
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

28

Multi Way Feedback Encryption Standard Ver-2(MWFES-2)

Asoke Nath
1
, Debdeep Basu

2
, Surajit Bhowmik

3
, Ankita Bose

4
, Saptarshi Chatterjee

5

Abstract

Nath et al developed a method Multi Way Feedback

Encryption Standard Version-I[18] recently, where

the authors used both forward and backward feedback

from left to right and from right to left on the plain

text along with some random key. In MWFES-I[18],

the ASCII value of plain text is added with key and

forward feedback(FF) and backward feedback (BF) to

obtain intermediate cipher text. The initial FF and BF

are taken to be 0. The intermediate cipher text is taken

modulo operation with 256 to get cipher text. This

cipher text is taken as feedback for the next column.

In the second round we calculate the cipher text from

the RHS. In the present method, the authors have

used a much more general approach. In this paper,

the FF and BF has been applied using skip by n-

columns, where ‘n’ can be 0 to any number less than

the length of the plain text. This skip, denoted here by

‘n’, can be generated dynamically from the key. So ‘n’

can be taken as a function of the key. A comparative

study was also made for same plain text, same key and

different skip value i.e. ‘n’. The results indicate that

the encrypted texts are coming totally different, just by

varying ‘n’. The present method gives almost

unlimited scope to encrypt any message. The authors

applied the present method on some standard plain

texts such as 1024 ASCII ‘0’, 1024 ASCII ‘1’, 1024

ASCII ‘2’ and 1024 ASCII ‘3’ and the frequency

analysis shows the encrypted texts are totally random.

Initially, the user has to enter a secret key (seed). The

MSA[1] randomization algorithm generates an

enlarged keypad of the size of the plain-text from the

seed. This keypad is used for further encryption and

decryption. The present method is very effective as the

encrypted text changes drastically on varying the skip

‘n’. MWFES-2 can be applied to encrypt any short

message, password, confidential message or any other

important document.

Asoke Nath Department of Computer Science,

St.Xavier‟s,College(Autonomous) ,Kolkata, India.
Debdeep Basu Department of Computer Science,

St.Xavier‟s,College(Autonomous),Kolkata, India.

Surajit Bhowmik Department of Computer Science,
St.Xavier‟s,College(Autonomous),Kolkata, India.

Ankita Bose Department of Computer Science,

St.Xavier‟s,College(Autonomous),Kolkata, India.
Saptarshi Chatterjee Department of Computer Science,

St.Xavier‟s,College(Autonomous),Kolkata,India.

The results show that the present method is free from

standard attacks such as differential attack, known

plain text attack etc.

Keywords

MWFES, MSA, ASCII, Confidential Message, Encryption

1. Introduction

Data encryption is now-a-days a very important

research area. Plain text or clear text should not be used

for sending some confidential message because the

security might get compromised. In the last two

decades, quite a number of encryption algorithms have

been developed. Some of the methods are almost

unbreakable and are used widely in different sectors

like business, academic etc. There is also a parallel

process going on, that is, to break the encryption

algorithm using some common attacks such as middle-

man attack, differential attack, known plain text attack,

brute force attack etc. The researchers try to develop

some effective cryptography method and the hackers

try to break that method. Nath et al developed various

cryptographic algorithms such as MSA, DJSA,

DJMNA, TTJSA, MES-I,II,III,IV,V, UES-I,II,III,IV,

BLES-I,II,III,IV [1-18]. Nath et al for the first time

introduce feedback in Vernam cipher method to

develop generalized Vernam Cipher Method. Nath et al

developed Multi Way Feedback Encryption Standard

Ver-I(MWFES-I)[18] where the authors used plain

texts, randomized key, forward feedback(FF) and

backward feedback(BF) simultaneously to encrypt any

plain text. The authors used FF from LHS and BF from

RHS and in this way the entire file was encrypted. In

the present method MWFES-II, the authors have made

the system more general. Depending on the key entered

by the user, one can skip „n‟ number of characters while

performing the feedback encryption process where n

varies from 0 to any number less than the length of the

file. The results show that the encryption process

depends a lot on the skip factor. This method is a novel

method because the skip characters can be different in

different blocks of characters. The present encryption

method can be applied multiple times to make the

system fully secured. Thorough tests were conducted on

some standard plain text files and it was found that it is

absolutely impossible for any intruder to extract any

plain text from encrypted text using any brute force

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

29

method. The results show that the present method is

also free from any kind of known plain text or

differential attack.

