
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

172

Instrument Cluster Driver Information Display Database and Viewer Tool

Adnan Shaout
1
, Dominic Colella

2

Abstract

Instrument Clusters have grown increasingly

complex in the last decade to include multi-

character displays as standard features. Automotive

Original Equipment Manufacturers (OEMs) all too

often leave the types of messages displayed in their

Instrument Cluster’s up to the component suppliers,

this accounts for huge overhead costs in software

design, text string translations, validation, and

maintenance. This paper presents a design of a

database for an Automotive OEM’s Instrument

Cluster Driver Information Display as well as a tool

for viewing the database and validation. This paper

focuses on allowing an OEM to design its own

database in house using inexpensive tooling to

avoid the costly overhead of having a component

supplier design the database in addition to

designing the software to run the Instrument

Cluster.

Keywords

Eclipse; Eclipse Modeling Framework; Sashimi Software

Design Methodology; Instrument Cluster; JavaScript;

XML; XSD; XSL;OEM

1. Introduction

As the automotive industry steadily begins to merge

with the consumer electronics industry, the ratio of

analog gauged Instrument Clusters to those with LCD

displays begins to shift to the latter. As early as 2010,

Ford Motor Co. unveiled their 2011 F-Series trucks

with an integrated 4.2” LCD display. The display

performed functions such as providing the Odometer,

various vehicle information readouts, and a message

center to deliver important, vehicle related

information to the user. Figure 1 shows a sample

instrument cluster with LCD display.

These Driver Information Displays typically have

different levels of priority for the messages displayed,

usually determined by the color of the message, as

well as including audible cues and visual images of

the piece of information being delivered [1].

Adnan Shaout, Professor at the Electrical and Computer

Engineering Department, The University of Michigan – Dearborn.

Dominic Colella, Graduate student in the Software Engineering
MS program at The University of Michigan – Dearborn.

The text color, audible cue, and image all work

cooperatively to begin teaching the driver to

understanding what is going on with their vehicle

without diverting their attention from operating the

vehicle through learned reactions to any combination

of the message’s attributes. The driver can begin to

associate taking a certain level of action in response to

a message based on what color the text is or what the

sound is. This elements help to increase the driver’s

awareness of what their vehicle is doing while

maintaining their ability to operate it safely [2]. The

biggest problem with the development of a Driver

Information Display is that Automotive OEMs

typically leave the design of the databases for these

messages up to the component supplier’s delivering

the Instrument Clusters. At best, OEM’s will deliver

spreadsheets with lists of message text in them with

little to no formal review of the text for correctness.

Figure 1. Sample Instrument Cluster with LCD

Display

These suppliers then take the spreadsheets and assess

the level of work involved in creation of a database to

maintain these message lists, hire translation firms to

translate the messages into the languages that the

Instrument Cluster hardware will support, hire testing

staff to validate the message text in all the translated

languages, and then provide a financial quotation to

the OEM which usually includes at least a 10%

increase in cost to ensure their investment is returned.

OEMs can avoid huge costs by designing these

databases in house using the skill of employees they

usually already have on staff to build the message

lists, determine the correct tooling for handling the

work, and building of tools to for validation of the

message lists. Once the database in house is designed

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

173

then the database will be a living element that will

grow as the features in the vehicle continue to grow

and mature. As each new message is added to the

database, the associated database viewer can be used

to ensure the messages convey the correct information

to the driver and also check the translations of the

messages to ensure information is not lost in

conversion from one language to the next.

This paper will present a design of a database for an

Automotive OEM Instrument Cluster Driver

Information Display as well as a tool for viewing the

database and validation. The software design process

in this paper focuses on the use of the Sashimi

software design methodology, an offshoot of

Waterfall method, for the planning, design, code, and

testing of the database and database viewer elements.

The format used for the database is eXtensible

Markup Language (XML) and the tooling designed to

allow the database to be viewed is a Hyper Text

Markup Language (HTML). The Integrated

Development Environment (IDE) used is the free and

open source Eclipse package with the Eclipse

Modeling Framework (EMF) plug-in used for

database modeling. To the knowledge of the authors

no papers has been published with a design of a

database for an Automotive OEM Instrument Cluster

Driver Information Display with a tool for viewing

the database and validation.

2. Objectives of This Paper

The first objective in this paper is to develop the

Driver Information Display message database. The

second object is to develop a tool for viewing the

database to validate text and translations.

For the database, the requirements are going to be the

following:

1. The database should allow for a message’s

title, text, color, sound, and image

parameters to be added for each entry.

2. The format used for the database should be

easily read by both computers and humans

while being common enough that any

Instrument Cluster supplier would know how

to work with it.

