
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

298

Assessment of Predictive Object Points (POP) Values for Java Projects

Shubha Jain
1
, Vijay Yadav

2
, Raghuraj Singh

3

Abstract

There are number of software development

estimation techniques exist for sizing software

systems and to support cost measurement like

SLOC, Function Point etc. but none is directly

applicable to object-oriented software. They all work

for specific development environment. PRICE

systems has developed the predictive object point

(POP) metric for predicting effort required for

developing an object oriented software system. This

is based on the counting scheme of function point

(FP) method. POP count results from the

measurement of the object-oriented properties of the

system. This paper explains how to calculate the

POP values for Java Projects. An automation tool

for measuring Predictive Object Points with more

accuracy has been built. The tool and results of its

application for Java Projects are presented and

discussed.

Keywords

Software Measurement, Object Orientation, Functional

size measurement, Software Metrics, Predictive Object

Point, Automation.

1. Introduction to POP Software

Sizing Metric

POP was introduced by Mickiewicz in 1998. PRICE

systems [2] has developed the predictive object point

(POP) metric for predicting effort required for

developing an object oriented software system. It was

designed specifically for Object oriented software

and fulfilled almost all the criteria of OO concepts.

POPs are intended as an improvement over FPs,

which were originally intended for use within

procedural systems [3]. POPs are a metric suitable for

estimating the size, subsequently effort of object

oriented software, based on the behaviours that each

Shubha Jain, Department of Computer Science and

Engineering, Kanpur Institute of Technology, Kanpur, India.

Vijay Yadav, Department of Computer Science and
Engineering, Kanpur Institute of Technology, Kanpur, India.

Raghuraj Singh, Computer Science and Engineering, Harcourt

Butler Technological Institute, Kanpur, India.

class is delivering to the system along with top level

inputs describing the structure of a system [2].

What Contribute to POP Software Sizing Metric?

By the implementation of Object Oriented Paradigm

the researchers modified and validated the

conventional metrics theoretically or empirically [9].

The following metrics measure object-oriented

systems in POP Count: Number of top level classes

(TLC), Average number of weighted methods per

class (WMC), Average depth of inheritance tree

(DIT), and Average number of children per base class

(NOC). WMC, DIT, and NOC are taken from the

MOOSE metrics suite [7].

How to Calculate POP Count?

The above mentioned metrics are then gathered to

form the equation (1), giving the number of POPs for

a system [2].

1.01 .01((1)*) (| |)1(, ,) *(1)

2(,) 1.0

* 1(, ,)
(, , ,) * 2(,)

7.8

NOC DIT NOC DITf TLC NOC DIT TLC

f NOC DIT

WMC f TLC NOC DIT
POPs WMC NOC DIT TLC f NOC DIT

   





(1)

Where, f1 attempts to size the overall system, and f2

applies the effects of reuse through inheritance.

2. POP Metric to Assess Java

Projects

Sizing and complexity metrics were the most

impressive contributions for effort and cost

estimation in project planning [8].

The POP metric relies heavily on the availability of

the object design. An incorporation of New Top

Level Class (classes which have no parent within the

system) may lead to change in design. TLC

contributes significantly to the POP count as if such

top-level classes are less in number, the WMC value

will also decrease and hence reducing the overall

POP count value.

The methods were split into various types according

to proportions taken from Minkiewicz [2] through the

manual investigation of source code. However an

organization would be benefitted by using a split

based on its own past data. In the same way the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

299

method types can be categorized into complexity

types. It was felt that this categorization gives better

results when applied to a language with high number

of pure abstract classes, which is true for Java. Here

interfaces might be thought of as pure abstract

classes.

The reason for this is that each additional interface

contributes significantly to the top-level class count.

With increase in TLC, POP count will also increase.

This is not true for projects based on C++, which tend

to use pure abstract classes less extensively.

In true OO environment, a system should be divided

into several subsystems and each subsystem could be

divided into several stages according to time. This

could be considered as the refinement of use of POP

[2]. Thus systems should be split into modules and

further divided into sub modules. Thus POP count of

each java project can be accurately calculated on the

basis of its individual java file which gives better

results for the overall estimation of POP.

POP Count Measurement Process for Java

Projects

An easy to use automation tool APA (Automated

POP Analyzer) is built for counting POPs by splitting

the whole Java Project into files and calculating POP

on the basis of its individual java file. In the True OO

environment as in java projects, the level of

reusability through Inheritance is always considered

to be high and hence function of NOC and DIT can

be considered as 1.0. Thus the correction factor f2

taken by Mickiewicz [2] can be omitted while

estimating Java projects. However this may not be

true for other environments.

Thus the factor |NOC-DIT|
.01

may be omitted and f2

may be neglected while calculating POP Count

values for Java Projects. The POP Count formula

may be reduced to the equation (2).

8.7

),,(1*
),,,(

))*)1((
01.1

1(*),,(1

DITNOCTLCfWMC
TLCDITNOCWMCPOPs

DITNOCTLCDITNOCTLCf





 (2)

Where, f1 attempts to size the overall system.

