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Abstract  
 

DFT(Discrete Fourier Transform) is a fundamental 

principle of DSP whose applications vary from 

Spectral analysis, Data compression, solving Partial 

Differential Equations, convolution and 

multiplication of large numbers. Despite its 

enormous potential in theoretically solving many 

DSP problems, it is of very little use in practical 

because of its extremely expensive hardware 

implementation. It is due to its complexity O(N
2
), N 

being number of data points. To address this 

problem Fast Fourier Transform (FFT) was 

introduced. This algorithm uses the symmetry and 

periodicity properties of Twiddle Factor involved 

with DFT to reduce the number of calculations 

drastically. For N=1024, FFT is more than 200 

times faster than DFT. In this paper we focus on 

implementing FFT for a processor, by applying 

Cooley-Tukey Algorithm to improve the speed of 

computation at expense of minimum power. This 

paper discusses in detail about the core FFT block 

and auxiliary blocks of Testbench like Buffer Ram, 

Complex Multiplier and Bit Shifter. The simulation 

has been done in Xilinx ISE with verification on 

two different FPGA platforms. The correctness of 

our algorithm is demonstrated via output waveforms 
 

Keywords 
 

Fast Fourier Transform, Butterfly Element, Complex 

Multiplier, Radix-2 Algorithm. 

 

1. Introduction 
 

Discrete Fourier Transform is extremely important in 

the area of frequency (spectrum) analysis because it 

transforms a discrete signal in time domain to its 

discrete frequency domain representation. It 

decomposes a sampled signal in terms of sinusoidal 

(complex exponential) components. This discrete-

time to discrete-frequency transformation is essential 

or we wouldn‟t be able to compute Fourier transform 

with a microprocessor or DSP based system. 
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The properties - symmetry and periodicity of the 

DFT are exploited to significantly reduce its 

computational requirements. The resulting algorithm 

is named as Fast Fourier Transforms (FFTs). It is the 

speed and discrete nature of the FFT that allows us to 

analyze a signal's spectrum with Matlab or in real-

time on the SR770 spectrum analyzer. [1] 

 

The 'Radix 2' algorithms is particularly useful if N is 

a power of 2 (N=2
p
). If we assume that algorithmic 

complexity provides a direct measure of execution 

time and that the relevant logarithm base is 2, then, 

ratio of execution times for the DFT (complexity 

O(N
2
)) vs. Radix 2 FFT (O(N log N))increases 

tremendously with increase in N. FFT relies on the 

recursive decomposition of an N point transform into 

2 (N/2) point transforms. The above process of 

decomposition can be applied to any composite (non 

prime) N. The method is particularly simple if N is 

divisible by 2 and if N is a regular power of 2, the 

decomposition can be applied repeatedly until the 

trivial '1 point' transform is reached. A sequence x(n) 

of 256 complex-valued numbers will be computed by 

256-point DFT and gives another seq. of data X(k) of 

length 256 by following rule:   

X(k) =  0 ≤ n ≤ 255  x(n) e 
–j2πnk/256  

; k = 0 to 255  (1)[3] 

To simplify the notation, the complex-valued phase 

factor e 
–j2πnk/256  

 is usually defined as W 256 
n
, where  

 

W 256 = cos(2π/256) – j sin(2π/256)   (2)[3] 

 

We see FFT algorithms take advantage of the 

symmetry and periodicity properties of W256 
n
 to 

greatly reduce the number of calculations that the 

DFT requires. A FFT implementation has the real and 

imaginary components of WN
 n

 which are called 

twiddle factors. In the processor for FFT256 a radix-

16 FFT algorithm is used. It divides DFT into two 

smaller DFTs of the length 16, as it is shown in the 

formula: 

 

X(k) = X(16r+s) = 

 0 ≤ m ≤ 15 W16
mr

 W256
ms

   0 ≤ m ≤ 15 x(16l+m) W16
sl
 , 

              r = 0 to 15, s = 0 to 15       (3)[4] 

