
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

 263

 Secure and Automated Communication in Client and Server Environment

Saket Gupta

Abstract

The unstoppable mass of the internet and the

network- based applications has gratuitous to obese

stability leaks. Soothe the confidential protocols,

which are worn to quarter receive bulletin, are

eternally targeted by diverse attacks. So there is the

need of secure framework for content attack

detection. Content attackers suit the position or the

dawning encipher of strengthen a choose pages

worn in their attacks to transcribe undulations to

genuine websites. As a result the ability telecast and

receiving in a handful of forms are battle-cry

agreement safe. In this composition we heap up our

charitable dissect in the administering of duty

sniffing and absence to hooker the correct anchor

check action and prevail upon on fake determining

trick, thus wander the attack insightful necessity be

sent in a counterirritant time eon majority. In this

paper we will propose an efficient detection

technique where the process of data preparation

from server is automated which will reduce the time

duration. In proposed approach, client must

authorize first in the central database. After

authorization, server request data from the client.

When client request for data server prepares the

data by applying the Data Encryption

Standard (DES) algorithm as an encryption

technique and split them using the partition

algorithm as file splitter technique in order to

reduce the time overhead. After this process server

sends the data with relevant log file to the client and

also maintains the log file itself. If any attacker

attacks the data it will be notified to the server and

the client because of the hidden numeric adder

which will also to be sent with the file.

Keywords

Content attack detection, diverse attacks, secure

framework, anchor check action, Encryption- Decryption

technique (DES), file splitter technique and hidden

numeric adder.

1. Introduction

Content sniffing and Cross-site scripting (XSS)

vulnerabilities are the first fix threats in this day as

soon as we are in the server-client aerosphere or basis

provincial lace browser. Close by is twosome

remodelling in turn attacks which are discussed and

XSS vulnerabilities undertake an aggressor to

inculcate disastrous brains into openwork pages out

of severe twine servers [1][2]. The wicked rules for

the genesis keeping apply on the similar parade as

second choice set upon pages and shows the routine

form of trustworthy old hand. By reason of the

knavish, brains runs thither the interchangeable

licence as the fastidious right stuff newcomer

disabuses off the web servers. It can also filch the

pigeon user’s unfriendly facts or be in the matter of

verboten directly on the user’s vigorish. Content

sniffing sway is an attempt to deduce the content of a

file format of the data or alteration in the byte stream.

It is in addition called media type sniffing or MIME

sniffing. Normal approaches for detecting and

preventing include static analysis, combination of

static analysis and dynamic monitoring, and browser-

based defenses. We discuss some web based attacks

which can be possible through communication, and

we also discuss about the security concern which can

be applied in future for better security in web

communication. The long-lasting of this article is

logical as follows. In section 2 we evince on several

attacks. Related work is discussed in section 3.

Section 4 focuses on problem domain. Section 5

reveals the analysis. Proposed work is discussed in

section 6. Result analysis in section 7. Conclusion

and future direction in Section 8. Finally references

are given.

2. Attacks

We evince back multifarious of the foremost pounce

on based use which suited our study.

1. Download Executable [3]
The instigator recital to enactment on people’s fears

turn their requisites have been unhealthy with

malware; users are encouraged to download antivirus

software. This is blank but malware mosey infects the

utensil and pressurize credit if the consumer wants to

uninstall the software.

Saket Gupta, Department of Computer Science &

Engineering, Oriental College of Technology, Bhopal, India.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

 264

2. Content Sniffing [4][5]

The content sniffing is like manner of attempting or

deducing the pass round format or change the

function. It is to boot misdesignated media mark

sniffing (MIME Sniffing). The analysis are uploaded

by an assailant depart bill atrocious components or

which is intentional payloads. These analyses become

available tractable tout de suite we allow for their

place types or Multipurpose Internet Mail Extension

(MIME) suspicion. Websites bed basically handicap

perceptiveness sniffing by attaching a Content-

Disposition header. This causes browsers to

download assignment instead of rendering them.

Similar, victims cause amputee content sniffing by

customizing the browser options. Despite turn this

way, this loan a beforehand muscles computation in

nasty operator stand anent browsers and impose the

burden of modifying deployed programs.

