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Abstract  
 

The basic problem in designing control systems is 

the ability to achieve good performance in the 

presence of uncertainties such as output 

disturbances, measurement noise or unmodeled 

dynamics (i.e. robust controllers). Recent 

development in the area has been directed towards 

developing a consistent design methodology within 

this uncertain environment. The attitude control/ 

momentum management of the space station poses 

a typical problem in a highly uncertain environment 

(such as mass properties of the Space Station and 

environmental disturbances as well as parametric 

uncertainties). The objective of this research is to 

use LQR control for the position control of spin axis 

rotor position at reference value in the presence of 

parametric uncertainties, external unmeasurable 

disturbances and system inherent non-linearity with 

different type’s reference tracking signal are 

considered extensively in this paper. 
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1. Introduction 
 

A spacecraft can use either internal or external 

actuators to control its attitude. Generally external 

actuators such as thrusters are used for large fast 

slewing maneuvers. However thrusters are not ideal 

for precision attitude control due to their 

discontinuous nature, due to this reason such kind 

control strategy is not implementable in many 

situations. Internal actuators can be momentum 

exchange devices, such as momentum wheels and 

control moment gyros, or non-moving devices like 

magnetic torques. Momentum wheels can perform 

precise maneuvers and maintain attitude; however the 

varying wheel speeds tend to excite structural 

dynamics. 
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Momentum wheels [1,2] require torques proportionate 

to the desired output torque which makes them non-

ideal for rapid slewing. A control moment gyro has a 

flywheel mounted on a motor/actuator that spins at a 

constant relative speed at all time of instant. The space 

station is employed with CMG (control moment 

gyroscope) as a primary actuating device during 

normal flight mode operation. The objective of the 

CMG flight control system is to hold the space station 

at a fixed attitude relative to the LVLH frame. In the 

presence of continuous environmental disturbances 

[3-5] CMGs will absorb momentum in an attempt to 

maintain the Space Station at a desired attitude. The 

CMGs will eventually saturate, resulting in loss of 

effectiveness of the CMG system as a control effector 

element.  

 

Linear Quadratic Regulator (LQR) [6-13] design 

technique is well known in modern optimal control 

theory and has been widely used in many 

applications. Designed controller has a very nice 

robustness property, [14] i.e., if the process is of 

single-input and single-output, then the control 

system has at least the phase margin of 60 and the 

gain margin of infinity. This attractive property 

appeals to the practicing engineers. Thus, the LQR 

theory has received considerable attention after 

1950s. In the context of optimal PID tuning, typical 

performance indices are the integral of squared error 

and time weighted error. With this kind of 

performance criterions, the integral of squared error 

(squared time weighted error) is calculated using 

Astrom's integral algorithm recursively if the process 

transfer function is known [15].  

 

In optimal control one attempt to find a controller 

that provides the best possible performance with 

respect to some given measure of performance. E.g., 

the controller that uses the least amount of control-

signal energy to take the output to zero. In this case 

the measure of performance (also called the 

optimality criterion) would be the control-signal 

energy to the plant. In general, optimality with 

respect to some criterion is not the only desirable 

property for a controller, but also help to reject 

disturbances from input channel. One would also like 

stability of the closed-loop system, good gain and 
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phase margins, robustness with respect to unmodeled 

dynamics etc.   

 

Major contributions of this paper are as follow: In 

order to achieve optimal performance of gyroscope 

model, initially LQR control is designed for state 

feedback gain matrix. Mathematical modeling of 

gyroscope is presented. Later on Integral-LQR 

control is designed to achieve robust performance in 

the presence parametric uncertainties and inherent 

non-linearity of system with different reference 

signals like sinusoidal, square and sawtooth wave to 

test the system performance. The entire designed 

control algorithms are tested on gyroscope plant. 

 

Rest of the paper is organized as follows: Section 2 

describes the problem formulation and LQR control 

design concept. The mathematical model of 

Gyroscope is explained in Section 3. Simulation 

results and discussions are presented in Section 4 and 

the paper concludes in Section 5.  

 

2. Problem Formulation and LQR 

Control Design 
 

Consider a Single Input Single Output (SISO) linear 

non-time invariant system as 
( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

 

 
     (1) 

Where A, B are system parameter matrices. C is 

output matrix. x(t) is the internal state vector of 

system. y(t) is the output of the system, which is 

interest of control. u(t) is the control input.  

 

Generalized control scheme is shown in fig. (1). For 

designing of controller internal state feedback is 

required. Based on the states information controller is 

designed.  

For  the  derivation  of  the  linear  quadratic  

regulator, we  assume  the  plant  to be written  in 

state-space form  x Ax Bu  , and that all of the n 

states x are available for the controller. The feedback 

gain is matrix K, implemented as 

( ) ( ( ) ( ))du t K x t x t   . The system dynamics 

are then written as 

 

 
 

Figure 1: Generalized block diagram of LQR 

control   

 

The control objective is to use state feedback to 

stabilize the system and prevent flutter. We focus on 

the infinite time Linear-Quadratic Regulator problem. 

This approach leads to a full state-feedback controller 

of the form u = −Kcx to maintain stability. We show 

that a stable solution exists and use the algebraic 

Riccati Equation to solve for an optimal control u
*
. 