 

which shows that 256-point DFT is divided into two 

smaller 16-point DFTs. This algorithm is illustrated 
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by the graph which is shown in the Fig.1. The input 

complex data x(n) are represented by the 2-D array of 

data x(16l+m). The columns of this array are 

computed by 16-point DFTs. The results of them are 

multiplied by the twiddle factors W256
ms

 and the 

resulting array of data X(16r+s) is derived by         

16-point DFTs of rows of the intermediate result 

array.The 16-point DFT, named as the base FFT 

operation, is implemented by the Winograd small 

point FFT algorithm, which provides the minimum 

additions and multiplications (only 10 complex 

multiplications to the factor W16
sl
). As a result, the 

radix-16 FFT algorithm needs only 256 complex 

multiplications to the twiddle factors W256
ms

 and a set 

of multiplications to the twiddle factors W16
sl
 instead 

of 65536 complex multiplications in the original 

DFT. So 896 complex multiplications will be 

required for the well known radix-2 256-point FFT 

algorithm. [4] 

 

 
 

Figure 1: Graph of the FFT 256 algorithm 

 

2. Salient Features of Processor 
 

· 256 -point radix-8 forward and Inverse FFT. 

· Pipelined mode operation, each result is outputted 

in one clock cycle with the latent delay from input to 

output being equal to 580 clock cycles where 

simultaneous loading/ downloading are supported.  

· Input data, output data, and coefficient widths are 

parameterisable in range 8 to 16 and more. 

· 2 and 3 data buffers have been used. 

· FFT for 10 bit data and coefficient width is 

calculated on Xilinx XC4SX25-12 FPGA at 250MHz 

clock cycle, and on Xilinx XC5SX25-12 FPGA at 

300 MHz clock cycle, respectively. [5] 

· FFT unit for 10 bit data and coefficients, and 2 data 

buffers occupies 1652 CLB slices, 4DSP48 blocks, 

and 2.5 kb of RAM in Xilinx XC4SX25 FPGA, and 

670 CLB slices 4 DSP48E blocks, and 2.5 kb of 

RAM in Xilinx XC5SX25 FPGA, data buffers are 

implemented on the distributed RAM. 

Excessive pipelined calculations: A datapath called 

FFT16 computes every base FFT operation. This  

datapath will calculate the 16-point DFT in a 

pipelined manner. Therefore in each clock cycle one 

complex number is read from the input data buffer 

RAM and the complex result is written in the output 

buffer RAM. The 16-point DFT algorithm is divided 

into several stages which are implemented in the 

stages of the FFT16 pipeline. An increased clock 

frequency up to 200 MHz and higher would be 

supported. The latent delay of the FFT16 unit from 

input of the first data to output of the first result is 

equal to 30 clock cycles.[7] 

 

Computations of high precision: The result 

truncation after multiplication to the factors W256
ms 

serves as the main error source in computation. Since 

most of the base FFT calculations are additions, they 

can be calculated without errors. The FFT results 

have the data bit width which is higher in 4 digits 

than the input data bit width. This provides the high 

data range of results when the input data is the 

sinusoidal signal. The maximum result error is less 

than the 1 least significant bit of the input data. To 

provide the proper bandwidth of the resulting data, 

the normalizing shifters have been attached to the 

outputs of FFT16 pipelines. The overflow detector 

outputs provide the opportunity to assign the proper 

shift left bit number for these shifters.[6] 

 

Low hardware volume: The FFT256 processor has 

the minimum multiplier number equal to 4. This fact 

makes this core attractive to implement in ASIC. 

When configuring in Xilinx FPGA, these multipliers 

are implemented in 4 DSP48 units respectively. We 

can select the input data, output data, and coefficient 

widths which provide application dynamic range 

needs. This can minimize both logic hardware and 

memory volume.[7] 

 

3. Radix–2 Algorithm (Cooley-Tukey 

Algorithm) & The Butterfly 

element 
 

The radix-2 decimation-in-frequency (DIF) FFT is an 

important algorithm obtained by the divide & conquer 

approach. Fig.2 shows the first stage of the 8-point 

DIF algorithm. This whole process involves log2N 

stages of decimation and each stage involves N/2 

butterflies of the type shown in Fig. 3. Consequently, 

(N/2) log2N complex multiplications shall be required 

for the N-point DFT compute via this algorithm. We 

observe that the output sequence occurs in bit-
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reversed order with respect to the input. Furthermore, 

if we are not rigid in the requirement of having 

computations occurrence in place, it is also possible to 

have both the input and output in normal order.[3] 

 

Finally the algorithm is modified for co-efficient 

reordering, depending on the relative Hamming 

distances between them. This reordering minimizes 

switching activity and hence lowers the power 

consumption overall.[2] 

 

 
 

Figure 2: I
st
 stage of the 8-point DIF algorithm 

 

 
 

Figure 3: Butterfly element of Processor 

 

4. Processor Architecture 
 

There are 2 ways to implement the stages say for      

8-point FFT. Two extreme cases are presented:  

 

A) REUSE SINGLE Way – Involves only one 

stage iteratively, once for every decimation. 