3. Bots/Botnets [6]

According to “Bots” petition to programs prowl

comply with on adding machine and quarter unsocial

comport oneself and oversee admittance past a

variety of protocols, including HTTP and peer-to-

peer protocols. Forth are twosomes bots are note

worth traditional manage, it is generally referred to as

a botnet.

4. Cross-Site Scripting (XSS) [7]

Cross-Site Scripting (XSS) XSS has been identified

as combine of conquer commonly evil vulnerabilities

in bootlace-based programs over the past few years.

XSS vulnerabilities evident instanter the generated

wadding of string pages are not sanitized timorously

and attackers instill arbitrary JavaScript or HTML

wadding that are executed by browsers. The evil

forms of exploitations wariness in accessing crucial

information verified in openwork pages browse

injected JavaScript rules and defacing of Upbraid

pages due to pushy HTML injection. Currently, more

than 60% of websites are sedate primarily to XSS

attacks, and they develop into of websites (registered

prestige names) is considered to be over 100 million.

Reckon for, the in the midst of XSS-based attacks is

outstandingly in compact of develop into of websites

and their users. XSS attacks inject HTML stuffing or

JavaScript code through invalidated inputs. These

inputs are hand-me-down to be worthy of wide of

acceptance pages and counting in unwanted friend

effects while rendering revile pages in browsers. On

touching is pair designing types of XSS attacks:

stored and reflected. Stored XSS attacks show up

immediately bustling contents are generated from the

unsanitized information stored in persistent data

storage (e.g., databases).

5. Phishing [3]

In this variety of influence the intrude is led to

presume that he or she is on a website which is

current or unconditional, promptly in undoubtedly it

is unescorted a sample of the verifiable one but not

true. It intervention it is the mandate publication of

uniformly the come as similar as the literal web

domain. These types of attacks atop pointing the

sanctioned email and high profile identity. Web

browser exploits in this maker of exploits the web

belligerent designs such website, which is helpful in

the attack. This access allows them to carry out

access without the victim’s knowledge.

6. Web browser exploits [3]

In this manufacturer of exploits the scold assailant

stumbling-block such websites, which is helpful in

the attack. This close allows them to effect access

without victim’s knowledge.

7. Third party add-ons [3]

The duration of websites petition the consideration of

third gather add-ons such as shred entrant, school

books, songs and video plugin and Acrobat Reader.

Both of these publicly old retail undertaking mature a

favorite target for web attacker.

3. Related Work

In 2008, Ruichuan Chen et al. [8] propose a novel

poisoning-resistant security framework based on the

notion that the content providers would be the only

trusted sources to verify the integrity of the requested

content. To provide the mechanisms of availability

and scalability, a content provider publishes the

information of his shared contents to a group of

content maintainers self-organized in a security

overlay, so that a content requestor can verify the

integrity of the requested content from the associated

content maintainers. In 2009, Adam Barth et al. [9]

formulate content-sniffing XSS attacks and defenses.

They study content sniffing XSS attacks

systematically by constructing high fidelity models of

the content-sniffing algorithms used by four major

browsers. They compare these models with Web site

content filtering policies to construct attacks. To

defend against these attacks, they propose and

implement a principled content-sniffing algorithm

that provides security while maintaining

compatibility. In 2011, Peiqing Zhang et al. [10]

analyze the “battle” between users and content

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

 265

owners. The effect of the two most commonly

applied attacks; content pollution and index

poisoning are compared. The impact of user behavior

is also analyzed. Their analysis reveals that the key

factors which influence the P2P content distribution

are the persistence of clean copies, the false positive

rate of the used security scheme and the initial

conditions of the Peer-to-Peer (P2P) network.

In 2011, Suhas Mathur et al. [11] formally study the

side-channel formed by variable packet sizes, and

explore obfuscation approaches to prevent

information leakage while jointly considering the

practical cost of obfuscation. They show that

randomized algorithms for obfuscation perform best

and can be studied as well-known information-

theoretic constructs, such as discrete channels with

and without memory. They envision a separate layer

called a Bit-Trap, that employs buffering and bit-

padding as orthogonal methods for obfuscating such

side channels. For streams of packets, they introduce

the use of mutual-information rate as an appropriate

metric for the level of obfuscation that captures

nonlinear relationships between original and

modified streams. They find that combining small

amounts of delay and padding together can create

much more obfuscation than either approach alone,

and that a simple convex trade-off exists between

buffering delay and padding for a given level of

obfuscation.In 2011, Brad Wardman et al. [12]

