
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

222

Generation of Branch Coverage Test Data for Simulink/Stateflow Models

Using Crest Tool

Sangharatna Godboley
1
, Adepu Sridhar

2
,Bhupendra kharpuse

3
, Durga Prasad Mohapatra

4
,

Banshidhar Majhi
5

Abstract

Automated test suite generation is an optimization

technique to reduce test effort and duration.

Software Testing has traditionally been one of the

main techniques contributing to high software

quality and dependability. Testing performance

consumes about 50% of software development

resources, so any methods aiming at reducing

software- testing costs are likely to reduce software

development costs. So an automated generation of

test cases is highly required. Modelling technology

has been introduced into the software testing

field. Even though how to perform the testing is

difficult task, in this approach we are testing using

simulation modelling and by using testing methods

we are generating MC/DC test cases. In our

approach, the first system is modelled in MATLAB

using Simulink/Stateflow tool. After that we are

generating code from the Simulink/Stateflow

models. We use that code to generate the test

data using Concolic tester CREST Tool. Concolic

testing is used in avionics systems in an efficient

way.

Keywords

Simulation; Stateflow; Branch coverage; CREST Tool;

Simulink/Stateflow; Concolic testing e Slicer, Crest Tool,

Concolic Testing.

1. Introduction

Embedded Control Systems are now integral parts of

many application systems in the areas of Aerospace,

Communication, Automobiles, Commercial

(computer peripherals, appliances, etc.), and

Industrial (machinery) etc.

Sangharatna Godboley, Department of Computer

Engineering, ARMIET Shahpur, Thane, India.

Adepu Sridhar, Vignyan University, AP, India.

Bhupendra Kharpuse, Symantec India Pvt ltd Pune, India.
Durga Prasad Mohapatra, Department Computer Science and

Engineering, National Institute of Technology Rourkela, India.

Banshidhar Majhi, Department Computer Science and
Engineering, National Institute of Technology Rourkela.

The As a result, everyone looking for easy and

reliable techniques to design, develop, test and verify

these systems. With a model based design and

development becoming a trend, industries use design

and simulation tool sets like MATLAB and

Mathematical. MATLAB Simulink / Stateflow are a

high level model designing tool very popular in many

industrial application domains. It enables modelling,

simulating and analyzing dynamic systems. It

provides a wide range of library blocks, for example,

Math Operation blocks, Logic and Bit Operation

blocks, Signal Routing blocks, to name a few.

Simulink is basically an add-on library for MATLAB

with a number of blocks like Integration block,

Summation block etc. [9]. To capture the discrete

control states, generally uses Stateflow which is a

component of Simulink. Stateflow is used together

with Simulink and optionally with the Real-Time

Workshop (RTW). The control behavior that

Stateflow models complements the algorithmic

behavior modeled in Simulink. Simulink support

development of continuous-time and discrete-time

dynamic systems in a graphical block diagram

environment. Stateflow diagrams incorporate into

Simulink models to enhance the new event-driven

capabilities in Simulink.

The model must be tested in order to detect faults in

the embedded system as early as possible. Exhaustive

test is not possible for any system. The test data

generation process is very costly and time consuming

and error prone when done manually, the automation

of this process is highly required [1].

Embedded controller software is usually based on

various states and for that states representation often

uses Stateflow [10] diagrams utilization of the

internal structure of the diagram to generate test cases

is important. In our approach we are performing

Concolic testing to generate Branch Coverage [13]

test data using CREST Tool.

Concolic testing [15] have been introduced as a

divergent of symbolic execution where symbolic

execution [14] is executed at the same time with

concrete testing. The program under test is specially

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

223

performed simultaneously for symbolic and concrete

values. The constraints are used to incrementally

produce test inputs for best path coverage by merging

symbolic constraints for a prefix of the path with the

negation of a conditional taken by the execution. The

advantage of Concolic testing over symbolic testing

is the presence of concrete (data and address) values,

which is used to reason precisely about complex data

structure as well as to simplify the constraints when

they go beyond the scope of the underlying

constraints solver. A software program is tested by

executing test inputs values, generating output

values, and checking outputs against the test oracles

for correctness. The combination of test inputs and a

test oracle forms a complete test case. It is very

difficult to produce test Oracle from source code

alone.

