
International Journal of Advanced Computer Research (ISSN (print):2249-7277 ISSN (online):2277-7970)

 Volume-3 Number-2 Issue-10 June-2013

151

Improved registration system of Cloudtarun over Android Devices

Tarun Goyal
1
, Aakanksha Agrawal

2
, Somil Jain

3
, Vaibhav Doshi

4

Abstract

In this paper we have shown the some improvement

in the registration system of the Cloud based

application cloudtarun for Android Devices. We

examine a technology called Cloud to Device

Messaging and how well it integrates with cloud

computing. In our investigation we look at the

performance of the library, integration with Google

App Engine and also the development tools

including the API. We had done the performance

tests of our application Cloudtarun and to make

user registration system easy & simpler, we

introduce a new open source library we call Simple-

Cloudtarun.

Keywords

Android Emulators, Google Cloud Platform, Cloudtarun

& Eclipse Indigo.

1. Introduction

Mobile phones, and especially smartphones, are

becoming increasingly popular. Gartner reported that

in 2010 the smartphone sales to end-users increased

by 72.1%, while mobile device sales as a whole

increased by 31.8% to a total of 1.6 billion units sold

[1]. Consequently, developers are able to reach a very

large audience with new and innovative software.

Another important development in mobile phone

technology is the high-speed network available to the

public. With EDGE, 3G and even 4G in some places,

users are almost always connected. The feature-rich

and powerful mobile devices combined with a high-

speed network provide many new and exciting

innovation possibilities.

This work was supported in part by the Department of Computer

Science & Engineering, Shekhawati Group of Institutions, India.
TarunGoyal, Department of Computer Science/IT, Skekhawati

Institute of Engineering & Technology, Sikar, Rajasthan, India.

Aakanksha Agrawal, Department of Information Technology,
GBPUAT, Pantnagar, Uttarakhand, India.

Somil Jain, Department of Computer Science, Skekhawati

Institute of Engineering & Technology, Sikar, Rajasthan, India.
VaibhavDoshi, Department of Computer Science/IT,

Skekhawati Institute of Engineering & Technology, Sikar,

Rajasthan, India.

One of these is cloud computing, which has emerged

as a promising technology direction in the last few

years, especially when utilized in combination with

new smartphones. The term cloud computing refers

to the applications delivered over the Internet

specifically and the hardware and systems software

that is providing these services [2].

Cloud computing will in many cases offer the

appropriate scalability, flexibility and cost-model for

many different types of services. According to the

Gartner [3] both cloud computing and mobile

applications and media tablets are on the top 10 list

of strategic technologies for 2011. This proves the

importance of these technologies and how crucial it is

to continue to push the boundary on what is possible

to offer to the end users with the ever-improving

hardware and network infrastructure available. We

believe that a combination of a cloud based content

publisher and a smartphone content subscriber is an

especially promising area in part due to all the

benefits mentioned above. We will go into more

detail about this later on in this paper.

The work presented in this paper focuses on a

concept tying both messaging and user registration

over application cloudtarun. Cloudtarun provides the

possibility for mobile devices to receive messages

from a content publisher via a cloud platform.

Specifically, we are targeting integration of Google

App Engine integrated with Android mobile devices.

Accordingly, in this paper we will explore the

improvement in the registration of Cloudtarun for the

Cloud platform & Android Devices.

2. Related work

There are many examples of research exploring the

cloud computing area. One example is a system

called COSCA [5]. COSCA is a PaaS (Platform as a

Service) system, designed for adaptability and

modularity. The cloud service we chose to use is

Google App Engine. App Engine makes it possible

for developers to run their own applications on

Google’s infrastructure [6]. It is similar to the

COSCA model in that it provides a PaaS system.

This means that the platform, which for Google App

Engine supports Java, Python and Go, has beenpre-

configured and is maintained by the cloud provider.

International Journal of Advanced Computer Research (ISSN (print):2249-7277 ISSN (online):2277-7970)

 Volume-3 Number-2 Issue-10 June-2013

152

We will go into more detail about the Google App

Engine technology later in this paper.

Several large IT companies like Microsoft, Google

and IBM all have initiatives relating to cloud

computing [7]. This shows the importance and

maturity of cloud-based technology, which is also

highlighted by Gartner as one of the strategic

technologies for 2011 [3]. The success of cloud

computing is based on an economy of scale. The

ultimate goal is to provide more, in particular the

appearance of unlimited scalability and storage, for

less money [8].