3. The database should allow all text (both title

and message text) to be entered in the six

most common languages for vehicles

shipped to the United States and Western

Europe English, French, Spanish, German,

Italian and Polish.

4. The database format should be flexible

enough to handle data entered as strings and

integers.

5. The database should be constrained and

validated against these constraints to ensure

clerical errors in entries do not lead to

product defects.

6. The database shall allow new entries to be

added easily.

For the database viewer, the requirements are going to

be the following:

1. The viewer should be easy to use and include

instructions and additional information.

2. The viewer should not require extra software

to run outside of the normal suite of

programs included with any Microsoft

Window’s PC.

3. The viewer should be developed using an

IDE that is inexpensive and wide spread

enough such that the software could be

updated though future maintenance and

possibly by new team members not included

in the original development.

4. The viewer should provide an output to the

user that matches the three Automotive OEM

Instrument Cluster Display sizes.

5. The viewer should model the audible

feedback to the user that would accompany

the visual display of the Drive Information

Display message.

After meeting with the customer, the software team

can make in initial proposal for a solution.

A. Proposed Solution

Based on requirements 2 and 4, as stated above for

the Driver Information Display message database, the

most suitable option would be to define the database

using eXtensible Markup Language or XML. XML

is a subset of what is known as Standard Generalized

Markup Language or SGML. The usefulness of

XML in this application comes in its flexibility.

Since the author of the XML document defines the

“tags” used for each “node” or entry in the database,

any combination of parent and child elements can be

created. While an XML document can be used on its

own, the creation of an XML Schema Definition file

(XSD) allows constraints to be placed on the

elements within an XML file. The XML file can then

be validated against the constraints to ensure

scenarios like integer values going out of bounds or

character limits are not exceeded, the creation of a

well formed XSD file would satisfy requirement 5

above. To meet the needs of requirements 1, 3, and

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

174

5; the structure of the XSD and XML files will be

built to accommodate five parameters per entry and

support six languages over the title and text

parameters [3]. The proposed solution for the Driver

Information Display database viewer compliments

the versatility of the XML format used for the

database. The viewer will use Extensible Stylesheet

Language (XSL) to convert the XML format into

Hyper Text Markup Language (HTML). XSL on its

own is a stylesheet language used to render text in

XML documents into a different format, for this case

the new format will be HTML. The scripts in the

XSL provide template and formatting information

that feeds to a process known as XSL Transformation

(XSLT). Most modern web browsers include the

capability to perform XSLT when provided with

XML document with a link to an XSL that contains

the formatting instructions [4 and 5].

When viewing an XSL document that performs an

XSLT to HTML, the first assumption is most likely

that you are reading a traditional HTML document

but further inspection proves this to be untrue. The

confusion is caused by that face which XSL

documents typically contain elements of the XSL

namespace, denoted by elements starting with

“<xsl:”, and elements of the target format of the

XSLT, in this case traditional HTML elements such

as <body> or <table>. When the XSLT

transformation is performed, the XSL elements are

transformed to the new format while the HTML

elements are untouched. This flexibility allows a

well formed and styled web page to be created within

an XSL document and the final XSLT performed by

your web browser or XML editor results in a well

composed web page that also includes the parsed

elements from your XML document. This

combination allows data in XML databases to be

parsed and viewed easily in web browsers without

requiring expensive IDEs for the development of the

viewer or specialized software or hardware for usage

of the viewer; these facts fulfil requirements 2 and 3

of the database viewer [3, 5, and 6]. For requirement

1 of the viewer, various user interface elements that

leverage the flexibility in the combination of

JavaScript and HTML will be used to create a web

page that provides the look and feel of an embedded

software application. HTML is another markup

language similar to XML, both of which are based on

the original markup language of SGML. Strategies

for HTML and XML differ in many ways, two of the

key differences are:

 XML defines what the data type of the

current element is and the value for the

current element of a data type.

 HTML defines the visual organization of

data within a web page and how the data is

styled when viewed in a browser.

Simple HTML documents typically include

embedded styling instructions to adding formatting to

how the data looks but added styling information

accompanies more complex HTML

Figure 2. Progression of phases in Sashimi

Methodology [7].

documents in the form of a Cascading Style Sheet

(CSS). CSS scripts attach styling information to

various headers or section ids within an HTML

document to perform formatting like varying text

font, color, size, or style or adding structural details

to the HTML elements such as centering, padding,

bordering, or adding tables for information within the

HTML element. JavaScript is considered to be the

most prevalent scripting language used in web pages

and internet data transfer. An important idea about in

learning JavaScript is that HTML on its own is static,

meaning that once your internet browser has

processed your HTML the data will remain

unchanged if left purely up to the HTML code. What

JavaScript provides is a scripting language to add

dynamicelements to HTML web pages such as visual

or audio reactions to user interface elements such as

buttons or menus or data processing based on input

values to a form or input field. HTML elements and

JavaScript functions can be developed to provide

tangible interface items such as different button types

and drop down menus to provide a simple means to

add the functionality of an installed application to a

web page. To improve the user interface further, the

recently created HTML5 markup language can

provide dynamic web page elements such as image

elements known as “canvases” and the HTML5

“audio” element [3, 4, and 5].