suggest that Phishers continue to alter the source code

of the web pages used in their attacks to mimic

changes to legitimate websites of spoofed

organizations and to avoid detection by phishing

countermeasures. Manipulations can be as subtle as

source code changes or as apparent as adding or

removing significant content. To appropriately

respond to these changes to phishing campaigns, a

cadre of file matching algorithms is implemented to

detect phishing websites based on their content,

employing a custom data set consisting of 17,992

phishing attacks targeting 159 different brands. The

results of the experiments using a variety of different

content-based approaches demonstrate that some can

achieve a detection rate of greater than 90% while

maintaining a low false positive rate.

In 2012, Usman Shaukat Qurashi et al. [13] suggest

that AJAX (asynchronous JavaScript and XML) has

enabled modern web applications to provide rich

functionality to Internet users. AJAX based web

applications avoids full page reloads and updates

relevant portion of a page. An AJAX enabled web

application is composed of multiple interconnected

components for handling Hyper Text Transfer

Protocol (HTTP) requests, HTML code, server side

script and client’s side script. These components

work on different layers. Each component adds new

vulnerabilities in the web application. The

proliferation AJAX based web applications increases

the number of attacks on the Internet. These attacks

include but not limited to CSR forgery attacks,

Content-sniffing attacks, XSS attacks, Click jacking

attacks, Mal-advertising attacks and Man-in-the-

middle (MITM) attacks against Secure Socket Layer

(SSL) etc. Current security practices and models are

focus on securing the HTML code and Server side

script, and are not effective for securing AJAX based

web applications. With applications, comprising of

multiple components (Client Side script, HTML,

HTTP, Server Side code), each working at a different

layer, such a model is needed which can plug security

holes in every layer. They focus on addressing

security issues observed in AJAX and Rich Internet

Applications (RIA) and compiling best practices and

methods to improve the security of AJAX based web

applications.

In 2012, Fokko Beekhof et al. [14] consider the

problem of content identification and authentication

based on digital content fingerprinting. They

investigate the information theoretic performance

under informed attacks. In the case of binary content

fingerprinting, in a blind attack, a probe is produced

at random independently from the fingerprints of the

original contents. Contrarily, informed attacks

assume that the attacker might have some

information about the original content and is thus

able to produce a counterfeit probe that is related to

an authentic fingerprint corresponding to an original

item, thus leading to an increased probability of false

acceptance. They demonstrate the impact of the

ability of an attacker to create counterfeit items

whose fingerprints are related to fingerprints of

authentic items, and consider the influence of the

length of the fingerprint on the performance of finite

length systems. Finally, the information-theoretic

achieveble rate of content identification systems

sustaining informed attacks is derived under

asymptotic assumptions about the fingerprint length.

In 2013, Seungoh Choi et al. [15] prove that Interest

flooding attack can be applied for Denial of Service

(Dos) in Content Centric Network (CCN) based on

the simulation results which can affect quality of

service. They expect that it contributes to give a

security issue about potential threats of DoS in CCN.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

 266

In 2011, Anton Barua et al. [16] developing a server

side content sniffing attack detection mechanism

based on content analysis using HTML and

JavaScript parsers and simulation of browser

behavior via mock download tests. They

implemented their approach in a tool that can be

integrated in web applications written in various

languages. In addition, they have developed a

benchmark suite for the evaluation purpose that

contains both benign and malicious files. They have

evaluated our approach on three real world PHP

programs suffering from content sniffing

vulnerabilities. The evaluation results indicate that

their approach can secure programs against content

sniffing attacks by successfully preventing the

uploading of malicious files.

4. Problem Domain

After discussing several research works we can come

with some problem area in the traditional approaches

which are following:

1) Missing of automated identification of file

upload and auto response procedures in web

applications [16][3].

2) Reduction of time overhead for analyzing large

files [16].

3) There is no work related to any flash file(s)[3].

4) Encryption techniques bum be greater alongside

multifarious message digest algorithm as suggest

in. These foundation speeds the details pin and

prophesy it from organism give prominence to

select. Fitted brute force attack is back-breaking

when there are large numbers of keys.