One particularly popular manifestation of cloud

computing is in the form of Service Oriented

Architecture (SOA). Since the term SOA was coined

in 1996, it has become the state-of-the-art of software

architecture thinking, and all large software vendors

today offer various frameworks and implementations

of SOA [9]. SOA is a framework for designing

flexible and loosely integrated services, in e.g.

distributed cloud environments. A key challenge

when implementing SOA is that to achieve full

effect, processes needs to be transformed into more

loosely coupled services [10] and made available

through cloud based systems. Thus, Tsai et al. [11]

focuses on the same aspect by elaborating on the

architectural side of SOA. They look into how this

can enable processes and services to connect and

reconnect in an agile manner during an operational

modus such as runtime.

In our case study we will present a performance test

of Cloud based Application Cloudtarun, testing out

the integration of App Engine with Android in

practice. There are other research efforts that have

focused on performance evaluations of cloud

computing specifically. Alhamad et al. [12] has done

a performance evaluation of the Amazon EC2

service. Amazon EC2 is quite different from the PaaS

model utilized by Google App Engine. EC2 gives the

users the ability to control nearly the entire stack,

from the kernel and upwards [2]. In the

benchmarking test of EC2 they measured the

response times every two hours during several days.

The main contribution from this paper is the testing

of the isolation across the same hardware of virtual

machines, which are hosted by a cloud provider. This

experiment is quite different from ours, both in the

cloud infrastructure and the fact that we are

investigating the integration of a mobile client.

Mei et al. [7] highlight 4 main research areas in cloud

computing which are particularly interesting; 1)

Pluggable computing entities, 2) Data

accesstransparency, 3) Adaptive behavior of cloud

applications, and 4) Automatic discovery of

application quality. In our work the investigation of

Adaptive behavior of cloud applications is one of the

main research areas. We will provide an experience

report of both the push messaging technology on the

Android platform and how it integrates with cloud

computing.

We will provide an initial performance test in this

paper to have an insight into the Cloudtarun response

times. There are several previous research efforts

focusing on cloud computing performance. A paper

by Binning et al. [8] present some ideas on what a

benchmarking test should look like for cloud

computing. They argue that the benchmark should

highlight issues like the adaptability of a system (the

ability to adapt to changing load in terms of

scalability and cost), run the tests from different

locations and access “Web 2.0”-like applications

including multimedia content. These pointers are

provided for more general-purpose benchmark tests

than what we will include in this paper, where we

specifically focus on the integration of cloud platform

and Cloudtarun in Android. Still, there are some

important ideas from this paper. Specifically, we see

the importance of including performance of the

system under different loads and running the tests

from different locations. More detail is presented in

section 5 where we include information on how an

extended performance test should be conducted in

future work.

We can summarize the contributions of this paper in

two main categories; 1) we will provide an

experience report of the state of the art of application

Cloudtarun on the Android platform and the

integration of cloud computing. 2) After presenting

the standard tools and libraries, we will introduce our

attempt at improving development of registration

system of application on Android.

Our research tries to answer two main questions:
 How well does the Android Devices perform

over Google Cloud Platform?
 Are there parts of the library that does not

work well? How can we improve them?

We will give a more in-depth look at the technologies

explored in the next section. Then we will present the

details of our implemented system and explain how

our experiment was conducted.

International Journal of Advanced Computer Research (ISSN (print):2249-7277 ISSN (online):2277-7970)

 Volume-3 Number-2 Issue-10 June-2013

153

3. Cloudtarun on android devices

We have decided to focus on Android in our work

because it is an open platform that is well suited for

experimentation. Also the GWT is especially

interesting because it integrates well with the Google

infrastructure, mainly their cloud platform (App

Engine).

A. The Android Operating System
The Android platform is released under the Open

Handset Alliance [14], the goal of which is to create

open standards for mobile devices. Android is an

open source mobile operating system based on the

Linux kernel. For application development, Android

facilitates the use of 2D and 3D graphic libraries, a

customized SQL engine for persistent storage,

advanced network capabilities such as Edge, 3G and

WLAN, a whole range of sensor services and other

features such as near field communication (NFC),

Bluetooth and voice control. The API is constantly

evolving and the next release (4.0, Ice cream

sandwich) is a huge step forward in terms of

available features from earlier releases, now also

bridging the gap between the phones and the tablets.

Before the standard cloud based feature was available

for Android it was common to use a polling

mechanism. This meant that the applications would

constantly poll the server for updates, much like POP

mail clients work where the clients will send a

request to the server asking if it has any updates [15].

Polling for updates has several well-known

drawbacks, including the major challenge of setting

the frequency of the requests sent to the server. This

issue is especially important when working with

mobile devices since developers have additional

issues like battery life and network coverage and cost

to deal with.

B. Cloudtarun Integration with the Cloud

In addition we integrate cloudtarun with the cloud

using Google App Engine. Google App Engine is a

PaaS technology that enables developers to easily

create highly scalable and flexible applications.

Developers using Google App Engine are presented

with a pre-configured platform and they must create

applications within the limitations imposed by this

platform. Each application runs in a secure

environment that provides limited access to the

operating system [6].