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

175

In HTML5, the “canvas”’ element provides the web

page designer with the ability to draw dynamic

graphic within an organized portion of the screen

using scripts, usually JavaScript. The “canvas”

elements are defined within the body of the HTML as

a sort of empty container, there are no inherent

drawing functions owned by the element itself.

JavaScript methods are used to populate the container

with images, draw geometric shapes, or input scripted

text objects into the “canvas”. The HTML5 “audio”

element allows a web page to play audio on the

client’s PC without the use of external audio

software. The audio data itself comes in the form of

an audio file in one of several supported formats:

.wav, .mp3, or .ogg. Since the target browser to be

used is Microsoft Internet Explorer, the audio format

supported is .mp3. An “audio” element has several

methods to control the play of the audio such as

providing a play command through the use of an on

screen button or through JavaScript that plays the

audio file in response to events such as on the first

load of the web page or when the function controlling

the script to play the file is run [4 and 6].

B. Software Metodology Employed

Due to the straightforward nature of the objectives of

this project in this paper, the Sashimi model was

chosen. The Sashimi model matches the Waterfall

model in the organization and progression of phases

but each current phase actually overlaps with the

previous phase. In the Sashimi model, the

progression is more similar to Concept/

Requirements, Requirements/Design, Design/Code,

Code/Test, and end with the Test/Maintain phase.

This progression enables more information sharing

from one phase to the next such as applying lessons

learned from current phase to the previous phase or

adjusting scheduling for the next phase due to

information found in the current phase. Figure 2

shows the model allowing each current phase to

overlap on to the next phase, which in turn provides

feedback to the previous phase while in the current

phase. Since the requirements for this paper are

relatively straight forward and should remain static

over the course of development, the Sashimi model’s

logical progression and feedback capabilities make it

an efficient choice [7].

3. Sashimi Phases

Since the Sashimi or “Waterfall with feedback”

software design methodology was chosen for this

paper, a layout of the phases is in order before we

begin.

A. Concept

Our initial concept of creating a machine readable

database of Driver Information Display messages in

XML format with validation and robustness provided

by an associated XSD file is a feasible task. Tooling

that would be appropriate for work of this type would

be the free and open source Eclipse Integrated

Development Environment with the associated

Eclipse Modeling Framework Plug-in. Eclipse

provides a unique graphical approach to modeling the

structure of XSD and XML data and conveniently

ties the creation of a new XML document

automatically to a pre-selected XSD file to validate

the XML data accordingly. The popularity of the

Eclipse IDE is also a contributing detail that adds to

the feasibility of using this tool on this project. An

increased popularity in an IDE guarantees that more

users will already be acquainted with the tool enough

to be able to being using without much training or

help to train others, either case suits to increase the

feasibility of a successful project.

The next feasibility analysis would be on the creation

of a database viewer for XML databases that output

to HTML. The choice in the initial proposed design

was to use an XSL Transform within an Internet

Browser to view the database. Since the most

popular internet browser on business computers is

Microsoft Internet Explorer, we’d need to ensure

compatibility between XSLT and Internet Explorer

versions. Since the release of Internet Explorer v.6 in

2001, browser support has been available for XSLT

and since each Microsoft Windows release since

Windows XP has included Internet Explorer v.6 or

greater, there is no potential that a user of the viewer

would not have the correct browser on their PC to use

our software [8].

For the tooling used to create the Driver Information

Display viewer, Eclipse Modeling Framework

includes and extensive set of plug-ins to provide

efficient created of XSL documents that result in

generated in HTML. Eclipse also allows for

development of the necessary JavaScript and CSS

files to improve the quality of the viewer.

B. Requirements

For the requirements of the paper, we can begin by

referencing the initial requirements from the

customer and build off those to perform analysis to

lead to the end result of a set of product requirements.

The requirements for the database are designed as

follows:

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

176

 Each database entry shall have a parameter

for message text, message title, message

sound, message color, and message image.

 Each database entry shall be flexible enough

to display a title/text combination in all of

the following languages: English, French,

Spanish, German, Italian, and Polish.

 The database title and text lengths shall be

small enough to fit on the following display

resolutions appropriately:

o 800px x 400px

o 300px x 400px

o 250px x 150px

 The title field shall be limited to 25

characters with a minimum of 5.