5) Image files and PS files can be considered for

reduction of time by using file splitter technique

[3].

6) Zip files can also be considered for reducing the

time by making use of file splitter technique [3].

5. Analysis

After analysing several research works done by

several authors we analyse the problem of content

sniffing. Many of these attacks occur through the

exploitations of common security vulnerabilities in

web-based programs. Given that, mitigation of these

attacks is extremely crucial to reduce some of the

harmful consequences. Web-based applications

contain vulnerabilities that can be exploited by

attackers at client-side (browser) without the victim’s

(browser user’s) knowledge. Our survey is intended

to mitigate some exploitation due to the presence of

security vulnerabilities in web applications while

performing seemingly benign functionalities at the

client-side. So we need an algorithm which will

provide better security as well as alert to the client to

detecting the vulnerabilities.The research motivation

is taken from Anton Barua [16] research paper named

“Server Side Detection of Content Sniffing Attacks”.

They discussed content sniffing attack as “Content

sniffing attacks occur if browsers render non-HTML

files embedded with malicious HyperText Markup

Language (HTML) contents or JavaScript code as

HTML files “. The rendering of these embedded

contents might cause unwanted effects such as the

stealing of sensitive information through the

execution of malicious JavaScript code. The primary

source of these attacks can be stopped if the

uploading of malicious files can be prevented from

the server side. However, existing server side content

sniffing attack detection approaches suffer from a

number of limitations. They suggest first file contents

are checked only to a fixed amount of initial bytes

whereas attack payloads might reside anywhere in the

file. Secondly, these approaches do not provide any

mechanism to assess the malicious impact of the

embedded contents on browsers. They mainly

addresses these issues by developing a server side

content sniffing attack detection mechanism based on

content analysis using HTML and JavaScript parsers

and simulation of browser behaviour via mock

download testing. They have implemented their

approach in a tool that can be integrated in web

applications written in various languages. In addition,

they have developed a benchmark suite for the

evaluation purpose that contains both benign and

malicious files. They have evaluated their approach

on three real world PHP programs suffering from

content sniffing vulnerabilities. Their future work

includes identifying ways to reduce the overhead for

analysing large files and automation process for

server and client side. So we can say that there is a

need of automated framework for content attack

detection.

6. Proposed work

The research motivation is taken from the research

paper [16]. This research paper discussed the content

sniffing attack as “Content sniffing attacks occur if

browsers render non-HTML files embedded with

malicious HTML contents or JavaScript code as

HTML files”. However, existing server side content

sniffing attack detection approaches suffer from a

number of limitations. In [16], they have

implemented their approach in a tool that can be

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

 267

integrated in web applications written in various

languages. In addition [16] they developed a

benchmark suite for the evaluation purpose that

contains both benign and malicious files. They have

evaluated their approach on three real world PHP

programs suffering from content sniffing

vulnerabilities. Their future work includes identifying

ways to reduce the overhead for analysing large files

and automatic file rendering [16][3][4][5]. This is the

motivation of our research.

Our attack detection framework works on following

file formats:

1) Text

2) HTML

3) PHP

4) PDF

5) Java Script

6) Word

In this approach client must be authorized in the

central database. After authorization, it request data

from the client, server prepares the data by applying

DES encryption algorithm and split them by applying

file splitter technique to reduce the time overhead.

The process for data preparation is automated so it

takes less time as comparison to the manual process.

The data preparation process starts from the DES

encryption. DES is a 64 bit block cipher which means

that it encrypts data 64 bits at a time [17]. This is

contrasted to a stream cipher in which only one bit at

a time (or sometimes small groups of bits such as a

byte) is encrypted. The algorithm [18] is designed to

encipher and decipher blocks of data consisting of 64

bits under control of a 64-bit key. Deciphering must

be accomplished by using the same key as for

enciphering, but with the schedule of addressing the

key bits altered so that the deciphering process is the

reverse of the enciphering process. A block to be

enciphered is subjected to an initial permutation IP,

then to a complex key-dependent computation and

finally to a permutation which is the inverse of the

initial permutation IP
-1

. This process is better

explained with the algorithm 2. Then automated data

partitioning will be done to reduce the file overhead.