This circuit is hardware efficient as there is 

need of only one set of 12-bit adders and 

subtractors. The first stage requires only 2 

CORDICs(COordinate Rotation DIgital 

Computer)[8]. Each CORDIC computation 

takes 8 clock pulses. The second and third 

stages do not require any CORDIC, 

although in this structure using CORDIC 

they will need to rotate data by 0
0
 or -90

0
, 

which will take 16 (8 for the second and 8 

for third stage) clock pulses. The entire 

process of rotation by 0
o
 or -90

o
 can rather 

be easily achieved by 2‟s complement and 

BUS exchange which would require much 

less hardware. Besides, while one set of data 

is being computed, we are left with no 

option but to wait for it to get completely 

processed for 36 clock cycles before 

inputting the next dataset. So, the total 

computation time spent will be= 24 clock 

cycles with sixteen 12 bit adders and 

subtractors needed. 

 

B) FULLY SPREAD Way – Involves three 

separate stages, one each for every 

decimation. This other extreme needs 3 sets 

of sixteen, 12-bit adders. The complexity of 

implementation would definitely be reduced 

and delay would drastically cut down as 

each stage would be separated from the 

other by a bank of registers. This will be 

further aided by one data set serially 

streamed into the input registers after 8 

clock pulses of the previous set. The net 

effect is that at a time we can have 3 stages 

working simultaneously.  

 

However, this architecture is not taken into 

consideration as a valid option simply because of the 

immense hardware required. Besides, it would give 

improvement of merely 1 clock cycle over the 

architecture discussed below which we have used in 

terms of the total time taken. Thus, Time Taken for 

computation = 8 clock cycles No. of 12 bit adders 

and subtractions = 40 A Comparison has been made 

in Fig. 4. 

 
 

Figure 4: Analysis of 2 extreme implementation 

methods 
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Figure 5: Block Diagram for the Processor 

 

5. FFT Code and implementation 
 

The datapath FFT16 implements the 16-point FFT 

algorithm in the pipelined mode. For 46 clock cycles, 

16 input complex data are calculated but each new 16 

complex results are outputted every16 clock cycles. 

Calculations by our Algorithm are: [4] 

 
t1:=x(0) + x(8);  m4:=x(0) – x(8); 

t2:=x(4) + x(12);      m12:= – j*(x(4)–x(12)); 

t3:=x(2) + x(10);   t4:=x(2) – x(10); 
t5:=x(6) + x(14);   t6:=x(6) – x(14); 

t7:=x(1) + x(9);   t8:=x(1) – x(9); 

t9:=x(3) + x(11);   t10:=x(3) – x(11); 
t11:=x(5) + x(13);   t12:=x(5) – x(13); 

t13:=x(7) + x(15);   t14:=x(7) – x(15); 

t15:=t1 + t2;   m3:= t1 – t2; 
t16:=t3 + t5;   m11:= –j*(t3 – t5); 

t17:=t15 + t16;   m2:= t15 – t16; 

t18:=t7 + t11;   t19:= t7 – t11; 
t20:=t9 + t13;   t21:= t9 – t13; 

t22:=t18 + t20;   m10:= – j*(t18 – t20); 
t23:=t8 + t14;   t24:= t8 – t14; 

t25:=t12 + t10;   t26:= t12 – t10; 

m0:=t17 + t22;   m1:=t17 – t22; 
m13:= –j* sin(p/4)*(t19 + t21);  m5:= cos(p/4)*(t19 – t21); 

m6:= cos(p/4)*(t4 – t6);  m14:=–j* sin(p/4)*(t4 + t6); 

m7:= cos(3p/8)*(m24+m26);  m15:= –j* sin(3p/8)*(t23 + t25); 
m8:= (cos(p/8) + cos(3p/8))*t24; m16:= –j* (sin(p/8) –   