 The text field shall be limited to 75

characters with a minimum of 5.

 There shall be up to 16 sounds supported.

 There shall be up to 16 colors supported.

 There shall be up to 32 different images

supported

Based on the preceding requirements for the

database, design can begin on how to structure the

XSD and XML data. For the Driver Information

Display database viewer, the following requirements

were developed:

 The viewer shall be implemented as a web

page that can parse XML databases.

 The viewer be coded in a format that lends

itself to viewing in Microsoft Internet

Explorer.

 The viewer shall adhere to all Driver

Information Display form and behavioral

guidelines that Instrument Cluster Suppliers

must adhere to when delivering a complete

product to ensure consistent operation of the

end product and the database validation

tooling:

o All message titles shall be no

longer than 25 characters

o All message text fields shall be no

longer than 75 characters

o Title and message text fields shall

be color coded with the following

RGB color triplets:

 Color Code 1: #00FF00 –

Green

 Color Code 2: #FFFF00 –

Yellow

 Color Code 3: #FF0000 –

Red

 Color Code 4: #FF9900 –

Orange

o The Viewer shall implement 21 of

the approved vehicle telltale light

images as noted in Federal Motor

Vehicle Safety Standard 101.

 Each of the 21 telltale

light images shall be

colored in any of the four

colors approved for the

Driver Information

Display.

o The viewer shall implement all

approved motor vehicle chime

sounds.

 Sound 1: A 750Hz Beep

tone repeated 4 times with

a 200ms separation of

pulses.

 Sound 2: A 750Hz

amplitude decay tone at

1200ms in duration,

repeated 5 times, with the

last tone decaying with a

2400ms duration

 Sound 3: A 2000Hz

amplitude decay tone at

500ms in duration,

repeated 3 times.

 Sound 4: A 2000Hz Beep

tone repeated 4 times with

a 200ms separation of

pulses.

o The viewer shall allow the user to

validate all messages in all 6

supported languages.

o The viewer shall allow a user to

validate all messages in all three

display resolution formats:

o At the smallest display size the

Viewer shall not display an image

to maximize display for the text.

C. Design

While the requirements phase is underway, the

design phase can begin on the XSD files to define the

Driver

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

177

Figure 3. "didmsg" Element Definition in XSD

Code. (Child Element Definitions Collapsed to

Save Space)

Information Display database. When designing an

XML Schema, the user first defines what the Root

element in their XML will be and then follows that

by defining what each one of the Child elements in

the database will be. When an XML document is

created, the XSD file is used to ensure the structure

of the XML file follows the requirements in the XSD.

To create a database in XML, the associated XSD file

will typically define a top level Root element and

then a single Child element that can occur an

unbounded number of times but is required at least

once to make up a complete database. For our

purposes, the Root Element will be called

“didmsgdbc” and will have Child elements called

“didmsg”.

Figure 4. "didmsg" Graphical Representation in

Eclipse EMF

Each didmsg element is a separate entry in our Driver

Information Display database. To differentiate

multiple elements of the same type within an XML

file, each element can use attribute values which act

as identifiers within the XML document. For each

didmsg element, we will include three attributes:

“msgcode”, “msgreftext”, and “msgreftitle”. The

message code field is used to identify each database

entry and is unique and non-repeatable. The message

reference text field is used to add reference text to the

database entry for traceability; the message reference

title field is used for the same purposes. The message

code is defined as an integer data type that is

constrained between 0 and 256, the reference title

field is a string with a length between 5 and 25, and

the reference text field is a string between 5 and 75

characters in length. Within each didmsg element,

there are 5 child elements: “msgtext”, “msgtitle”,

“msgcolor”, “msggraphic”, and “msgsound”. Each

of these elements is defined as an integer data as

shown in figures 3 and 4.

For the message text and title parameters, we are

using an integer value instead of a string because

what our design calls for is known as a relational

database which will be explained in the next

paragraph. The message color parameter is defined

as an integer between 0 and 15, the message sound

parameter is define as an integer between 0 and 15,

and the message image parameter is an integer

between 0 and 31. These constraints ensure that the

values for each of the parameters can be validated by

the XSD file when an XML file is created. Figure 5

shows examples of constraint definitions in XSD.

This ensures each element within an XML file

follows the validation requirements set forth in the

XSD file, which produces a more robust and error

free set of data. To add further robustness, the

message sound, message title, and message color

parameters are also defined by sets of enumerated

values. For the message title, the design only

requires supporting 4 different message titles and

thus the title parameter only allows a choice of

integer values between 0 and 4, with 0 being a test

value. For the message color, the design only

requires supporting 4 color codes and thus the color

parameter only allows a choice of integer values

between 1 and 4, the sound parameter operates in the

same manner with the integer value constrained to

between 1 and 4 [3].