CREST [8][18][19] Tool is an open source Concolic

testing tool for C programs. Empirical study of

CREST shows its effectiveness in unit testing

programs with 100 to 2000 lines of code. CREST is

based on Linux platform and Yices Constraints

Solver. It works by feeding the instrumentation code

using CIL into a program under test to perform

symbolic execution simultaneously with the concrete

execution. The generated symbolic constraints are

solved using Yices to generate input that drive the

test execution down new, unexplored program paths.

2. Basic Concepts

Simulink is an environment for multi domain

simulation and Model-Based Design for dynamic and

embedded systems. It is an interactive graphical

environment and a customizable set of block libraries.

Simulink is used for modelling both continuous and

discrete Systems. Simulink blocks are divided into

different types according to their behaviour.: a) The

Sources library: Contains blocks that generate signals,

b) The Sinks library: contains blocks that display or

write block output, c) The Linear library: Contains

blocks that describe linear functions, d) The Nonlinear

library: Contains blocks that describe Non-linear

functions, e) The Connections library: Contains

blocks that allow to connect different parts of the

model. This Simulink information is taken from maths

works in company website [9]. Stateflow diagram

is a graphical representation of a finite state event

driven machine. Stateflow is a powerful graphical

design and development tool for complex control and

supervisory logic problems. Stateflow allows us to use

flow diagram notation and state transition notation

seamlessly in the same Stateflow diagram. Stateflow

uses different kinds of notation established by Harel

[2]. Stateflow allows two basic building blocks

states and transitions to represent the finite state

machine. Stateflow allows hierarchy, parallelism, and

history. Because of these characteristics Stateflow is

usefulness compare to STDs and bubble diagrams

provide. We design the Stateflow machine using

Stateflow blocks. If we go for simulation it executes

both Simulink and Stateflow portions. Simulink

model consists of Simulink blocks, Subsystems,

toolbox and Stateflow Block. In the Simulink model

Stateflow represented as Chart. A collection of all

these charts is called as Stateflow Machine. Chart

consists of state, transition, data, events are there.

Sample Simulink Example: A sample of the Simulink

model which containing a Stateflow diagram in it.

When you simulate this model, the generation of the

input event from Simulink, Switch, will toggle the

activity of the states between Powers on and Power

off. In this model Simulink used as an interface for the

Stateflow model. In the sample Simulink example Fig.

1, the Stateflow part of the model is shown in Fig.2.

The Concolic testing concept combines a concrete

constraints execution and symbolic constraints

execution to automatically generate test cases for

full path coverage. Concolic testing produces test

cases by performing the program under test with

random values. At the time of execution both

symbolic and concrete values are saved for path

execution. The next repetition of execution of process

forces to select the different path. The Concolic tester

chooses a value from the path constraint solver (Yices

for CREST Tool) and negates the values to find a new

path value. The constraints are inputs for all next

execution. This process executes iteratively until

exceeds the sufficient code coverage obtained or

threshold value.

Let us take an example, Fig.3:

Calculate Density of mass when mass and volume are

given. Concolic Tester starts by executing the method

with random strategy. Assume that Concolic tester has

set the values of mass 91 and volume= -9. During

execution time both concrete and symbolic values are

saved for executing path. For input constraints to

execute the similar path, it is a must that every

statement with decision branch calculates the similar

value. The first statement (Line 6 in Fig. 3) will

execute as true, because initially the mass is equal to

91, which is more than zero.

 (Mass>0)

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

224

Now it is the time for a second branch statement

which becomes false because volume is automatically

set as negative value.

⇁ (volume>)

With the previous branch statement to form a new

path statement:

 (Mass>0)^ ⇁ (volume>0)

The method fails in the execution of the second

condition, so it is altered by negating the branch

constraints. When the last condition is negated, then

the expression becomes:

 (Mass>0) ^ (volume>0)

Now, this new path has passed to a constraint solver

to find if there exists an input that executes the new

path. There will be many solutions but a tester picks

one among all and executes for the next iteration. This

time the input can be mass=72 and time=9. Now, it

will execute without throwing any exception and

returns the type of density i.e. high density. Now, it

will execute without throwing any exception and

returns the type of density i.e. high density. This path

has the following constraints:

(Mass>0) ^ (volume>0) ^ ⇁ (density>9) ^ ⇁

(density=>9)

Where density= mass/volume. This process continues

until stopping criteria is met. This could be possible

when the iteration exceeds the sufficient coverage is

obtained and threshold value.