All files are partitioned according to the algorithm

number 3, means it will be partitioned considering

the size of the files. The process is also shown in the

form of a flowchart (figure 1). After this process

server sends the data to the client with relevant log

file and also maintains the log report itself. Server

automatically adds a hidden numeric adder. If the

attacker attacks on the file the adder bit will

automatically change and notify to the client and

server. In this way we will detect the attack in very

shorter duration and prevent the files from content

attack. The whole process is depicted in figure1. For

mapping automated response we propose an

algorithm which is shown below.

Algorithm 1: For Mapping Automated Response.

1) Inputs: The set of request factors (RF1,

RF2,……,RFn) from the full set of request by

the client user.

2) Output: Map Request factors (RF1, RF2,

……….,RFn).

3) do

Find peak request from the request set.

Design a sequence of request loads

(r1,r2……rn) to search the peak request.

For each request loads (R= r1, r2……rn) do

goto Algorithm 2;

goto Algorithm 3;

Configure server and workload generator for

the sample.

Run at time (t) independent trials of length

(l) with workload generating at load R;

End;

Set R
*
=R, where R €(r1,r2……rn) is the peak

load that does not lead the server to the

saturation status;

 End;

4) Send data to the client with relevant log file

and also maintain a log report for this event.

5) Finish.

Algorithm 2: DES Algorithm for Encryption and

Decryption.

Step 1) Take plaintext (PT) as 64-bit and handover it

to Initial Transposition/Permutation function (IP).

Step 2) Perform Initial Transposition function on

acquired PT and produce the acquired text into two

equal halves: Plaintext of Left side (say PTL) and a

Plaintext of Right side (say PTR).

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

 268

 Rejected

 Accepted

 Denied

 Accepted

Figure 1: Flowchart for content attack detection.

Step 3) Perform 16 rounds over both these halves via

Heart of DES or DES function using 56-bit key on

each round. Each round of DES is a feistily cipher

(figure 2). The DES function (figure 3) applies a 48-

bit key to the rightmost 32-bits to produce a 32-bit

output.

We can make all 16 rounds the same by including

one swapper to the 16th round and add an extra

swapper after that as two swappers cancel the effect

of each other.

For each round (R’= r’1, r’2…, r’16) do

A. Perform Key transformation or Compression

permutation by reducing the original 56-bit

key to 48-bit key. This can be done through

Round-Key generator. The Round-Key

generator creates sixteen 48-bit keys for

each round out of a 56-bit cipher key.

B. Expand PTR from 32-bits to 48-bits ensuring

bits transposition. This can be done through

Expansion P-box. Although the relationship

between the input and output can be defined

mathematically, DES uses Table 1 to define

this Expansion P-box.

Since RI−1 is a 32-bit input and KI is a 48-bit

key, we first need to expand RI−1 to 48 bits.

C. Perform XOR operation on the expanded

right section (PTR) and the round key. Note

that both the right section and the key are

48-bits in length. Also note that the key

generated through round-key generator is

used only in this operation.

D. Perform S-Boxes Substitution by applying

S-box rule (figure 4). The S-boxes or Choice

boxes perform the real mixing (or

confusion) ensuring diffusion too. DES uses

8 S-boxes, each with a 6-bit input and a 4-bit

output.

E. Straight P-box permutation (Simple

transposition) to diffuse bits.

F. XOR output of P-box permutation obtained

above with the PTR to produce new PT of

right side (say PTR’) and swap old PTR to

become new PT of left side (say PTL’). Both

PTL’ and PTR’ are of 32-bits.

Step 4) Join processed PTL’ and PTR’ into one 64-bit

block and perform one Final Transposition over it

(reverse of step 1) to produce 64-bit encrypted cipher

text (CT).

Step 5) Finish

Start

Client

Authentication

Request for file

Process

automation

Send file to client with

relevant log file
Log

report

Stop

File preparation

(File encryption

+

File splitting

+

Hidden numeric adder)

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

 269

Table 1: Define Expansion P-Box.

E table

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Figure 2: DES algorithm single round details.

Figure 3: Details of f(RI-1,KI-1) Or DES function.

Figure 4: S-box substitution (With S-box rule).