2. Algorithm of MWFES Ver-2:

A. Algorithm for Encryption

Step-1: Start.

Step-2: Input the plain text in a character string and

then create an integer array which contains the ASCII

code for each of the characters. Consider the array to be

„PT[]‟.

Step-3: Generate a key using the MSA[1] method

developed by Nath et al. Store the key in an array

Key[].

Step-4: Also maintain a separate integer array for each

of the following

Forward FeedbackFF[]

Backward FeedbackBF[]

SumSum[]

Cipher TextCT[]

Step-5: length=length of the plain text.

Step-6: skip= the no. of columns to skip.

Step-7: next=skip+1.

Step-8: i=1

Step-9: if i>length then go to Step-18

Step-10: Sum[i]=PT[i]+Key[i]+FF[i]+BF[i]

Step-11: CT[i]=mod(Sum[i],256)

Step-12: if (i+next) > length then do

 FF[i+next-length]=CT[i]

 Otherwise do

 FF[i+next]=CT[i]

Step-13: j=(length-(i-1)) %to find out the index of

backward operation

Step-14: Sum[j]=PT[j]+Key[j]+FF[j]+BF[j]

Step-15: CT[j]=mod(Sum[j],256)

Step-16: if (j-next)<1 then do

BF[length-(absolute(j-next))]=CT[j]

 Otherwise do

BF[j-next]=CT[j]

Step-17: i=i+1

Step-18: goto Step-8

Step-19: End

B. Algorithm for Function Decryption()

Start

Step 1: The name of the Cipher Text file is stored in

„ct_file‟, key file is „k_file‟ and output file is out_file.

Step 2: We store the file pointers in different variables.

Step 3: We create an array „c_txt‟ which contains all

characters of the Cipher Text and another array „key‟ to

store the key.

Step 4: len = length of c_txt.

Step 5: skip = input of number of characters to be

skipped.

Step 6: next = skip+1.

Step 7: [u,v]=Call Generate_u_v(len,next).

Step 8: p_txt=array of length „len‟ for decrypted Plain

Text containing all zeros.

 Step 9: k= (2*len).

Step 10:-[i,j] = Call what_Is_In (u[k],next,len,v).

Step11:-sub_i= Call is_Changed (i,u[k],next,len,v,ct).

%% sub_i stores what is to be subtracted from „i‟

Step 12:- sub_j= Call is_Changed (j,u[k],next,len,v,ct).

%%Stores what is to be subtracted from „j‟

Step 13:- check= c_txt[u[k]] -sub_i - sub_j- key[u[k]].

%%Un-optimized value of Plain Text

Step 14:-is check < 0; if yes go to Step 15, or else go to

step 16

Step 15:-check = check + 256, go to Step 14

Step 16:- is check > 255; if yes go to Step 17, or else go

to step 18

Step 17:- check = check - 256, go to Step 16

Step 18:-p_txt[u[k]] = check;

Step 19:-is k > (len+1), if yes go to step 21,or else go to

step 20

Step 20:-k = k-1, go to step 10

Step 21:- Copy p_txt into out_file.

Step 22:-End.

C. Algorithm for function

Generate_u_v(length,next)

%%u[] will contain the source of the Feedback

Transfers

%%v[] will contain the destinations of the Feedback

Transfers

Step 1:-source=1.

Step 2:- i=1.

Step 3:-u[i]=source. %%u contains the source of the

Feedback Transfers.

Step 4:-if (u[i]+mod(next,length)) >length,then

v[i]=u[i]+ mod(next,length) – length.

Step 5:- if (u[i]+mod(next,length)) <= length, then

v[i]=u[i]+ mod(next,length).

Step 6:- source=source+1;

Step 7:- if i < (2*length); then i=i+2 and go to Step 3.

Step 8:-source= length.

Step 9:- i =2.

Step 10:-u[i]=source.

Step 11:-if (u[i]-mod(next,length)) < 1,then v[i]=u[i]-

mod(next,length) + length.

Step 12:- if (u[i]-mod(next,length)) >= 1, then v[i]=u[i]

- mod(next,length).

Step 13:- source=source-1;

Step 14:- if i < (2*length); then i= i+2 and go to Step

10.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

30

Step 15:- Return Control to calling function, also return

u[] and v[] to the calling function.