3. Related Works

Bokil et al. [2] proposed a tool AutoGen that reduces

the cost and effort for test data preparation by

automatically generating test data for C code. Auto-

Gen takes the C code and a criterion such as state-

ment coverage, decision coverage, or Modified

Condition / Decision Coverage (MC/DC) as input and

considered the small signal generation as the input,

it is not covering all the blocks in the model. This

belongs to exactly real world, but Zhan considered

small Simulink block and Stateflow diagrams are

disregarded completely. In our approach we are

considering Stateflow models. We have designed

Simulink/Stateflow model.

From that model generating the MCDC test data. We

are overcoming this limitation of Zhan’s approach.

Andreas Windisch [5] extended the Zhan’s work and

in this he generated signal as well as coverage of

Stateflow diagrams. In this also one major drawback

is it is not applicable to realistic complex models.

Tools also there for the testing of Simulink/Stateflow

models, one of the tools is Reactive Tester [11], by

using guided simulations and heuristics without

explanation. This approach is limited regarding the

length of generating input signals, model size and

complexity leads to lower structural coverage. But our

approach overcoming these limitations in our

approach works for complex models also generates

non-redundant test data that satisfies the specified

criterion.

Simulink/Stateflow has originally been designed

for the simulation purposes. Automated test

generation for Simulink/Stateflow diagram is required

to identify the errors. Many authors have tried

different ways of test data generation and verification

for Simulink/Stateflow diagram. Zhan [4] proposed

one approach, novel search based approach to cover

the particular structural elements of Simulink. He has

Mirko Conard et al. [6] proposed one approach to test

suite design for code generation tools. They describe

the design of a test suite for code generation tools.

This method provides solutions of main problems

how the correct transformation of a source into a

target language can be proved. The application of the

proposed testing approach leads to a test suite which

is suitable for testing code generators systematically.

Bokil et al. [3] Have presented a tool AutoGen

that reduces the cost and effort by automatically

generating test data for C code. They have also shown

their experience to generate MC/DC test data for three

embedded reactive system applications by using

AutoGen. They have concluded that the effort

required using the tool was one third of the manual

effort required.

Gadkari et al. [7] have translated vimulink/Stateflow

to a formal language and generated test cases based on

model checking. Formal methods are hard to

implement. A more mathematical knowledge is

required. For small models translating

Simulink/Stateflow models of formal language is

possible. If the size of the model is increasing

translating Simulink/Stateflow to Formal language

is difficult. Meng Li and Ratnesh Kumar introduced a

recursive method to translate a Simulink/Stateflow

diagram to an Input/Output Extended Finite Automata

[12] which is a formal model of reactive untimed

Input/Output Extended Finite Automata. It is

generated manually so it is drawn back.

Pasareanu et al. [17] conduct a survey of new research

trends in symbolic execution, with particular emphasis

on application to test generation and program

analysis. This paper focuses onto the future research

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

225

directions of symbolic testing while we focus to

generate Branch Coverage test suite from CREST [8]

Tool.

There are many Concolic testers like CREST Tool

here we discuss the comparative study [16] of the

related tools to CREST Tool. Tools identified in the

survey, along with their supporting languages,

platforms, and underlying constraint solvers.

Unfortunately, many of the tools are not available for

public use. For instance, DART, CUTE, jCUTE, Path

Crawler, and SAGE are all proprietary.

4. Proposed Approach

Our approach Generation of Branch Coverage Test

Data for Simulink/Stateflow Models Using CREST

Tool mainly consists of three steps:

• Step1: We are designing the Simulink

model

• Step2: We generate the code for the

Simulink/Stateowmodel.(Code

generation in MATLAB Real-Time

Workshop for SL/SF models)

• Step 3: Concolic testing for C program code

to generate MC/DC test suite

In Step 2 MathWorks Code generation technology

generates C or C++ code and executables for

algorithms that you model programmatically with

MATLAB or graphically in the Simulink

environment. You can generate code for any

MATLAB functions and Simulink blocks that are

useful for real-time or embedded applications. The

generated source code and executable for floating-

point algorithms match the functional behaviour of

MATLAB code execution and Simulink simulations

to high degrees of fidelity. Using the Simulink Fixed

Point product, we can generate the exact results. The

built-in accelerated simulation models in Simulink

use code generation technology.