To allow the Message Database to correctly supply

text strings to the Driver Information Display,

another XML database is employed that only relates

the text and title code parameters to the actual strings

of characters that are displayed. What are defining

now is known as a Multilingual User Interface (MUI)

database, which is a collection of text strings in

various languages all bound together by a common

string ID. The concept functions as follows: within

our message database we supply an integer value for

the msgtitle

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

178

Figure 5. Example of Constraint Definitions in

XSD

Figure 6. MUI Database Definition in XSD

constrained between 0 and 99 and further constrained

within enumeration constants of 1-4. When the

Message Database is parsed, the result is a set of five

integer values for title, text, color, sound, and image.

Two of these values, message text and title, are then

searched for in the MUI database according to an

attribute value in each entry known as the “txtcode”.

Once one of the values is matched, string for the

currently chosen language is chosen based on the

element title within the MUI database XSD file. This

allows all the actual translations to be separated into

one database and the functional behavior to be

defined in another database. This is known as a

relational model, which links elements of databases

to elements in another to produce an end result that is

a combination of the previous two databases. The

MUI database XSD file is composed of a Root

element known as “didmuidbc” with children

elements known as “didmuimsg”. Each didmuimsg

element contains two attributes: “txtcode” that links

the incoming message title or message text code to

the MUI database element and the “txttype” attribute

which defines if the current MUI element contains

text strings for a title element or a text element.

Within the MUI database, txtcodes 0-99 are reserved

for message titles, and 100-255 are reserved for

message text. Within each didmuimsg element, there

are six child elements for strings in each of the

languages supported. The XSD definition for the

MUI database can be seen in figure 6.With the XSD

files defined for the DID message and MUI message

database, the populating of the database can be

handled by hand during the coding phases. The next

step in the design phase is the design of the viewer.

From the requirements, we know the viewer has to be

an XSL document whose end result after

transformation is into an HTML web page with

proper scripting to allow the following interactions:

 A UI element to allow selection of one of

the six supported languages.

 A UI element to allow selection of one of

the three supported display resolution sizes.

 A UI element to allow selection of one of

the Driver Information Display database

entries.

 The ability to produce audio to the user to

simulate vehicle chimes.

 The ability to control a portion of the screen

to dynamically populate it with colored text,

vary the text size, and impose an image

under the text.

To handle the UI elements for selection of language

and display sizes, we will choose to use what are

known as radio buttons. Figure 7 shows examples of

Radio button design. Radio buttons allow a specific

center of interactions from the user: all selections are

mutually exclusive and selections of the same option

cannot be made twice. These two characteristics are

unique to radio buttons and are not found in more

traditional button elements or check boxes. Within

the HTML code, a form type with the label of radio is

used to define a radio button. When a radio button is

selected a JavaScript function is called to handle the

dynamic reaction to the button. The each element in

the radio button form has an attribute of “onclick=”

that defines what JavaScript function is called when

the option is selected. To handle the display of the

different database entries to the user,

Figure 7. Example Radio Button Design

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

179

the most efficient choice is through a combo box or

better known as a drop-down menu. Drop-down

menus allow lists of information to be contained in a

single field which contains a long list but only

displays a small footprint on the visual portion of the

web page. Figure 8 shows example of Combo box

design. Similar to the radio buttons, the HTML

information for the drop-down is defined within a

form and the attribute of “onchange=” defines what

JavaScript function is called when a new option is

chosen. To provide the ability to produce audio, the

design decision was made to use an HTML5 audio

element. Within HTML code and audio element is

defined using the code “<audio>” as seen in figure 9.

The audio element can have several attributes such as

defining whether or not it plays automatically at page

load, whether the web

Figure 8. Example of Combo Box Design

page includes visual display of play/pause controls,

or if the audio is looped or not. To dynamically

populate a portion of the screen with text or images,

we’ll be using another new HTML5 element: the

canvas. An HTML5 canvas element is only

constructed by the

Figure 9. HTML5 Audio Element Code and

Chrome Brower Supported Audio Controls

HTML code with details for initial size and location,

the actually dynamic drawing or filling that occurs

with the canvas is handled by JavaScript as seen in

figure 10. The canvas is located within the HTML

code by the element “id=” attribute, the JavaScript

creates an object for it by using the

“document.getElementById(“myCanvas”)”

constructor. Once the canvas object is created, a

context for it is created and then the area can be

manipulated by the JavaScript.

Figure 10. HTML and JavaScript Canvas Code

and Result in Web Page

With the design of the web page elements defined,

the next set of work is to code the DID message and

MUI databases and code the XSL document to be

transformed to HTML.