The limitations mostly focus on keeping the

application stateless. Developing server-side

applications using state is by most developers

considered to be bad practice and we believe that the

majority applications should be able to live in the

Google infrastructure aslong as they take certain

precautions. If developers do not need the missing

features or are able to work around them, which

should be possible in most cases, this platform

presents some very interesting benefits, including

high scalability.

One major benefit of utilizing the Google

infrastructure is the ability to take advantage of

Google provided APIs for authentication and sending

emails using Google accounts. There is no need to

implement a separate user management system with

application-specific user details. The system can

easily use standard Google accounts. It is worth

noting that many applications will not be able to run

in the cloud because it handles sensitive data of some

sort. Indeed, there are many non-technical reasons

why a cloud-based option may not be a choice at all

for certain applications.

4. Simple-cloudtarun

We started experimenting with Cloudtarun quickly

after its initial release in 2012. This means it is in an

experimentation phase and there is a possibility it

will be changed before the final version is released.

Since the technology is still in an early stage of

development there is room for improvement. We are

presenting an alternative and simplified version of the

Cloudtarun API in this paper that we believe is a step

in the right direction.

The Cloudtarun technology tries to connect the

mobile platform with cloud computing, where the

idea is that the cloud should be able to contact the

mobile application without the need for a custom

polling mechanism.

Android Cloud to Device Messaging was launched in

Android 2.2 and was implemented to make it easier

for mobile applications to sync data with servers [4].

Several of the standard Google applications, like

Gmail, Contacts and Calendar, use GWT. From the

2.2 release of Android this was also made available

to third-party developers [15].

The system is only meant to send short messages

notifying the mobile application that new and

updated data can be retrieved from the server; in so

doing, it is not designed to handle large amount of

data. To use Cloudtarun the application must register

the mobile device by signing in with their Google

International Journal of Advanced Computer Research (ISSN (print):2249-7277 ISSN (online):2277-7970)

 Volume-3 Number-2 Issue-10 June-2013

154

account. From the Google Cloud service a

registration id will be generated. This id needs to be

sent to the server application, which will include it

when sending out push messages to target a specific

device. Figure 1 shows a simplified presentation of

how Cloudtarun works. Both the register device and

server authentication have to be completed before

any messages can be sent to the one device to another

device using the Google Cloud Platform by using

Cloudtarun application

Figure 1: Cloudtarun

The Cloudtarun library has several similarities with

the previously mentioned Minstrel experiment [13].

Both use the publish/subscribe model, where

subscribers must register at the content publisher to

receive content. Similar to Cloudtarun, Minstrel was

also extended to include support for a Cloud based

messaging system for mobile devices. So that

database and message system can work over Cloud

Platform completely and properly.

When developing applications using GWT there are a

few required tasks for the developer. Permissions and

other service-related entries must be added to the

AndroidManifest.xml file. Also, the limited Java API

offered by Google consists of a few base classes that

you need to extend. There is no help from these

classes to deal with registration ids, as these needs to

be sent from the client to the server application.

We wanted to make the integration between the

application and Cloudtarun simpler. It is our

experience that the current API is both missing

important features like registration id management

and its abstraction is too low level. We also wanted to

add more flexibility to the system, each developer

should not have to deal with the same problems over

and over again because of an APIthat is not very

user-friendly. We therefore introduce an attempt at

improving the development of Cloud messaging on

Android with a library we call Simple-Cloudtarun

[16]. To develop and improve the registration system

of the Cloudtarun there are some of the Key features

to be used which are explained below as follows.

A.Key Components
The system we have implemented is built using three
major components (figure 2):

• Manifest generator (outside the core library)
• Server utilities

Android library

Figure 2: Simple-Cloudtarun

The manifest generator was created as an App Engine

application, presenting a webpage for generating the

AndroidManifest.xml file. Eliminating the need for

the error prone manual task it was to write this by

hand. All the developers need to do is to enter the

package name of the application in the text field.

When the generate button is pushed this will generate

the necessary xml code that must be added in the

project manifest file.

On the server side we wanted to add helper classes

for dealing with the common scenarios in a cloud

messaging system. This includes receiving and

extracting registration ids, generating authentication

tokens and sending messages. This library was

specifically created to be independent of any server

side technology. It should not require the server

application to be running on App Engine for

example; this is very different from the way Google

International Journal of Advanced Computer Research (ISSN (print):2249-7277 ISSN (online):2277-7970)

 Volume-3 Number-2 Issue-10 June-2013

155

has solved this with their Eclipse plugin, which we

will look closer at in section 6.

The main part is the library we created for the

Android client. It handles all the common tasks of

working with Cloudtarun: registering the device,

sending registration id and receiving messages. It

extends the cloudtarun.jar file created by Google, but

tries to hide the complexity and low abstraction level

of that library. It offers both annotation-based and

direct callback options for the developer to use.