The following process was followed for calculation

of POP Count:

Step 1

The first step was to obtain the Source Lines of Code

(SLOC) metric for projects through APA tool [4]

based on CCCC, an object oriented metric gathering

tool [5].

Step 2

Using the generated DIT metrics for each class it was

possible to calculate the average DIT (one of the

metrics required for POPs). Similarly the generated

NOC metrics for each class were averaged to obtain

the average NOC.

Average NOC = (Sum of Base Class NOCs) /

(Number of Base Classes giving +ve NOC count.)

Average DIT = (Sum of Classes having DITs) / (Sum

of the rows of NOC and DIT giving +ve count).

Step 3

Average Method count (AMC) is calculated by

dividing the method count by the class count [4].

Step 4

The TLC metric for each java file and for overall

project was then calculated. This includes the base

classes (with no parents) and the class which is at

level 0. This metric is a count of the classes that are

roots in the class diagram, from which all other

classes are derived [2].

Step 5

Finally WMC is calculated as suggested by

Minkiewicz [2]. As in order to determine the average

number of methods in each type, weightings should

be applied against this as per the following

calculations [1]:

Average Constructor/Destructor Method Count =

20% (Average Methods per Class)

Average Selector Method Count = 30% (Average

Methods per Class)

Average Modifier Method Count = 45% (Average

Methods per Class).

Average Iterator Method Count = 5% (Average

Methods per Class).

Now, each method type was divided into three

categories of complexity using weightings.

Low Complexity Method Count = 22% of Average

Method Count

Average Complexity Method Count = 45% of

Average Method Count

High Complexity Method Count = 33% of Average

Method Count For each java file all twelve

calculations were performed and their sum gives the

value of WMC [4]. The same method is used for the

calculation of WMC for the overall project.

3. Description of Empirical Study

The proposed refinement in POP formula for Java

Projects can be checked in reference with the projects

taken by T. R Judge and A. Williams [6]. They proved

POP metric as better indicator of software size in

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

300

comparison to FP metric using comparative study of

two projects through Table 1.

Table 1: Summary of Project Metrics [6]

Project Attributes Project

Alpha

Project

Beta

Source Lines of Code (SLOC) 38854 20570

Total Number of Classes 404 147

Total Number of Methods 2412 833

Average of the Methods per

Class

5.971 5.667

Average Depth of Inheritance 0.941 0.701

Average Number of Children 3.700 2.688

Top Level Classes 201 73

Constructors/Destructors (20%) 1.194 1.133

Selectors (30%) 1.791 1.700

Modifiers (45%) 2.687 2.550

Iterators (5%) 0.299 0.283

WMC 62.564 59.379

Number of POPs 10478 2566

They summarize the effort metrics that were

originally estimated by the development team and the

effort that was actually expanded. These statistics are

presented as ratios [6]:

(Actual Effort Project Alpha) : (Actual Effort Project

Beta) = 4.58

This gives information that project alpha actually

took about 4.58 times as many days to develop as the

project beta. This information is useful for comparing

with a similar ratio of POPs between the two

projects.

Comparing the POP count for the two projects

reveals project alpha is approximately four times as

large, in terms of the POP count, compared to project

beta, using the following percentage calculation:

08.4

2566

10478






POP

POP

 (3)

Table 2 shows the value of the factor |NOC-DIT|
.01

and proposed refined POP Count values for the

Projects Alpha and Beta.

Table 2: Refined POP Count for Projects

Project Attributes Project

Alpha

Project

Beta

|NOC-DIT|.01 1.0102 1.006

Number of refined POPs 8849.422 2006.1515

411.4Re fined

POP

POP





 (4)

On Comparing the POP count for any two projects

say P1/P2 reveals how much times the project P1 is of

project P2 in terms of size. The closer this ratio to that

of the efforts ratio, the more accurate the POP

technique is. This is because Effort and POP count are

proportional, where the constant of proportionality is

the POP productivity rate [6]. The result from

equation (4) is more close to the Actual effort ratio

(4.58) in comparison to the original POP Ratio from

equation (3).

Fig 1.1 shows the sample POP original and refined

values obtained through APA Tool.