D. Algorithm for function what_Is_In

(number,next,length,v[])

%%i and j will store the elements that have been shifted

into „number‟

Step-1: if number+next<=length, then go to Step-

2,otherwise Step-3

Step-2: i=number+ next

Step-3: i=number+ next-length,

Step-4: if number-next>=1 then go to Step-5,otherwise

go to Step-6

Step-5: j=number-next

Step-6: j=number-next+length

Step-7: lastPos_number = Call last_Position

_of(number, length)

Step-8: if(i=j and i!=0) then go to Step-9,otherwise go

to Step-13

Step-9: if(Call

last_Position_of(i,length)>lastPos_number) then go to

Step-10,otherwise go to Step-11

Step-10: i=0

Step-11: if(Call

first_Position_of(i,length)>lastPos_number) then go to

Step-12,otherwise go to Step-23

Step-12: j=0

Step-13: if(i!=0) then go to Step-14 otherwise go to

Step-18

Step-14: if(Call

last_Position_of(i,length)>lastPos_number and v(Call

last_Position_of(i,length))=number) then go to Step-

15,otherwise go to Step-16

Step-15: i=0

Step-16: if(Call

first_Position_of(i,length)>lastPos_number and v(Call

first_Position_of(i,length))=number) then go to Step-

17,otherwise go to Step-18

Step-17: i=0

Step-18: if(j!=0) then go to Step-19 otherwise go to

Step-23

Step-19: if(Call

last_Position_of(j,length)>lastPos_number and v(Call

last_Position_of(j,length))=number) then go to Step-

20,otherwise go to Step-21

Step-20: j=0

Step-21: if(Call

first_Position_of(j,length)>lastPos_number and v(Call

first_Position_of(j,length))=number) then go to Step-

22,otherwise go to Step-23

Step-22: j=0

Step-23: Return i and j to the calling function

E. Algorithm for function is_Changed

(number,mother,next,length,v[],c_txt)

%% „sub‟ will store the value that is to be eventually

subtracted from that element of the Cipher Text to

%%get Plain Text.

Step 1: if number = 0, then, sub = 0. %% thus, a base

case is reached

Step 2: else if mother

=v(last_Position_of(number,length)), then, sub =

c_txt(number). %% thus, a base case is reached.

 Step 3: [in_bet_1,in_bet_2]=Call

what_Lies_In_Between (number,next,length,v);

Step 4: if i=0 and j=0 , then, sub= c_txt(number). %%

thus, a base case is reached

Step 5: else if in_bet_1=0 and in_bet_2~=0 then

sub=c_txt(number) -

is_Changed(in_bet_2,number,next,length,v,c_txt).

Step 6: else if in_bet_1~= 0 and in_bet_2 = 0, then

sub=c_txt(number)-

is_Changed(in_bet_1,number,next,length,v,c_txt).

Step 7: else if in_bet_1 ~= 0 and in_bet_2 ~= 0, then

sub = c_txt(number) -

is_Changed(in_bet_1,number,next,length,v,c_txt) -

is_Changed(in_bet_2,number,next,length,v,c_txt).

F. Algorithm for function

first_Position_of(number,length)

Step 1: current_pos = Call last_Position_of (number,

length);

Step 2: first_pos = 2*length - current_pos+1;

Step 3: Return Control to calling function, and return

„first_pos‟ to the calling function.

G. Algorithm for function

last_Position_of(number,length)

Step 1: if number <= ceil (length/2); go to Step 3

Step 2: if number >ceil (length/2); go to Step 4

Step 3: last_ pos = 2*block size - 2*(number-1);

Step 4: last_pos = 2*(number-1);

Step 5: Return last_pos to the calling function.

H. Algorithm for Function

what_Is_In_Between

(number,block_size,next,v[])

Step-1: (i,j) = Call whatIsIn (number,length,next,v[])

Step-2: if i=j and i!=0 and j!=0 then go to Step-

3,otherwise go to Step-10

Step-3:condition=(Call lastPosition(i,length,)>Call

oldPos(number,length,) and Call

lastPosition(i,length,)<Call lastPosition(number,length,)

and v(Cal lastPosition(i,length,))=number)

Step-4: if condition=0 then go to Step-5, otherwise go

to Step-6

Step-5: i=0

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

31

Step-6: condition=(Call oldPosition(j,length,)>Call

oldPosition(number,length,) and Call

oldPosition(j,length,)<Call lastPosition(number,length,)

and v(Call oldPosition(j,length,))=number)

