

Where x and y are input and output arrays of the

complex data, t1,…,t26, m1,…, m17;s1,…,s20 are

the intermediate complex results. We see the

algorithm contains only 20 real multiplications to the

untrivial coefficients:

sin(π /4) = 0.7071; sin(3 π /8) = 0.9239;

cos(3 π /8) = 0.3827; (cos(p/8) + cos(3p/8)) =1.3066;

(sin(p/8) – sin(3p/8)) = 0.5412;

and 156 real additions and subtractions.

Working clock cycles from 0 to 15 are counted bya

counter named “ct”. So a single inferred adder adds

x(0) + x(8) in one cycle, x(1) + x(9) in the next cycle,

D(1) + D(5) in another cycle and so on, and x(7) +

x(15) in the final cycle of the sequence of cycles

deriving the results t1,t7,t9,…,t13 respectively. Four

constant multipliers are used to derive the

multiplication to 5 different coefficients.

Implementation of the multiplication to the

coefficient 0.7071is done in the pipelined manner.

The multipliers use the adder tree, which adds the

multiplicand shifted to different bit numbers. For

example, for short input bit width the coefficient

0.7071 is approximated as 0.101101012, for long

input bit width it is approximated as

0.101101010000001012. The long coefficient bit

width is set by parameter FT256bitwidth_coef_high.

The first kind of the constant multiplier occupies 3

adders, and the second one occupies 4 adders. The

importance of the long coefficient selection is seen

from the following fact. When the input bit width is

16 and higher, the selection of the long coefficient bit

width decreases the FFT256 result error in two times.

The FFT16 unit implements both FFT and inverse

FFT depending on the parameter FFT256paramifft.

Practically the inverse FFT is implemented on the

base of the direct FFT by the inversion of operations

in the final stage of computations for all the results

except y(0), y(8). For example, y(1):=s9 + s17; is

substituted to y(1):=s9 – s17;

The FFT16 unit starts its operation by the START

impulse. The first result is preceded by the RDY

impulse which is delayed from the START impulse

to 30 clock impulses. The output results have the bit

width which is in 4 higher than the input data bit

width. That means that all the calculations except

multiplication by coefficients like 0.7071 are

implemented without truncations, so the FFT256

results have the minimized errors comparing to other

FFT processors.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

102

6. Symbols and Signals Description

Figure 6: FFT256 core Symbol

Table 1: FFT256 core signal description

SIGNAL TYPE DESCRIPTION

CLK input Global clock

RST input Global reset

READY input FFT Start

ED input Input data and operation enable

strobe

DR [nb-1:0] input Input data real sample

DI [nb-1:0] input Input data imaginary sample

SHIFT input Shift left code

RDY output Result ready strobe

WERES output Result write enable strobe

FFTRDY output Input data accepting ready

strobe

ADDR [7:0] output Result number or address

DOR [nb+3:0] output Output data real sample

DOI [nb+3:0] output Output data imaginary sample

OVF1 output Overflow flag

OVF2 output Overflow flag

nb and nb+4 bit twos complement complex integers

respectively denote Input and output data The

twiddle coefficients are numbers of nw – bit width.

Where nb ≤ 16, nw ≤ 16.

The nature of application where it is used drives the

core interconnection. The calculation of the unlimited

data stream which are inputted in each clock cycle is

considered. In Fig.7 this interconnection is shown.

In this case data source is DATA_SRC and the

analog-to-digital converter, FFT256 is the core,

which is customized as one with 3 inner data buffers.

Figure 7: Simple Core interconnection

The impulse START initiates the FFT algorithm.

After the READY impulse the corresponding results

are generated which is followed by the address code

ADDR. For the global synchronization, START is

essential and could be generated once before the

system operation. The input data have the natural

order, and can be numbered from 0 to 63. When 3

inner data buffers are configured then the output data

have the natural order. When 2 inner data buffers are

configured then the output data have the 8-th inverse

order, i.e. here the order will be 0,8,16,...56,1,9,17,...

7. Waveforms – Input & Output of

FFT256 core

After the falling edge of the START signal the input

data array starts to be taken as input. The data

samples are latched by the each rising edge of the

clock signal CLK when the enable signal ED is active

high. When all the 256 data are inputted and the

START signal is low then the data samples of the

next input array start to be inputted.

Figure 8: Input Waveform

The throughput of the processor is slowed down

when ED signal is controlled. The input waveforms

are shown in fig.9 when the ED signal is the

alternating signal with the 2 times less than one of

clock signal frequency. The sampling of input data is

done when ED is high and the clock signal is rising.