D. D.Code

For the first half of the coding phase, the message

database will be populated. There are 26 initial

Driver Information Display messages to create

entries for within the database as shown in figure 11.

This process is greatly simplified through the use of

the Eclipse IDE which verifies each new addition to

your XML document by checking it against the

requirements in the schema first.

Figure 11. Graphical Representation in Eclipse

IDE of Driver Information Display XML

Database

Once each of the database entries are added to the

message database using the XSD file as guidance with

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

180

the Eclipse IDE tool, the next step is to populate the

MUI database with each of the text stings. As in the

previous database, using the XSD file and Eclipse

automatically verifies to additions to the XML file

according to the schema as shown in figure 12.

After the MUI database is populated, both XML files

are validated according to their XSD files to ensure all

parameters are filled out correctly. The first step in

coding the XSL files to create the saved XSL file and

then create a link to the file within the XML file

Figure 12. Graphical Representation of MUI

Database in Eclipse

using the XSL style sheet link element as follow:

<?xml-stylesheet type="text/xsl"

href="Viewer_ECE574.xsl"?>

This element within the XML file is what notifies

your Internet Browser that an XSL exists for this

XML and the link to where the XSL can be found.

Without this link in the XML document, the browser

would not be able to associate this XML with any

XSL documents.

When beginning an XSL file, the first step after

creating the initial headings is to declare the first

template element. Within the templates are where the

XSL elements and the HTML elements are combined.

During the transform the browser ignores the HTML

elements and only focuses on the XSL elements,

denoted by the XSL namespace “<xsl:”. The

templates within an XSL usually follow the hierarchy

of the nodes in an XML document, identified by the

node path within the match attribute as follow:

 <xsl:template match="/didmsgdbc">

The preceding template is the highest level template,

which will encompass the bulk of the traditional

HTML code within the XSL. Inside this template is

where the <head> and <body> elements are defined

for the HTML. In the <head> element are defined the

two links: one to the JavaScript file which will

contain all of our functions titled “my_java.js” and

one link to the Cascading Style sheeting titled

“mystyle.css”.

After the head element, the body element defines the

HTML to create the drop down menu, the two series

of radio buttons, and the HTML5 canvas elements.

The drop down menu in HTML is defined by the

following code:

<form name="comboBoxForm" size="1"

method="POST">

<select name="comboBoxMenu"

onchange="getComboBox()">

<xsl:apply-templates select="didmsg"

mode="combo_item"/>

</select>

</form>

The code defines the combo box form that will

populate the dropdown menu. The “onchange=”

attribute is what notifies the JavaScript function

“getComboBox” to be called when the user changes

the value of the drop down menu, the size attribute

determines that only 1 option is displayed at once, and

the method attribute determines how to transfer the

form data. The menu itself is populated by an XSL

template as follow:

Figure 13. Output of XSL Transform of Drop

down Form/Template

<xsl:template match="didmsg"

mode="combo_item">

<xsl:element name="option">

<xsl:attribute name="value">

Value attributes excluded for brevity of paper.

</xsl:attribute>
<xsl:value-of select="concat('Message Code: ',

concat(@msgcode,concat(' / Reference Text:

',@msgreftext)))"/>

</xsl:element>

</xsl:template>

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

181

What the XSL code above does it to apply the XSL

Transformation dictated by the template while the

transformatin is in “combo_mode”. This portion of

the transform is what populates the actual drop down

menu, dictated by the “value-of” element. This

populates the drown down menu with a static string

of “Message Code: “ concatenated with a dynamic

string populated by the XSL transform of the

message code text concatednated with the static text

of “ / Reference Text: “ and in the end concatenated

by the dynamic string populated by the XSL trasform

of the message reference text, both pieces of

information parsed our of the message database XML

file. A screen shot of the HTML output of the

transform is shown in figure 13.

After the drop down menu HTML form, the form for

the two sets of radio buttons is found in the menu

section. The language selection radio buttons are

defined as follow:

<form >

<input type="radio" name="lang" id="eng"

onclick="chklang(this.value)"

value="0,1" checked="checked"/>English

<input type="radio" name="lang" id="esp"

onclick="chklang(this.value)"

value="2,3" />Spanish

<input type="radio" name="lang" id="frn"

onclick="chklang(this.value)"

value="4,5" />French

<input type="radio" name="lang" id="ger"

onclick="chklang(this.value)"

value="6,7" />German

<input type="radio" name="lang" id="itl"

onclick="chklang(this.value)"

value="8,9" />Italian

<input type="radio" name="lang" id="pol"

onclick="chklang(this.value)"

value="10,11" />Polish

</form>

From the radio button HTML, you can see that each

button is leasted as part of the form under an “input”

element. Each input element of a radio button is

listed as “radio” type and radio button inputs from the

same set of buttons all require the same name. Each

button calls this “chklang()” fuction upon being

clicked or selected and when the function is called it

passes the inputs value property as the input

argument to the chklang() function. In the following

sections we will review the JavsScript functions to

see how this operates. The radio button HTML for

the display size resolution buttons is as follow:

<p>Please select a display size:</p>

<form >

<input type="radio" name="size" id="big"

onclick="cvsBig()"/>Large Size Display

<input type="radio" name="size" id="med"

onclick="cvsSmall()" checked="checked"/>Mid

Display Size

<input type="radio" name="size" id="sml"

onclick="cvsTiny()" />Small Display Size

</form>

From the above HTML, you can see that when one of

the display size radio buttons is selected, their own

JavaScript function is called. These functions each

activate to dynamically adjust the size of the HTML

canvas element when called as seen in figure 14.

Figure 14. Language and Display Size Radio

After the radio button definitions, the HTML5 canvas

elements are defined. Driver Information Display

supports two fields, one for the message title and one

for message text; we will use two overlapping

canvases with one defined for the title text and one

defined for the message text as follow:

<canvas id="myCanvas" width="300" height="400"

style="border:1px solid #000000;

background-color:#000000;position: absolute; left:

0px; top: 0px; z-index: 0;">

Your browser does not support the HTML5 canvas

tag.

</canvas>

<canvas id="myCanvas2" width="300" height="30"

style="border:1px solid #000000;

background-color:#A4A4A4;position: absolute; left:

0px; top: 0px; z-index: 1;">

Your browser does not support the HTML5 canvas

tag.

</canvas>

You can see in the previous code that the canvas

elements use the “z-index” attribute to define which

layer the canvas sits on. Canvas id myCanvas is the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

182

large canvas defined for the message text and is

300px x 400px and is on layer 0. Canvas id

myCanvas2 is the small canvas defined for the

message title and is 300px x 30px and is on layer 1

and thus on top of the previous canvas.

After the canvas elements are defined, the HTML5

audio element is defined as follow:

<audio id="one" src=""></audio>

The audio element is identified by the id attribute, the

src attribute defines where the path is for the Internet

Browser to find the audio files. The src attribute is

blank by default because it is populated by the

“getComboBox()” JavaScript function when the drop

down menu changes state.

Now that the HTML elements of the XSL have been

reviewed, the focus can shift to the JavaScript

functions in the my_java.js file included with the

software. The JavaScript file contains seven

functions:

 startup()

 chkLang(radioValue)

 textColor(colorCode)

 getComboBox()

 cvsBig()

 cvsTiny()

 cvsSmall()

The startup() function is called at web page load

when the body element of the HTML loads. This

function assigns the default language to English and

calls the chkLang() function at on load.

The chkLang() function accepts the radio button

values and then writes two global JavaScript

variables: ttl and msg. These variables determine

which language to use when making a change to the

language radio buttons. After the radio buttons are

clicked, the JavaScript calls the getComboBox

function to update the value within the canvas

elements to the new language.

The textColor() function accepts a color code value

when called from the getComboBox function and sets

the global variable of clr to the HTML color triplet

value. The getComboBox() function is called when

the drop down menu changes state, when the canvas

changes size or when the language changes. When

called, the function starts by pulling the values from

the combo box form within the HTML. After this the

form data populates fields within the HTML code

that notify the user of elements of data such as the

message title, message text, message color, file path

to the message audio file, and file path to the message

image file. Once the HTML values are assigned, the

function uses the combo box form data to fill

myCanvas and myCanvas2 with the data from the

MUI database.

Before the text string is written to myCanvas, it is

processed through an algorithm to determine the

correct text size to set the font size that will

maximize the space in the canvas. After the message

text is written to myCanvas, the image path is

determined by concatenating a string of the message

color code and a string containing the image code

form the message database and then a string with the

static text of “.gif”. This allows 4 different sets of

each image to be created in each of the 4 colors with

the file names differing by the leading digit, which is

the color code. Within the database, the same codes

can be used for all messages and the combination of

the color code and the image code is what leads the

HTML to receiving the correct path to the image file.

After the image algorithm, the message sound

parameter from the message database is written to the

audio element within the HTML to ensure one of the

4 audio files is found. After the src property is

written for the audio element, the play method is used

to start the audio file. This ensures that each time the

getComboBox function is called, the audio file will

be simulated. The final 3 JavaScript functions are

cvsBig(), cvsSmall(), and cvsTiny(). Each of these

functions is called when the display resolution radio

buttons are selected to change the size properties of

the canvas elements to the correct resolution.