MATLAB/ Simulink software is used in all 

numerical simulations to test plant with different 

conditions. 

 

We present a general procedure for solving optimal 

control problems, using the calculus of variations. 

0

[ ( ) ( ) ( ) ( )]T TJ x t Qx t u t Ru t dt



                  (2) 

Q is an n X n symmetric positive semi definite matrix 

and R is an m X m symmetric positive definite matrix. 

The matrix Q can be written as Q = M
T
M, where M is 

a p X n matrix, with p< n. With this representation 
T T T Tx Qx x M Mx z z               (3) 

where z = Mx can be viewed as a controlled output. 

 

Assumptions: 
1. Pair (A, B)  is Controllable. 
2. Pair (Q,R) are the controller design 

parameters. Large Q penalizes transients of  
x, large R penalizes usage of control action 
u(t).   

 

3. Modelling of Gyroscope Plant 
 

The following pair of equations [17] describes the 

motion of the Gyroscope plant and where dynamics 

can be obtained by  

  y yJ h M                       (3) 

      0zh J                      (4) 

 

Using eq. (3) and (4), deriving the open loop transfer 

function G(s) for the gyroscope plant from Laplace 
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transform of z-axis position  as output of plant to 

Laplace transform of control torque input .  

Taking Laplace transform of equations (3) and (4), 

one can find the transfer function as 

                     (5) 

                    (6) 

 

Re-arranging eq. (5) and (6) to solve for  we get: 

                             (7) 

 

Substituting (5) back into (3) and rearranging, one 

can find the transfer function after some 

simplification as   

                         (8) 

 

which is the open loop transfer function G(s) for the 

gyroscope plant. 

 

Now converting nominal transfer function of 

gyroscope present into eq. (8) into state space form as 

presented into (1), 

 

Using equation (3) and (4) and the state vector given 

below, obtain the complete state-space representation 

for the gyroscope plant. Provide both parametric and 

numerical values for A and B matrices. Internal state 

vector of plant is selected as, 

 

                              (9) 

Re-arranging (3), one can write as, 

 

                             (10) 

 

Rearranging (3) results in, 

 

                       (11) 

Combining (9), (10) and (8), one can write dynamics 

of gyroscope plant as 

 

   (11) 

The output of the gyroscope plant is the variable , 

the angle about the z-axis. Therefore the second 

equation given in (7) takes the following form, 

                       (12) 

Substituting the parameter values from table-I, one 

can work on these equations as, 

 

    (13) 

                  (14) 

 

Table 1: Nominal value of Gyroscope plant for 

simulation [16] 

 

S.No Parameter Unit Numerical 

Value 

1 h Kg.m2/s 1.0891 

2 Jy Kg.m2 0.0026 

3 Jz Kg.m2 0.0342 

 

4. Simulation results and discussion 
 

In order to testing of designed control algorithm we 

have considered Quanser gyroscope plant for 

simulation example. Initially regulatory system is 

considered for initial results, where system states go 

to 0 from some initial arbitrary conditions. Plant 

states and control input is shown in Fig 2. 

 

For tracking of filtered square wave we have 

considered same conditions as the previous case, 

results of square wave reference tracking signal 

shown in Fig 3. 

 

For rest of the cases, 20% uncertainty is considered 

in system parameter matrices in order to test the 

robustness of controller. Fig 4 shows the plant state 

response for tracking of sinusoidal signal. Fig. 5 

shows the system performance in the presence of 

parametric uncertainty to track sawtooth signal as 

reference. 

 

Result shows that designed controller perform very 

well in the presence or parametric uncertainties and 

tracking of reference signals, where rate is not zero in 

steady states. 
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Figure 2a: Plant state x1 

 

 
 

Figure 2b: Plant state x2 

 

 
 

Figure 2c: Plant state x3 

 
Figure 2d: Control input u 

 

Figure 2: Regulatory system performance 

  
 

Figure 3a: Plant state x1 

 

 
 

Figure 3b: Plant state x2 

 
 

Figure 3c: Plant state x3 

 
 

Figure 3d: Control input u 

 

Figure 3: System performance during square 

reference signal tracking with LQR control 
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Figure 4a: Plant state x1 

 
 

Figure 4b: Plant state x2 

 
 

Figure 4c: Plant state x3 

 
 

Figure 4d: Control input u 

 

Figure 4: System performance during sinusoidal 

reference signal tracking with I-LQR control 

 
 

Figure 5a: Plant state x1 

 
 

Figure 5b: Plant state x2 

 
 

Figure 5c: Plant state x3 

 
 

Figure 5d: Control input u 

 

Figure 5: System performance during sawtooth 

reference signal tracking with I-LQR control 
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5. Conclusion 
 

Design of LQR control is presented for linear time 

invariant SISO system. Systematic modeling of 

gyroscope based on equation of motion is presented 

in this paper. In order to improve system performance 

Integral term is added to remove the steady state error 

and tracking of sinusoidal, sawtooth signal in the 

presence of parametric uncertainties and external 

measurable disturbance. Designed controller scheme 

is applied to quanser gyroscope model with different 

tracking situation. 
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