Figure 9: Input Waveform when the throughput is

slowed down in 2 times

Also, after the RDY signal the result samples start to

be generated. They are followed by the result number

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

103

which is given by the signal ADDR (Fig.10). When

the START signal is not active for the long time

period then just after output of the 255-th couple of

results the 0-th couple of results for the next data

array is outputted

Figure 10: Output Waveform

The latent delay of the FFT256 processor core is

estimated by ED = 1 as the delay between impulses

START and RDY, and it is equal to 839 clock cycles

when 3 buffer units are used and to 580 clock cycles

when 2 buffer units are instantiated. When the

throughput is slowed down by the signal ED

controlling then the result output is slowed down

respectively, as it is shown in Fig.11.

Figure 11: Output Waveform when the

throughput is slowed down in 2 times

8. Other components of Testbench -

Data Buffer, Bit Shifter &

Complex Multiplier

BUFRAM256: BUFRAM256 is the data buffer,

which consists of the two port synchronous RAM of

the volume 512 complex data, and the write-read

address counter. The real and imaginary parts of the

data are stored in the natural ascending order as in

Fig. 12 By the START impulse the address counter is

reset and then starts to count (signal addrw). The

input data DR and DI are stored to the respective

address place by the rising edge of the clock signal.

After writing 256 data beginning at the START

signal, the unit outputs the ready signal RDY and

starts to write the next 256 data to the second half of

the memory. At this time point, it outputs the data

stored in the memory‟s first half. The reading of the

next array starts as soon as this data reading is

finished. This process continues till the next RST or

START signal are entered. The reading address

sequence is 16-th inverse order, i.e. the order is

0,16,32,...240,1,17,33,... . Really the reading address

is derived from the writing address by swapping 4

LSB and 4 MSB address bits. The reading waveforms

are illustrated by the Fig.13. Implementation of

BUFRAM256 unit is possible in 2 ways. The first

way consists in use of the usual one-port synchronous

RAMs. Then BUFRAM256 consists of 2 parts, firstly

one data array is stored into one part of the buffer,

and another data array is read from the 2
nd

 part of the

buffer, then these parts are substituted by each other.
The second way consists in use of the usual 2-port

synchronous RAM with a single clock input. Such a

RAM is usually instantiated as the Block RAM or the

dual ported Distributed RAM in the Xilinx FPGAs.

Figure 12: Waveforms of data writing to

BUFRAM256

Figure 13: Waveforms of data reading to

BUFRAM256

Cnorm – shifter to 0,1,2,3 bit left shift: During

computations in FFT16 the data magnitude increases

up to 16 times, and the FFT256 result can increase up

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

104

to 256 times depending on the spectrum properties of

the input signal. Therefore, to prevent the signal

dynamic bandwidth loose, the output signal bit width

must be at least in 8 bits higher than the input signal

bit width. To prevent this bit width increase, to

provide the proper signal dynamic bandwidth, and to

ease the next computation of the derived spectrum,

the CNORM units are attached to the outputs of the

FFT16 units. CNORM unit provides the data shift left

to 0,1,2, and 3 bits depending on the code SHIFT.

The input data width is nb+3 and the output data

width is nb+2, where nb is the given processor input

bit width. The SHIFT inputs of two CNORM stages

are concatenated to the 4-bit input SHIFT of the

FFT256 core, 2 LSB bits control the first stage, and 2

MSB bits do the second stage.

Rotator256: The unit ROTATOR implements the

complex vector rotating to the angles W256
ms

. The

complex twiddle factors are stored in unitWROM256

Here the row and column indexes are m and s

respectively. These coefficients are read in the

natural order addressing by the 8-bit counter addrw.

The complex vector rotating is implemented by the

usual schema of the complex number multiplier

which contains 4 multiply units and 2 adders.

9. TestBench Simulation

Observations

Figure 14: TestBench

The units UG and UR are implemented as ROMs

which contain the generating waveforms (UG) and

the reference waveform (UR). They are instantiated

as a component Wave_ROM256. The tables of sums

of up to 4 sine and cosine waves and respective

frequency bins are generated in Perl. The table length

is set as $n = 256. The samples of these tables are

outputted to the outputs DATA_IM, DATA_RE, and

DARA_REF of the component Wave_ROM256

respectively. The counter process CT256 generates

the address sequence to the UG unit starting after the

START impulse. The UG unit outputs the testing

complex signal to the UUT unit (FFT256) with the

period of 256 clock cycles.