Step-7: if condition=0 then got to Step-8, otherwise go

to Step-9

Step-8: j=0

Step-9: go to Step-20

Step-10: if i!=0 then go to Step-11,otherwise go to

Step-15

Step-11: condition1=Call lastPosition(i,length,)>Call

oldPosition(number,length,) and Call

lastPosition(i,length,)<Call lastPosition(number,length,)

and v(Call lastPosition(i,length,))=number

Step-12: condition2=Call oldPosition(i,length,)>Call

oldPos(number,length,) and Call

oldPosition(i,length,)<Call lastPosition(number,length,)

and v(Call oldPosition(i,length,))=number

Step-13: if condition1=0 and condition=0 then go to

Step-14,otherwise go to Step-15

Step-14: i=0

Step-15: if j!=0 then go to Step-16,otherwise go to

Step-20

Step-16: condition1=Call lastPosition(j,length,)>Call

oldPosition(number,length,) and Call

lastPosition(j,length,)<Call lastPosition(number,length,)

and v(Call lastPosition(j,length,))=number

Step-17: condition2=Call oldPosition(j,length,)>Call

oldPosition(number,length,) and Call

oldPosition(j,length,)<Call lastPosition(number,length,)

and v(Call oldPosition(j,length,))=number

Step-18: if condition1=0 and condition=0 then go to

Step-19,otherwise go to Step-20

Step-19: j=0

Step-20: Return i and j to the calling function

Fig-1: Block Diagram of MWFES Ver-2

3. Results and Discussions

The following list contains the result of some test cases

using our encryption method. For each case, we have

the plain text, the key, the number of shifts and their

corresponding cipher text. The test cases we have

shown here are mostly assorted and random phrases or

texts. The spectral analysis of standard ASCII „1‟,

ASCII „2‟, ASCII „3‟ is also given.

Table-1(a): Encryption of some Plain Texts using

some key and skip number

A. Inference

From the observations made in the table above we see

that even for two seemingly similar Plain Texts (as

shown in SL. NO. 1. And 2.), the Cipher Texts are

drastically different owing to the fact that a change in

the last character is rendering the initial backward

feedback different, thus making the result completely

haphazard even when compared to a Plain Text that is

almost similar, even when the keys and the skips are

taken to be the same. We repeat the experiment for

different Plain Texts keeping a few constraints in mind,

such as the skip and key and even then we do not see

any seemingly visible pattern for deciphering the Plain

Text. Even if one character does turn out to be similar

that would be due to the key being same for both the

test cases.

Table-1(b): Encryption of a small paragraph

B. Inference

Comparing the result of this paragraph with the table

that we had obtained before we see that there is no way

Sl.

No.

Plain

Text

Key Skip

Number(N)

Encrypted

Text

1. ABCDE

1

2. ABCDF 1
3. Abababab

3

4. Acacacac 3
5. Aabaa 2

6. Aacaa 2
7. Aacaa 3

Plain Text Cipher

Text

The Society of Jesus, a Christian Religious

Order founded by Saint Ignatius of Loyola in

1540, has been active in the field of education

throughout the world since its origin. In the

world, the Jesuits are responsible for 3,897

Educational Institutions in 90 countries. These

Jesuit Educational Institutions engage the

efforts of approximately 1,34,303 teachers,

educating approximately 29,28,806 students.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

32

of linking the Plain Text with the Cipher Text. If we

scrutinize the result in the table above for similar Plain

Text characters too we find that in no two places are the

Cipher Text characters same. Using a randomized key

generated by the MSA algorithm we have managed to

remove any discrepancies that may have occurred while

using the same key for two Plain Texts.

Fig-2: Frequency Spectral Analysis of Encryption

of ASCII ‘1’, ASCII ‘2’, ASCII ‘3’(Top to Bottom)

Fig-3: Encryption of Plain Text ‘ABCDE’ with same

key and different skips

C. Inference

In the graph given above we get a pictorial

representation of the randomness of the Plain Text

characters for just a linear change in the skip. The

key(generated by MSA[1] algorithm) is kept constant.

We observe that for skips that are less than the length of

the Plain Text, the result is completely haphazard,

having no known simple relation with each other.

However,it is to be noted that when the skip crosses the

length of the Plain Text it has the same effect of being

the mod of itself with the length of Plain Text thus

duplicating the previously found results. In the real

world, where the Plain Texts of images and even

documents are of significant length and since the one

skip is for one time use, this discrepancy will not be a

factor during anyone‟s attempt at crypanalyzing

MWFES Ver-II.