E. Test

The testing phase of the design methodology is

relatively simple for a project of this size. Testing

was done by creating a

Figure 15. Test Message in all Display Resolution

Sizes

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

183

test message within the message and MUI databases

that contained the maximum length text string of 75

characters and title string of 25 characters. The text

used is the classical test text string of “The quick

brown fox jumps over the lazy dog.” By creating a

message like this we can test each of the images, all 4

colors, all 4 sounds, and the entire length of the title

and text field for any errors that could be introduced

into the viewer. Figure 15 shows test messages in all

display resolution sizes.

The testing phase did not reveal any issues and was

completed ahead of schedule. Since no refactoring

was required after the testing phase, there were no

updates to make in the Maintenance phase.

4. Conclusion

This paper presented a Driver Information Display

database in XML format and associated HTML

viewer for the XML data. The feasibility for an

Automotive OEM’s employees to perform the work

was laid out in the paper. The paper allows an

organization to reduce cost from Instrument Cluster

suppliers. The paper followed the Sashimi software

design methodology. The paper exhibited one of the

many useful functions of markup languages and the

versatility of the Eclipse Integrated Development

Environment.

References

[1] Levine, Mike, "Ford F-150 Getting More

Productive for 2011", On line at

http://news.pickuptrucks.com/2010/04/ford-f150-

getting-more-productive-for-2011.html (as of

January 5, 2014).

[2] Howard, Bill, "Digital dashboard: Why your

car’s next instrument panel will be one big LCD",

On line at

http://www.extremetech.com/extreme/131485-

digital-dashboard-why-your-cars-next-

instrument-panel-will-be-one-big-lcd (as of

January 5, 2014).

[3] "Extensible Markup Language (XML) 1.0 (Fifth

Edition)" On line at

http://www.w3.org/TR/2008/REC-xml-

20081126/ (as of December 19, 2013).

[4] "JavaScript Reference", On line at

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference (as of

Decemeber 19, 2013).

[5] "XSL Transformations (XSLT)", On line at

http://www.w3.org/TR/xslt (as of December 19,

2013).

[6] Berjon, Robin, Travis Leithead, Erika Doyle

Navara, Edward O'Connor, Silvia Pfeiffer

(editors), "HTML5 A vocabulary and associated

APIs for HTML and XHTML W3C Candidate

Recommendation 17 December 2012", On line at

http://www.w3.org/TR/html5/ (as December 19,

2013).

[7] Rising, Jim;, "Sashimi Waterfall Software

Development Process", On line at

http://www.managedmayhem.com/2009/05/06/sa

shimi-waterfall-software-development-process/

(as December 10, 2013).

[8] Warburton, Richard, "The Resurgence of Apache

and the Rise of Eclipse", On line at

http://java.dzone.com/articles/resurgence-apache-

and-rise (as December 19, 2013).

Dr. Adnan Shaout is a full professor in

the Electrical and Computer

Engineering Department at the

University of Michigan – Dearborn. At

present, he teaches courses in fuzzy

logic and engineering applications and

computer engineering (hardware and

software). His current research is in

applications of fuzzy set theory, embedded systems,

software engineering, artificial intelligence and cloud

computing. Dr. Shaout has more than 30 years of

experience in teaching and conducting research in the

electrical and computer engineering fields at Syracuse

University and the University of Michigan - Dearborn. Dr.

Shaout has published over 140 papers in topics related to

electrical and computer engineering fields. Dr. Shaout has

obtained his B.Sc., M.S. and Ph.D. in Computer

Engineering from Syracuse University, Syracuse, NY, USA,

in 1982, 1983, 1987, respectively.

Dominic Colella is a graduate student in

the College of Engineering and

Computer Science at the University of

Michigan – Dearborn.

http://news.pickuptrucks.com/2010/04/ford-f150-getting-more-productive-for-2011.html
http://news.pickuptrucks.com/2010/04/ford-f150-getting-more-productive-for-2011.html
http://www.extremetech.com/extreme/131485-digital-dashboard-why-your-cars-next-instrument-panel-will-be-one-big-lcd
http://www.extremetech.com/extreme/131485-digital-dashboard-why-your-cars-next-instrument-panel-will-be-one-big-lcd
http://www.extremetech.com/extreme/131485-digital-dashboard-why-your-cars-next-instrument-panel-will-be-one-big-lcd
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
http://www.w3.org/TR/xslt
http://www.w3.org/TR/html5/
http://www.managedmayhem.com/2009/05/06/sashimi-waterfall-software-development-process/
http://www.managedmayhem.com/2009/05/06/sashimi-waterfall-software-development-process/
http://java.dzone.com/articles/resurgence-apache-and-rise
http://java.dzone.com/articles/resurgence-apache-and-rise