                               sin(3p/8))*t23; 

m9:=– (cos(p/8) - cos(3p/8))*t26; m17:= –j*(sin(p/8) +   
                                sin(3p/8))*t25; 

s7:= m8 – m7;   s15:= m15 – m16; 

s8:= m9 – m7;   s16:= m15 – m17; 
s1:=m3 + m5;   s2:=m3 – m5; 

s3:=m13 + m11;   s4:=m13 – m11; 

s5:=m4 + m6;   s6:=m4 – m6; 
s9:=s5 + s7;   s10:=s5 – s7; 

s11:=s6 + s8;   s12:=s6 – s8; 

s13:=m12 + m14;   s14:=m12 – m14; 
s17:=s13 + s15;   s18:=s13 – s15; 

s19:=s14 + s16;   s20:=s14 – s16; 

y(0):=m0;    y(8):=m1; 
y(1):=s9 + s17;  y(15):=s9 – s17; 

y(2):=s1 + s3;   y(14):=s1 – s3; 

y(3):=s12 – s20;   y(13):=s12 + s20; 
y(4):=m2 + m10;   y(12):=m2 – m10; 

y(5):=s11 + s19;   y(11):=s11 – s19; 

y(6):=s2 + s4;   y(10):=s2 – s4; 

y(7): =s10 – s18;   y(9):=s10 + s18; 

 

Where x and y are input and output arrays of the 

complex data, t1,…,t26, m1,…, m17;s1,…,s20 are 

the intermediate complex results. We see the 

algorithm contains only 20 real multiplications to the 

untrivial coefficients:  

sin(π /4) = 0.7071;   sin(3 π /8) = 0.9239;  

cos(3 π /8) = 0.3827; (cos(p/8) + cos(3p/8)) =1.3066; 

(sin(p/8) – sin(3p/8)) = 0.5412; 

and 156 real additions and subtractions. 

 

Working clock cycles from 0 to 15 are counted bya  

counter named “ct”. So a single inferred adder adds 

x(0) + x(8) in one cycle, x(1) + x(9) in the next cycle, 

D(1) + D(5) in another cycle and so on, and x(7) + 

x(15) in the final cycle of the sequence of cycles 

deriving the  results t1,t7,t9,…,t13 respectively. Four 

constant multipliers are used to derive the 

multiplication to 5 different coefficients. 

Implementation of the multiplication to the 

coefficient 0.7071is done in the pipelined manner. 

The multipliers use the adder tree, which adds the 

multiplicand shifted to different bit numbers. For 

example, for short input bit width the coefficient 

0.7071 is approximated as 0.101101012, for long 

input bit width it is approximated as 

0.101101010000001012. The long coefficient bit 

width is set by parameter FT256bitwidth_coef_high. 

The first kind of the constant multiplier occupies 3 

adders, and the second one occupies 4 adders. The 

importance of the long coefficient selection is seen 

from the following fact. When the input bit width is 

16 and higher, the selection of the long coefficient bit 

width decreases the FFT256 result error in two times. 

The FFT16 unit implements both FFT and inverse 

FFT depending on the parameter FFT256paramifft. 

Practically the inverse FFT is implemented on the 

base of the direct FFT by the inversion of operations 

in the final stage of computations for all the results 

except y(0), y(8). For example, y(1):=s9 + s17; is 

substituted to y(1):=s9 – s17; 

 

The FFT16 unit starts its operation by the START 

impulse. The first result is preceded by the RDY 

impulse which is delayed from the START impulse 

to 30 clock impulses. The output results have the bit 

width which is in 4 higher than the input data bit 

width. That means that all the calculations except 

multiplication by coefficients like 0.7071 are 

implemented without truncations, so the FFT256 

results have the minimized errors comparing to other 

FFT processors. 
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6. Symbols and Signals Description 
 

 
 

Figure 6: FFT256 core Symbol 

 

Table 1: FFT256 core signal description 

 

SIGNAL TYPE DESCRIPTION 

CLK input Global clock 

RST input Global reset 

READY input FFT Start 

ED input Input data and operation enable 

strobe 

DR [nb-1:0] input Input data real sample 

DI [nb-1:0] input Input data imaginary sample 

SHIFT input Shift left code 

RDY output Result ready strobe 

WERES output Result write enable strobe 

FFTRDY output Input data accepting ready 

strobe 

ADDR [7:0] output Result number or address 

DOR [nb+3:0] output Output data real sample 

DOI [nb+3:0] output Output data imaginary sample 

OVF1 output Overflow flag 

OVF2 output Overflow flag 

 

nb and nb+4 bit twos complement complex integers 

respectively denote Input and output data  The 

twiddle coefficients are numbers of nw – bit width. 