4. Conclusion and Future Scope

The present method is tested on various types of files

such as .doc, .jpg, .bmp, .exe, .com, .dbf, .xls, .wav, .avi

and the results were quite satisfactory. The encryption

and decryption methods work smoothly. In the present

method the encrypted text cannot be decrypted without

knowing the exact initial random matrix. The size of

random matrix taken is 16x16. The numbers in 16x16

may be arranged in 256! Ways. To complete the whole

process the authors have chosen any of the random

matrix depending on the user entered text-key. The

results show that the set of strings where there is only

difference in one character there also the encrypted

texts are coming totally different. The present method is

free from any kind of brute force attack or known plain

text attack. The present MWFES Ver-2 method may be

applied to encrypt any short message, password,

confidential key. One can apply this method to encrypt

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

33

data in sensor networks. The overall complexity of the

encryption method may be increased even further by

introducing random key in different blocks and also the

shift may be made random.

Acknowledgment

The authors are very much grateful to the Department

of Computer Science for giving the opportunity to work

on symmetric key Cryptography. One of the authors

(A.N) sincerely expresses his gratitude to Fr. Dr. Felix

Raj, Principal of St. Xavier‟s College (Autonomous) for

giving constant encouragement in doing research in the

field of cryptography.

 References

[1] Symmetric Key Cryptography using Random Key

generator: AsokeNath, Saima Ghosh,

MeheboobAlamMallik:“Proceedings of

International conference on security and

management(SAM ‟10)” held at Las Vegas, USA

July 12-15, 2010), Vol-2, Page: 239-244(2010).

[2] Advanced Symmetric key Cryptography using

extended MSA method: DJSSA symmetric key

algorithm: DriptoChatterjee, JoyshreeNath,

SoumitraMondal, SuvadeepDasgupta and

AsokeNath,Jounal of Computing, Vol 3, Issue-2,

Page 66-71,Feb(2011).

[3] A new Symmetric key Cryptography Algorithm

using extended MSA method: DJSA symmetric key

algorithm, DriptoChatterjee, JoyshreeNath,

SuvadeepDasgupta and AsokeNath : Proceedings of

IEEE International Conference on Communication

Systems and Network Technologies, held at

SMVDU(Jammu) 03-06 June,2011, Page-89-

94(2011).

[4] New Symmetric key Cryptographic algorithm using

combined bit manipulation and MSA encryption

algorithm: NJJSAA symmetric key algorithm:

NeerajKhanna, JoelJames,JoyshreeNath, Sayantan

Chakraborty, Amlan Chakrabarti and Asoke Nath :

Proceedings of IEEE CSNT-2011 held at

SMVDU(Jammu) 03-06 June 2011, Page 125-

130(2011).

[5] Symmetric key Cryptography using modified

DJSSA symmetric key algorithm, DriptoChatterjee,

JoyshreeNath, Sankar Das, ShalabhAgarwal and

AsokeNath, Proceedings of International conference

Worldcomp 2011 held at Las Vegas 18-21 July

2011, Page-306-311, Vol-1(2011).

[6] An Integrated symmetric key cryptography

algorithm using generalized vernam cipher method

and DJSA method: DJMNA symmetric key

algorithm: Debanjan Das, JoyshreeNath,

Megholova Mukherjee, NehaChaudhury and

AsokeNath: Proceedings of IEEE International

conference: World Congress WICT-2011 held at

Mumbai University 11-14 Dec, 2011, Page

No.1203-1208(2011).

[7] Symmetric key cryptosystem using combined

cryptographic algorithms- generalized modified

vernam cipher method, MSA method and NJJSAA

method: TTJSA algorithm – Trisha Chatterjee,

Tamodeep Das, JoyshreeNath, ShayanDey and

AsokeNath, Proceedings of IEEE International

conference: World Congress WICT-2011 t held at

Mumbai University 11-14 Dec, 2011, Page No.

1179-1184(2011).

[8] Symmetric key Cryptography using two-way

updated Generalized Vernam Cipher method:

TTSJA algorithm, International Journal of

Computer Applications (IJCA, USA), Vol 42, No.1,

March, Pg: 34 -39(2012).