Algorithm 3: Partition Algorithm. [5]

Step 1: Initialization

 int counter=0, length=0

Step 2: File f=new File(f1);

Step 3: long size=f.length()/1024;

Step 4: if(size<=100) len=(int)f.length()/2;

Step 5: else if(size<=250) len=(int)f.length()/3;

Step 6: else if(size<=500) len=(int)f.length()/4;

Step 7: else len=(int)f.length()/6;

7. Result Analysis

The result is shown in table 2. For result analysis we

are using several file formats and analysis is done on

the basis on automation process and for manual

process. If the process is automatic we definitely

reduce the time as we shown in table 2. If the file is

automated Y character is included. In our work we

will also detect the attack and if the attack will be

performed it will be detected as shown in table.

8. Conclusion and Future Direction

Web-based attacks befitting to program stability

vulnerabilities are pompously huge concerns for

users. In this alloy we ideational duo attacks above

the Content sniffing attacks and betoken their

advantages and disadvantages. We over assert their

counter personify and approve of nearly manifold

suggestions. There are several types of file formats

which are not covered here such as .ps, .zip, .gif.

There is also a future scope in the direction of flash

files [16]. In future, our proposed approach can also

be applied to audio, video and various other complex

heterogeneous data types. We can also use other

encryption algorithms such as AES and RSA (in

place of DES [19]) in future for implementing better

security architecture.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

 270

References

[1] Gaurav S. Kc, Angelos D. Keromytis, and

Vassilis Prevelakis. Countering code-injection

attacks with instruction-set randomization. In

CCS ’03: Proceedings of the 10th ACM

conference on Computer and communications

security, pages 272–280, New York, NY, USA,

2003.

[2] E. Kirda, C. Kruegel, G. Vigna, and N.

Jovanovic. Noxes: A Client-Side Solution for

Mitigating Cross Site Scripting Attacks. In

Proceedings of the ACM Symposium on Applied

Computing (SAC), Dijon, France, April 2006.

[3] Bhupendra Singh Thakur, Sapna Chaudhary,

“Content Sniffing Attack Detection in Client and

Server Side: A Survey”, International Journal of

Advanced Computer Research (IJACR), Volume-

3 Number-2 Issue-10 June-2013.

[4] Syed Imran Ahmed Qadri, Prof. Kiran Pandey,

“Tag Based Client Side Detection of Content

Sniffing Attacks with File Encryption and File

Splitter Technique”, International Journal of

Advanced Computer Research (IJACR), Volume-

2, Number-3, Issue-5, September-2012.

[5] Animesh Dubey, Ravindra Gupta, Gajendra

Singh Chandel,” An Efficient Partition Technique

to reduce the Attack Detection Time with Web

based Text and PDF files”, International Journal

of Advanced Computer Research

(IJACR),Volume-3 Number-1 Issue-9 March-

2013.

[6] Jason Milletary,” Technical Trends in Phishing

Attacks”, Available website: http://www.us-

cert.gov/sites/default/files/publications/phishing_t

rends0511.pdf.

[7] Hossain Shahriar and Mohammad Zulkernine,

“Injecting Comments to Detect JavaScript Code

Injection Attacks”, 35th IEEE Annual Computer

Software and Applications Conference

Workshops, 2011.

[8] Ruichuan Chen,Eng Keong Lua, Jon Crowcroft,

Wenjia Guo, Liyong Tang and Zhong Chen,

“Securing Peer-to-Peer Content Sharing Service

from Poisoning Attacks”, Eighth International

Conference on Peer-to-Peer Computing (P2P'08).

[9] Adam Barth, Juan Caballero and Dawn Song,

“Secure Content Sniffing for Web Browsers, or

How to Stop Papers from Reviewing

Themselves”, 2009 30th IEEE Symposium on

Security and Privacy.

[10] Peiqing Zhang, Bjarne E. Helvik,” Modeling and

Analysis of P2P Content Distribution under

Coordinated Attack Strategies”, 7th IEEE

International Workshop on Digital Rights

Management Impact on Consumer

Communications (DRM 2011).

[11] Suhas Mathur and Wade Trappe,” BIT-TRAPS:

Building Information-Theoretic Traffic Privacy

into Packet Streams”, IEEE Transactions on

Information Forensics and Security, VOL. 6, NO.

3, September 2011.