Fig.1.1 POP original and refined values through

APA Tool

From the results it may be seen that on neglecting the

factor |NOC-DIT|
.01

in original formula of POP

calculation and omitting the function f2 give better

results near to effort. Thus this validates the proposed

refinement in POP Count formulation for Java

Projects

4. Conclusion and Future Work

In conclusion, the POP metric when applied to past

data on two of Parallax’s deployed projects gave a

better indication of their size than did the previous

POP count values. POP is a metric, which takes into

account several well-defined metrics within an

object-oriented system. However, it is difficult to

develop the OO design for the entire system in an

industrial setting. A careful design and analysis is

required for complex subsystems. This suggests that

the POP metric might be best applied to the

estimation of the Java Projects which can be further

categorized into critical subsystems and then modules

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

301

which can be further evaluated for each java files in

the entire project. Here the refinement in POP Count

formula has been proposed for Java Projects. As in

the True OO environment for e.g. in java projects, the

level of reusability through Inheritance is always

high. Thus the factor |NOC-DIT|
.01

may be omitted

and f2 may be neglected while estimating Java

projects. The suggested refinement in POP

calculation showed more accurate results in terms of

effort estimation. This makes system more

understandable hence validate the proposed refined

formula for POP metrics calculations for Java

Projects. The projects taken for empirical study from

research work of T. R Judge and A. Williams [6],

presented more accurate results however the data to

be studied may include additional java projects. This

will further ensure the validity for this refinement for

Java Projects and hence accuracy of the

measurement.

References

[1] C. Ravindranath Pandian, “Software Metrics: A

Guide to Planning, Analysis and application“.

Auerbach Publications A CRC Press Company

Boca Raton London New York Washington,

D.C., 2005.

[2] Arlene F. Minkiewicz, “Object- Oriented

Metrics” Software Development. Wiley

Computer Publishing, pp. 43-50., 1997 At:

http://www.sdmagazine.com.

[3] Haugh. M, E. W Olsen and Bergman. L.,

“Software Process Improvement: Metrics

Measurement and Process Modelling”, Vol 4,

New York, Springer, pp. 159-170., 2001.

[4] Shubha Jain, Vijay Yadav and Prof. Raghuraj

Singh, “OO Estimation Through Automation of

Predictive Objective Points Sizing Metric”.,

International Journal Of Computer Engineering

and Technology (IJCET) Volume 4, Issue 3, pp.

410-418, May-June 2013.

[5] CCCC Metric Tool by Tim Littlefair.

http://www.fste.ac.cowan.edu.au/~tlittlef/.

[6] T. R Judge, A. Williams, “OO Estimation – an

Investigation of the Predictive Object Points

(POP) Sizing Metric in an Industrial Setting”.

Parallax Solutions Ltd, Coventry, UK, 2001.

[7] Shyam R. Chidamber and Chris F. Kemerer,”A

Metrics Suite for Object Oriented Design”. IEEE

transactions On Software Engineering, Vol. 20,

No. 6, pp. 476-493, June 1994.

[8] Dr. Rakesh Kumar and Gurvinder Kaur, “Article:

Comparing Complexity in Accordance with

Object Oriented Metrics”. International Journal

of Computer Applications, 15(8), pp. 42–45:

February 2011.

[9] M. Xenos and D. Stavrinoudis and K. Zikouli and

D. Christodoulakis, “Object- oriented metrics – a

survey”, proceedings of the FESMA 2000,

Federation of European Software Measurement

Associations, Madrid, Spain, 2000.

Shubha Jain is BE (Electronics and

Communication) and M.Tech. (CS).

She is pursuing PhD in Computer

Science from Uttrakhand Technical

University, Dehradun in area of

Software Engineering. She has about 20

years of experience in teaching.

Currently she is working as Associate

Professor and Head in CSE/IT Dept at Kanpur Institute of

Technology, Kanpur. She is the Secretary, Kanpur Chapter,

CSI and member of IETE society. She has guided 5

M.Tech. Projects and several B.Tech projects. She has 10

papers in National/International Conferences/Journals.

Vijay Yadav is B.Tech in (I.T) from

C.S.J.M University Kanpur (U.I.E.T)

and M.Tech in (C.S.E) from U.P

Technical University. Currently he is

working as Assistant Professor in

Department of Computer Science &

Engg. at KIT, Kanpur. He has

undergone projects like Online

Entertainment world, Enterprise Resource Planning System

during his B.Tech (I.T) curriculum. He has done his

M.Tech (C.S.E) thesis in Object Oriented Software Metrics

(POP Automation). He is meritorious student of B.Tech

(I.T) and M.Tech (C.S.E) and have got merit excellence

award. He has 2 papers in International

Conferences/Journals.

Prof. Raghuraj Singh is B.Tech.

(CSE), M.S. (Software Systems) and

Ph.D. in Computer Science and

Engineering from U.P. Technical

University. He has about 23 years of

experience in teaching. Currently he is

working as Professor and Head in the

Department of Computer Science &

Engg. at HBTI, Kanpur. He has guided 7 PhDs and 17

M.Techs and several B.E./B.Tech projects. He is the

Chairman, Kanpur Chapter, CSI, Life Member of ISTE,

Member of the Institution of Engineers (India), Fellow

Member of IETE, Professional member of ACM and

Senior Member of International Association of IACSIT. He

has more than 80 papers in National / International

Conferences and Journals to his credit. Currently 4 students

are working for PhD and 4 are pursuing M.Tech. under his

guidance.

Author’s Photo

Author’s Photo

Author’s Photo

http://www.sdmagazine.com/
http://www.fste.ac.cowan.edu.au/~tlittlef/