Configuring the model for code generation: To

configure the model for code generation we have to

set some of the parameters of the model. To do that

we open the Configuration Parameters dialog box

Solver Pane. Then we set the parameters as

mentioned in the table below. After the model

configuration parameters are set as specified above,

we go to the Real-Time Workshop pane. Generate

Code only check box is selected. Generate make file

is optional and can be selected if the generated needs

to be built directly.

The C program generated from MATLAB is passed

to Concolic tester CREST TOOL. The Concolic

tester achieves branch coverage through random test

generation. Concolic Tester is a combination of

concrete and symbolic testing. Test case generation

depends on the path of each execution. All test

cases stored in text files, which forms as a test suite.

The Concolic testing process is carried out using the

following six steps:

(a) Symbolic Variables Declaration: It’s the starting

time; the user has to declare which variable will be

symbolic variables so that symbolic path formulas are

developed.

(b) Instrumentation: A target source code is statically

instrumented with probes, which keeps track of

symbolic

(c) Concrete Execution: The instrumented code is

compiled and run with given input values. For the

values. For the second time onwards, input values are

getting from step 6.

First time the target code is assigned with random

path conditions from a concrete execution path when

the target code is executed. Ex: At each branch, a

probe is inserted to track the branch condition.

 (d) Symbolic path formula X: The symbolic

execution module of the Concolic testing executions

collects symbolic path conditions over the symbolic

input values at every branch point collides along the

concrete execution path. Whenever s statement of the

target code is executed, a corresponding probe

inserted at ‘s’ updates the symbolic structure of

symbolic variables if statement s is an assignment

statement, or gathers a corresponding symbolic path

condition c, if s is a branch statement. Therefore at

last symbolic path formula X is built at the last point

of the ith execution by combining all path conditions

c1 , c2 , c3 where cj is executed earlier than cj+1 for

all 1_j.

(e) Symbolic path formula X′ for the next input

values: To find X′ we have to negate one path

condition cj and removing after path conditions (i.e. ,

cj+1, cn) of X′. If X′ is not satisfiable, another path

condition cj′ is negated and after path condition are

removed, till satisfiable formula is getting. If there

are no more paths to try, the algorithm stops

executing.

(f) Choosing the next input values: Constraints solver

generates a model that satisfies X′. This model takes

decision for next concrete input values and this

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

226

procedure repeats from step3 again with this input

value.

5. Experimental Studies

In this section, we explain the working of our

algorithm by taking the Air condition example using

a Simulink/Stateflow model, as described below and

it is shown in Fig. 3. Fig 3 shows an Air condition

Simulink/Stateflow model. It keeps the temperature

as constant. In our model we are giving random

temperature through Repeating sequence chair. In

this chart is a subsystem block which consists of

Stateflow model. The Stateflow part of the above

example model is shown in Fig. 2. As we have

discussed the generation of C code from a model in

Step 2 of Section 4, we have generated C code as

shown in Fig 8. We feed generated C code in CREST

Tool to generate Branch Coverage Test suite. The

CREST Tool supports yices constraints solver to test

symbolic as well as concrete testing. The ocaml is the

compiler for CREST. The compilation of C code

using CREST results: a) Number of Read Branches

b) Number of Read Nodes c) Number of writing

Branch Edges as shown in Fig. 9. The Execution of C

code results: a) Number of Covered Branches b)

Number of Reachable Functions c) Number of

Reachable Branches. There are a number of strategies

to execute the C code through CREST like a) DFS, b)

CFG, and c) RANDOM.

In our approach we have chosen DFS strategy to

execute C code. Here have given iteration number to

cover the branches. Initially we provide small

number then according to criteria we have increased

the iteration number till stopping criteria met.