Where nb ≤ 16, nw ≤ 16. 

 

The nature of application where it is used drives the 

core interconnection. The calculation of the unlimited 

data stream which are inputted in each clock cycle is 

considered. In Fig.7 this interconnection is shown. 

In this case data source is DATA_SRC and the 

analog-to-digital converter, FFT256 is the core, 

which is customized as one with 3 inner data buffers. 

 

 
 

Figure 7: Simple Core interconnection 

The impulse START initiates the FFT algorithm. 

After the READY impulse the corresponding results 

are generated which is followed by the address code 

ADDR. For the global synchronization, START is 

essential and could be generated once before the 

system operation. The input data have the natural 

order, and can be numbered from 0 to 63. When 3 

inner data buffers are configured then the output data 

have the natural order. When 2 inner data buffers are 

configured then the output data have the 8-th inverse 

order, i.e. here the order will be 0,8,16,...56,1,9,17,...  

 

7. Waveforms – Input & Output of 

FFT256 core 
 

After the falling edge of the START signal the input 

data array starts to be taken as input. The data 

samples are latched by the each rising edge of the 

clock signal CLK when the enable signal ED is active 

high. When all the 256 data are inputted and the 

START signal is low then the data samples of the 

next input array start to be inputted. 

 

 
 

Figure 8: Input Waveform 

 

The throughput of the processor is slowed down 

when ED signal is controlled. The input waveforms 

are shown in fig.9 when the ED signal is the 

alternating signal with the 2 times less than one of 

clock signal frequency. The sampling of input data is 

done when ED is high and the clock signal is rising. 

 

 
 

Figure 9: Input Waveform when the throughput is 

slowed down in 2 times 

 

Also, after the RDY signal the result samples start to 

be generated. They are followed by the result number 
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which is given by the signal ADDR (Fig.10). When 

the START signal is not active for the long time 

period then just after output of the 255-th couple of 

results the 0-th couple of results for the next data 

array is outputted 

 

 
 

Figure 10: Output Waveform 

 

The latent delay of the FFT256 processor core is 

estimated by ED = 1 as the delay between impulses 

START and RDY, and it is equal to 839 clock cycles 

when 3 buffer units are used and to 580 clock cycles 

when 2 buffer units are instantiated. When the 

throughput is slowed down by the signal ED 

controlling then the result output is slowed down 

respectively, as it is shown in Fig.11. 

 

 
 

Figure 11: Output Waveform when the 

throughput is slowed down in 2 times 

 

8. Other components of Testbench - 

Data Buffer, Bit Shifter & 

Complex Multiplier 
 

BUFRAM256: BUFRAM256 is the data buffer, 

which consists of the two port synchronous RAM of 

the volume 512 complex data, and the write-read 

address counter. The real and imaginary parts of the 

data are stored in the natural ascending order as in 

Fig. 12 By the START impulse the address counter is 

reset and then starts to count (signal addrw). The 

input data DR and DI are stored to the respective 

address place by the rising edge of the clock signal. 

After writing 256 data beginning at the START 

signal, the unit outputs the ready signal RDY and 

starts to write the next 256 data to the second half of 

the memory. At this time point, it outputs the data 

stored in the memory‟s first half. The reading of the 

next array starts as soon as this data reading is 

finished. This process continues till the next RST or 

START signal are entered. The reading address 

sequence is 16-th inverse order, i.e. the order is 

0,16,32,...240,1,17,33,... . Really the reading address 

is derived from the writing address by swapping 4 

LSB and 4 MSB address bits. The reading waveforms 

are illustrated by the Fig.13. Implementation of 

BUFRAM256 unit is possible in 2 ways. The first 

way consists in use of the usual one-port synchronous 

RAMs. Then BUFRAM256 consists of 2 parts, firstly 

one data array is stored into one part of the buffer, 

and another data array is read from the 2
nd

 part of the 

buffer, then these parts are substituted by each other. 
The second way consists in use of the usual 2-port 

synchronous RAM with a single clock input. Such a 

RAM is usually instantiated as the Block RAM or the 

dual ported Distributed RAM in the Xilinx FPGAs. 