[9] Ultra Encryption Standard(UES) Version-I:

Symmetric Key Cryptosystem using generalized

modified Vernam Cipher method, Permutation

method and Columnar Transposition method,

Satyaki Roy, Navajit Maitra, JoyshreeNath,

ShalabhAgarwal and AsokeNath, Proceedings of

IEEE sponsored National Conference on Recent

Advances in Communication, Control and

Computing Technology -RACCCT 2012, 29-30

March held at Surat, Page 81-88(2012).

[10] An Integrated Symmetric Key Cryptographic

Method – Amalgamation of TTJSA Algorithm,

AdvancedCaeser Cipher Algorithm, Bit Rotation

and reversal Method: SJA Algorithm., International

Journal of Modern Education and Computer

Science, SomdipDey, JoyshreeNath,

AsokeNath,(IJMECS), ISSN: 2075-0161 (Print),

ISSN: 2075-017X (Online), Vol-4, No-5, Page 1-

9,2012.

[11] An Advanced Combined Symmetric Key

Cryptographic Method using Bit manipulation, Bit

Reversal, Modified Caeser Cipher(SD-REE), DJSA

method, TTJSA method: SJA-I Algorithm, Somdip

Dey, Joyshree Nath, Asoke Nath, International

Journal of Computer Applications(IJCA 0975-8887,

USA), Vol. 46, No.20, Page- 46-53,May, 2012.

[12] Ultra Encryption Standard(UES) Version-IV: New

Symmetric Key Cryptosystem with bit-level

columnar Transposition and Reshuffling of Bits,

Satyaki Roy, NavajitMaitra, JoyshreeNath,

ShalabhAgarwal and AsokeNath, International

Journal of Computer Applications(IJCA)(0975-

8887) USA Volume 51-No.1.,Aug, Page. 28-

35(2012).

[13] Bit Level Encryption Standard (BLES): Version-I,

NeerajKhanna, DriptoChatterjee, JoyshreeNath and

AsokeNath, International Journal of Computer

Applications (IJCA)(0975-8887) USA Volume 52-

No.2.,Aug, Page.41-46(2012).

[14] Bit LevelGeneralized Modified Vernam Cipher

Method with Feedback: Prabal Banerjee,

AsokeNath, Proceedings of International

Conference on Emerging Trends and Technologies

held at Indore, Dec 15-16, 2012.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-4 Issue-13 December-2013

34

[15] Advanced Symmetric Key cryptosystem using Bit

and Byte Level encryption methods with Feedback:

Prabal Banerjee, Asoke Nath, Proceedings of

International conference Worldcomp 2013 held at

Las Vegas, July 2013.

[16] Modern Encryption Standard Ver-IV(MES-IV),

Asoke Nath, Payel Pal, International Journal of

Advanced Computer Research, Volume-3, Number-

2, Page-216-223(2013).

[17] Modern Encryption Standard Ver-IV(MES-V),

Asoke Nath, Bidhusunder Samanta, International

Journal of Advanced Computer Research, Volume-

3, Number-2, Page-257-264(2013).

[18] Multi Way Feedback Encryption Standard Ver-

I(MWFES-I) , Purnendu Mukherjee, Prabal

Banerjee, Asoke Nath, International Journal of

Advanced Computer Research, Volume-3, Number-

2, Page-176-182(2013).

Asoke Nath is the Associate Professor in

Department of Computer Science. Apart

from his teaching assignment he is

involved with various research works in

Cryptography, Steganography, Green

Computing, E-learning. He has presented

papers and invited tutorials in different

International and National conferences in

India and in abroad.

Debdeep Basu is pursuing his Bachelor of

Science (Computer Science Honors) at St.

Xavier‟s, College (Autonomous), Kolkata,

India. He was born in Kolkata on

03.08.1993. He is presently involved in

research work in Cryptography.

Surajit Bhowmik is pursuing his

Bachelor of Science (Computer Science

Honors) at St. Xavier‟s, College

(Autonomous), Kolkata, India. He was

born in Kolkata on 24.05.1994. He is

presently involved in research work in

Cryptography.

Ankita Bose is pursuing her Bachelor of

Science (Computer Science Honors) at St.

Xavier‟s, College (Autonomous), Kolkata,

India. She was born in Kolkata on

15.02.1993. She is presently involved in

research work in Cryptography.

Saptarshi Chatterjee is pursuing his

Bachelor of Science (Computer Science

Honors) at St.Xavier‟s, College

(Autonomous), Kolkata, India. He was

born in Kolkata on 17.04.1993. He is

presently involved in research work in

Cryptography.

.

Autho r‟s Photo

Aut hor‟s Photo

Author‟s Photo