Stopping criteria could be one of the discussed

criteria: a) initially we fixed one threshold value, till

that value we check beyond that we terminate

execution. b) We check till all branches covered,

once it done then we have to stop and terminate. At

the time of execution CREST saves input values for

each iteration which are nothing but test cases or test

data as shown in Fig. 10. In Fig. 10 CREST covered

16 branches which show that 16 test cases for 20

iterations, so CREST saves 20 input files as shown in

Fig. 11. The CREST int() command used to select

input values as shown in Fig. 12 which makes

different paths to cover the branches.

6. Conclusion and Future Work

Here we conclude that we can generate Branch

Coverage test suite using Concolic tester (CREST

Tool) from Simulink/Stateflow model. First we have

constructed the model in the MATLAB. Next, by

using the simulation we verify the model. After

verification, we generated the C code by using the

MATLAB Real Time Workshop. This code is

executable code. By using Concolic testing we

generated the test suite for the C code. This test suite

is useful for testing the Simulink/model. We are

planning for regression testing of Simulink models

using this approach. The future version of this paper

will consist of code slicer with code transformer.

Acknowledgment

We express our gratitude to Prof. Rajib Mall of IIT

Kharagpur for providing the necessary inputs and

guidance at different stages of our research work.

Figure 1: Sample Simulink Example

Figure 2: Stateflow model

Figure 3: Generated C Code

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

227

Figure 4: Configuration Parameters Setting Window

Figure 5: Configuration Parameters

Figure 6: Air Condition Example of Simulink

Figure 7: Air Condition Example of Stat

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

228

Figure 8: Generated C Code

Figure 9: Compilation Results

Figure 10: Covered Branches after execution

Figure 11: Automatic generated test suite

References

[1] B. Beizer. Software Testing Techniques

International Thompson computer press 1990.

[2] Harel and David. Statecharts: A Visual

Formalism for Complex Systems Science of

Computer Programming 8 pages 231-274 1987.

[3] Prasad Bokil, Priyanka Darke, Ulka Shrotri and

R. Venkatesh. Automatic Test Data Generation

for C Programs. In 3rd IEEE International

Conference on Secure Software Integration and

Reliability Improvement 2009.

[4] Y. Zhan. A search-Based Framework for

Automatic Test-Set Generation for

MATLAB/Simulink Models. PhD thesis,

University of York, December 2005.

[5] Andreas Windisch. Search Based Testing of

Simulink Models containing Stateflow Diagrams

International Conference on Software

Engineering - Companion Volume, 2009.

[6] Igno Sturmer and Mirko Conard. Test suite

design for code generation Tools. IEEE, 2003.

[7] A. Gadkari, S. Mohalik, K. Shashidhar, A.

Yeolekar, J. Suresh, and S. Ramesh. Automatic

generation of test-cases using model checking for

sl/SF models. 4th International Workshop on

Model Driven Engineering, Veri_cation and

Validation, 2007.

[8] CREST. http://code.google.com/p/crest.

[9] The Mathworks INC [Online].

http://www.mathworks.com.

[10] Stateflow [Online].

http://dali.feld.cvut.cz/ucebna/matlab/toolbox/Sta

teflow.

[11] Reactive Systems Inc, Reactis Simulator /

Tester. http://www.reactive-systems.com.

Website, 2003.

[12] Meng Li and Ratnesh Kumar. Model-Based

Automatic Test Generation for

Simulink/Stateflow using Extended Finite

Automaton. 2011.

[13] J. Chilenski and S. Miller. Application of

Modified Condition/Decision Coverage to

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

229

Software Testing. Software Engineering Journal,

September, 1994, pp. 193-200.

[14] J. C. King. Symbolic execution and program

testing. In Commun. ACM, 19 (7), pages 385-

394, 1976.

[15] K. Sen, D. Marinov, and G. Agha. CUTE: A

Concolic unit testing engine for C. In Proc.

ESEC/FSE, pages 263-272, Lisbon, Portugal,

2005.

[16] Xiao Qu and Brian Robinson. A Case Study of

Concolic Testing Tools and Their Limitations. In

Proc. ESEM pages 117-126, Washington, D.C.,

USA, 2011.