When the FFT result is ready then UUT generates the

RDY signal after that it generates the address

sequence ADDR of the results. This sequence is the

input data for the UR unit which outputs the correct

real samples (bins) of the spectrum. We note that

because the input data is the complex sine wave sum

then the imaginary part of the spectrum must be a

sequence of zeros. The sum of square differences of

spectrum results and the reference samples is

calculated by a process named SQR_calculator. This

is commenced after the impulse RDY and continues

till 256 clock cycles.

Then the result is divided to 128 and outputted in the

message in the console of the simulator. For eg. the

message: “rms error is 1 lsb” means that the square of

the residue mean square error is equal to 1 LSB of the

spectrum result which is acceptable.

10. Conclusion

When the model FFT256 is correct and its bit widths

are selected correctly then the rms error is not

succeeded by1 or 2. When this model is not correct

then the message will be a huge positive or negative

integer, or „X‟. The model correctness can be proven

or investigated by looking at the input and output

waveforms. Fig.15 illustrates the waveforms of the

input signals, and Fig.16 of the output waveforms.

Figure 15: Input Waveform for Testbench

Figure 16: Output Waveform for Testbench

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

105

Performance of Implementation Data on Xilinx :

Table 2 illustrates the performance of the FFT256

core with two data buffers based on Block RAMs in

Xilinx Virtex device when implementing 256-point

FFT for 10 and 16-bit data and coefficients. Four

DSP48 units have been used in whole project. The

results are derived using the Xilinx ISE 9.1 tool.[5]

Table 2: Performance of Implementation Data

Target

device

and its

data bit

width

XC

4VSX25-

12(10

Bit)

XC

4VSX25-

12(15

Bit)

XC

5VLX30-

3 (10 Bit)

XC

5VLX30-

3(15 Bit)

Area,

Slices

4791

(46%)

6945

(67%)

1739

(36%)

2434

(50%)

RAMBs 3 4 3 3

Max

system

clock

206 MHz 194 MHz 244 MHz 234 MHz

References

[1] Bracewell, R. N.: ‟The Fourier Transform and its

applications‟, The McGraw-Hill Companies, Inc,

2000, ISBN: 0-07-303938-1.

[2] Ma, Y., Wanhammar, L.: ‟A hardware Efficient

Control of Memory Addressing for High-

Performance FFT Processors‟, IEEE Transaction

on Signal Processing, Vol. 48, No. 3, March

2000.

[3] Proakis, J. G.: ‟Digital Signal Processing,

Principles, algorithms and applications‟, Prentice

Hall, Inc., 1996, ISBN: 0-13-394289-9.

[4] Nussbaumer H. J.: „Fast Fourier Transform and

Convolution Algorithms‟ (Springer-Verlag:

Berlin, 1990).

[5] Xilinx Inc.: ‟Xilinx Virtex-E Databook‟,

http://www.xilinx.com, 2000-2001, (Acc 2001-

02-05).

[6] Eric Ericson Fabris; Gustavo André Hoffmann;

Altamiro Susin; Luigi Carro : „A bit-serial FFT

processor‟ UFRGS Federal Univ. –

Microelectronics Group, 2003.

[7] M. Hasan and T. Arslan, Department of

Electronics and Electrical Engineering, The

University of Edinburgh:‟A Coefficient Memory

Addressing Scheme for VLSI Implementation Of

FFT Processors‟, The King‟s Buildings, Mayfield

Road, Edinburgh EH9 3JL, Scotland, UK, 0-

7803-7448-7/02 2002 IEEE.

[8] Ray Andraka, “A survey of CORDIC Algorithms

for FPGA based computers”. Proceedings of the

1998 ACM/SIGDA sixth International

Symposium on Field Programmable Gate Array.

Shashank Gupta completed his

Bachelors in Electronics Engineering

from Indian Institute of Technology,

Banaras Hindu University, Varanasi,

India. His major fields of interests are

Communication and Embedded

Systems. He did his summer

internships at National University of

Singapore and IRISA Labs, France. His paper titled :

Optimization of Resonant frequency in co-axial probe feed

Microstrip Patch antenna using Differential Evolution (DE)

algorithm was accepted in 2nd International Conference on

advances in Computer, Electronics and Electrical

Engineering – CEEE, Mumbai, which was later published

in International journal of Advancements in Electronics and

Electrical Engineering Vol2, Issue 2.

Author‟s Photo

http://www.xilinx.com/