[12] Brad Wardman, Tommy Stallings, Gary Warner,

Anthony Skjellum,” High-Performance Content-

Based Phishing Attack Detection”, " eCrime

Researchers Summit (eCrime), 2011 , vol., no.,

pp.1,9, 7-9 Nov. 2011.

[13] Usman Shaukat Qurashi , Zahid Anwar,” AJAX

Based Attacks: Exploiting Web 2.0”, 2012 IEEE.

[14] Fokko Beekhof, Sviatoslav Voloshynovskiy ,

Farzad Farhadzadeh,” Content Authentication

and Identification under Informed Attacks”, IEEE

2012.

[15] Seungoh Choi, Kwangsoo Kim, Seongmin Kim,

and Byeong-hee Roh,” Threat of DoS by Interest

Flooding Attack in Content-Centric Networking”

IEEE 2013.

[16] Anton Barua, Hossain Shahriar, and Mohammad

Zulkernine, “Server Side Detection of Content

Sniffing Attacks”, 2011 22nd IEEE International

Symposium on Software Reliability Engineering.

[17] Shikha Joshi and Pallavi Jain,” Study and

Analysis of Data Sharing and Communication

with Multiple Cloud Environments”,

International Journal of Advanced Computer

Research (IJACR), Volume-2 Number-4 Issue-6

December-2012.

[18] T R Yashavanth, Ravi S Malashetty, V R Udupi,”

A Secure Mechanism to Supervise Automotive

Sensor Network by Client on Smart Phone”,

IJACR, Volume-3, Number-1, Issue-9 March-

2013.

[19] Dubey, A.K.; Dubey, A.K.; Namdev, M.;

Shrivastava, S.S., "Cloud-user security based on

RSA and MD5 algorithm for resource attestation

and sharing in java environment," Software

Engineering (CONSEG), 2012 CSI Sixth

International Conference on , vol., no., pp.1,8, 5-

7 Sept. 2012.

Saket Gupta received his B.E. degree

(2011) in Computer Science &

Engineering (C.S.E.) from the Lakshmi

Narain College of Technology &

Science, Bhopal (Affiliated to Rajiv

Gandhi Proudyogiki Vishwavidhalaya,

Bhopal), Madhya Pradesh (M.P.), India.

He is currently pursuing M.Tech degree

in C.S.E. from the Oriental College of Technology, Bhopal

(Affiliated to Rajiv Gandhi Proudyogiki Vishwavidhalaya,

Bhopal), M.P., India. He is currently a graduate student

IEEE member. He delivered his papers in various national

and international conferences. His research area of interest

includes web application security and network security.

Author’s Photo

http://www.us-cert.gov/sites/default/files/publications/phishing_trends0511.pdf
http://www.us-cert.gov/sites/default/files/publications/phishing_trends0511.pdf
http://www.us-cert.gov/sites/default/files/publications/phishing_trends0511.pdf

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

 271

Table 2: Details of File Status (with and without attack)

Sr.No. Filename

(with

extension)

Size

(in

bytes)

File

Automation

(Y-Yes,

N-No)

Hidden

tag

(0=Safe,

1=Unsafe)

Processing

time

(in

millseconds)
1 1HTML.html 219 N 1 17

2 2HTML.html 11599 N 1 16

3 1HTML.html 219 Y 0 0

4 2HTML.html 11599 Y 0 0

5 1JSP.jsp 372 N 1 17

6 2JSP.jsp 1196 N 1 0

7 1JSP.jsp 372 Y 0 0

8 2JSP.jsp 1196 Y 0 0

9 1Text.txt 249299 N 1 22

10 2Text.txt 67408 N 1 15

11 1Text.txt 249299 Y 0 0

12 2Text.txt 67408 Y 0 0

13 1PHP.php 170 N 1 17

14 2PHP.php 1273 N 1 19

15 1PHP.php 170 Y 0 0

16 2PHP.php 1273 Y 0 0

17 3Word.docx 15491 N 1 22

18 4Word.doc 143760 N 1 15

19 3Word.docx 15491 Y 0 0

20 4Word.doc 143760 Y 0 0

21 1PDF.pdf 78185 N 1 16

22 2PDF.pdf 118378 N 1 16

23 1PDF.pdf 78185 Y 0 0

24 2PDF.pdf 118378 Y 0 0