[17] Păsăreanu, Corina S., and Willem Visser. "A

survey of new trends in symbolic execution for

software testing and analysis." International

journal on software tools for technology transfer

11, no. 4 (2009): 339-353.

[18] Godboley, S. Prashanth, G.S. Mohapatra D. P.

and Majhi, B. Increase in Modified

condition/Decision Coverage Using Program

Code Transformer, Feb 2013 In proceedings

of 2013 3rd IEEE International Advance

Computing Conference (IACC) , Ajay

kumarGarg College of Engineering

Gaziyabad(U.P), Pages: 1401-1408.

[19] Godboley, S. Prashanth, G.S. Mohapatra D. P.

and Majhi, B. Enhanced Modified

Condition/Decision Coverage Using Exclusive-

NOR Code Transformer, March 2013, In

proceedings of 2013 IEEE International Multi

Conference on Automation, Computing, Control,

Communication and Compressed Sensing

(IMAC4S), School of Electronics, St. Joseph's

College of Engineering and Technology, Palai,

Kottayam, India.

The author’s name is Prof. Sangharatna

Godboley. He was born on 1st July

1990 at Nagpur (Maharastra). The

author completed his B.E degree from

Government Engineering College(GEC)

Bilaspur, affilited with CSVTU Bhilai

University. He did his M.Tech degree

from National Institute of

Technology(NIT) Rourkela under the kind guidance of

Prof. D. P Mohapatra and Prof. B. Majhi. He is an IEEE

Student Member and an IEEE Communication Society

member since 1st Jan 2013. He has published two IEEE

International Conferences, one Springer Conference, one

7th CONSEG Conference, and one ICETTR Conference

IJACR. He communicated with two more Research Papers.

The author’s name is Prof. Adepu

Sridhar and was born on 16th June 1990

at Karimnagar Andhra Pradesh. The

author completed his B.Tech Degree

from University College of Engineering

(Kakatiya University). He did his

M.Tech degree from National Institute of Technology

Rourkela under the guidance of Prof. D. P Mohapatra . He

is an IEEE student member since1st Jan 2013. He has

published one IEEE international conferences and one

Springer conference. He communicated with four more

research paper.

The author name is Bhupendra

Kharpuse and was born on 17th July

1989 at Chhindwara Madhya Pradesh.

The author completed his B.E degree

from Malwa Institute of Technology

Indore, affiliated with RGPV Bhopal

University. He did his M.Tech degree

from Indian Institute of Technology Kharagpur under the

guidance of Prof. Rajib Mall. Currently he is working in

Symantec India Pvt. Ltd Pune.

Prof. Durga Prasad Mohapatra received

his Ph. D. from Indian Institute of

Technology Kharagpur and M. E. from

Regional Engineering College (now

NIT), Rourkela. He joined the faculty of

the Department of Computer Science

and Engineering at the National

Institute of Technology, Rourkela in

1996, where he is now Associate Professor. His research

interests include software engineering, real-time systems,

discrete mathematics and distributed computing and

published more than forty papers in these fields. He has

received many awards including Young Scientist Award

for the year 2006 by Orissa Bigyan Academy, Prof. K.

Arumugam award for innovative research for the year 2009

and Maharasthra State National Award for outstanding

research for the year 2010 by ISTE, New Delhi. He has

also received three research projects from DST and UGC.

Currently, he is a member of IEEE. Dr. Mohapatra has co-

authored the book Elements of Discrete Mathematics: A

Computer Oriented Approach published by Tata Mc-

GrawHill.Computer Science and Engineering Dept.,

National Institute of Technology, Rourkela, India.

Prof. Bansidhar Majhi received his Ph.

D and M. E. from Regional Engineering

College (now NIT), Rourkela. He

joined the faculty of the Department of

Computer Science and Engineering at

the National Institute of Technology,

Rourkela in 1991, where he is now

Professor. His research interests include

Soft Computing, Image processing, Biometrics, Security

Protocols. He is a member of professional bodies

likeFIETE, LMCSI, and AMIE (INDIA). Computer

Science and Engineering Dept.,National Institute of

Technology, Rourkela, India.

Author’s Photo

Author’s Photo

Author’s Photo

Author’s Photo

Author’s Photo