 

 
 

Figure 12: Waveforms of data writing to 

BUFRAM256 

 

 
 

Figure 13: Waveforms of data reading to 

BUFRAM256 

 

Cnorm – shifter to 0,1,2,3 bit left shift: During 

computations in FFT16 the data magnitude increases 

up to 16 times, and the FFT256 result can increase up 
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to 256 times depending on the spectrum properties of 

the input signal. Therefore, to prevent the signal 

dynamic bandwidth loose, the output signal bit width 

must be at least in 8 bits higher than the input signal 

bit width. To prevent this bit width increase, to 

provide the proper signal dynamic bandwidth, and to 

ease the next computation of the derived spectrum, 

the CNORM units are attached to the outputs of the 

FFT16 units. CNORM unit provides the data shift left 

to 0,1,2, and 3 bits depending on the code SHIFT. 

The input data width is nb+3 and the output data 

width is nb+2, where nb is the given processor input 

bit width. The SHIFT inputs of two CNORM stages 

are concatenated to the 4-bit input SHIFT of the 

FFT256 core, 2 LSB bits control the first stage, and 2 

MSB bits do the second stage.  

 

Rotator256: The unit ROTATOR implements the 

complex vector rotating to the angles W256
ms

. The 

complex twiddle factors are stored in unitWROM256 

Here the row and column indexes are m and s 

respectively. These coefficients are read in the 

natural order addressing by the 8-bit counter addrw. 

The complex vector rotating is implemented by the 

usual schema of the complex number multiplier 

which contains 4 multiply units and 2 adders. 

 

9. TestBench Simulation 

Observations  
 

 
 

Figure 14: TestBench 

 

The units UG and UR are implemented as ROMs 

which contain the generating waveforms (UG) and 

the reference waveform (UR). They are instantiated 

as a component Wave_ROM256. The tables of sums 

of up to 4 sine and cosine waves and respective 

frequency bins are generated in Perl. The table length 

is set as $n = 256. The samples of these tables are 

outputted to the outputs DATA_IM, DATA_RE, and 

DARA_REF of the component Wave_ROM256 

respectively. The counter process CT256 generates 

the address sequence to the UG unit starting after the 

START impulse. The UG unit outputs the testing 

complex signal to the UUT unit (FFT256) with the 

period of 256 clock cycles.  

 

When the FFT result is ready then UUT generates the 

RDY signal after that it generates the address 

sequence ADDR of the results. This sequence is the 

input data for the UR unit which outputs the correct 

real samples (bins) of the spectrum. We note that 

because the input data is the complex sine wave sum 

then the imaginary part of the spectrum must be a 

sequence of zeros. The sum of square differences of 

spectrum results and the reference samples is 

calculated by a process named SQR_calculator. This 

is commenced after the impulse RDY and continues 

till 256 clock cycles. 

 

Then the result is divided to 128 and outputted in the 

message in the console of the simulator. For eg. the 

message: “rms error is 1 lsb” means that the square of 

the residue mean square error is equal to 1 LSB of the 

spectrum result which is acceptable. 

 

10. Conclusion 
 

When the model FFT256 is correct and its bit widths 

are selected correctly then the rms error is not 

succeeded by1 or 2. When this model is not correct 

then the message will be a huge positive or negative 

integer, or „X‟. The model correctness can be proven 

or investigated by looking at the input and output 

waveforms. Fig.15 illustrates the waveforms of the 

input signals, and Fig.16 of the output waveforms. 
 

 
 

Figure 15: Input Waveform for Testbench 

 

 
 

Figure 16: Output Waveform for Testbench 
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Performance of Implementation Data on Xilinx :  

Table 2 illustrates the performance of the FFT256 

core with two data buffers based on Block RAMs in 

Xilinx Virtex device when implementing 256-point 

FFT for 10 and 16-bit data and coefficients. Four 

DSP48 units have been used in whole project. The 

results are derived using the Xilinx ISE 9.1 tool.[5] 

 

Table 2: Performance of Implementation Data 
 
Target 

device 

and its 

data bit 

width 

XC 

4VSX25-

12(10 

Bit) 

XC 

4VSX25-

12(15 

Bit) 

XC 

5VLX30-

3 (10 Bit) 

XC 

5VLX30-

3(15 Bit) 

Area, 

Slices 

4791 

(46%) 

6945 

(67%) 

1739 

(36%) 

2434 

(50%) 

RAMBs 3 4 3 3 

Max 

system 

clock 

206 MHz 194 MHz 244 MHz 234 MHz 
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