Using annotations gives the most flexibility and is in

our opinion the best way of providing the flexibility

and simplicity in this system.

5. Application and development

To complete the performance test we needed to

create a server and client application. We also used

this system to try out the Simple-Cloudtarun API and

see how it compared to working with the standard

API.

A. Sample Application
The sample application consisted of a server

application hosted on App Engine and an Android

client. It sent requests over a period of 200 minutes,

with one request every minute. The client application

was responsible for keeping the state of the requests

and measured the time used and the server

application simply answered the sent requests.
The basic functionality of the sample application:

• On startup, initialize both the Android and

the server applications. The Android

application receives the registration id, while

the server application obtains an

authentication token to be able to send

messages. The registration id is also sent to

the server since all push messages are sent to

a specific registration id.
• The Android client sends a ping request and

waits for a HTTP 200 response. This is done

to ensure that the server application was up

and running and ready to respond.
• The server application receives the request

and responds when it is ready.
• Now the performance test starts, the

Android application records the current time

and then sends a request to the server

application that it should send a push

message back to the phone.
• The server application receives the request

and then immediately sends out a push

message to the client.

When this push message is received at the Android

application, it will again record the current time. Now

it can calculate the total time used.

6. Results and discussion

In this case study we wanted to test two issues with

Cloudtarun. Firstly we wanted to do some initial

performance tests of the technology in order to

examine its potential and how well it would perform

in a simple benchmarking test. Secondly, we wanted

to compare thestandard Cloudtarun library with our

custom Simple-Cloudtarun API.

A. Performance
In the performance test, we completed a small test

over 200 minutes, sending one request per minute.

Google states that it does not provide any guarantees

when it comes to delivering messages, and the

performance data we recorded is only an initial test.

More thorough tests need to be done to get a good

comparison, including testing from different

locations, devices, networks and also compare the

Cloudtarun performance with other similar

technologies. Figure 3 shows the detailed results

Figure 3: Cloudtarun performance test

Thus, the average time used in our test was 610 ms.,

this includes the extra request we needed to send to

trigger the message. The response times were within

a standard deviation of 145 ms. In comparison we did

a simple ping command to the server application

deployed on App Engine. Over a series of 200 ping

commands we recorded an average value of 47ms.

This means the actual time used for the push

messages averages under 600ms if the initial request

International Journal of Advanced Computer Research (ISSN (print):2249-7277 ISSN (online):2277-7970)

 Volume-3 Number-2 Issue-10 June-2013

156

time is deducted. In our test we used HTC Evo on a

WIFI network.

There were several limitations of the test and a

further investigation would need to test on several

different devices and device types, networks, times

and locations. By extending the experiment with

these new features we will be able to provide more

reliable performance measurements. Also, by

including other push-based technologies on the

Android platform we will be able to a more

comprehensive comparison of these technologies.

B.Comparison, Cloudtarun vs Simple-Cloudtarun
When developing Cloudtarun applications there are a

few base classes offered by Google that will need to

beused in the application. For registering and

receiving push messages or error messages the

receiver class needs to extend a class called

CloudtarunBaseReceiver (figure 4).

Figure 4: Standard Cloudtarun code

This has a few disadvantages. Firstly, in Java you

cannot extend more than one class, so you are tied to

the BaseReceiver-class. Secondly, you must strictly

follow the methods you override. Both method names

and input parameters must be exactly the same.

In Simple-Cloudtarun we wanted to improve this API

by making it simpler to develop with. Firstly we

added a direct callback mechanism. Instead of

inheritance it uses an interface that the developer

must implement in his own code. This is not very

different from the base receiver class, but one avoids

the problem of single inheritance since we provided

an interface instead of an implementation. The

second alternative we implemented was using

annotations. This greatly adds to the flexibility of the

code. By adding @OnRegistered, @OnMessage and

@OnError in the code at method level, we could call

these methods via reflection. This had the benefits of

both being very easy to read and understand, but also

giving the developers the flexibility of calling their

methods whatever they wanted and even the choice

of input parameters. It also makes it possible to split

the implementation across several classes. We added

logic to support input with the Context object or for

example just the registrationId String. That means if

your application did not need the Context object in

your callback, you didn’t have to add it to your

codebase. At this point, the main drawback we know

about in our solution is that reflection does impact

performance. Inour initial tests it did add a maximum

1ms overall increase in the time used. This should not

be a problem in any real world scenarios, but further

investigation of the overall performance needs to be

done.

On the server side we wanted to add a few simple

utility classes. Specifically we wanted to support:

authentication (generating Google security tokens),

receiving registration ids (simple parsing of requests)

and message generation/sending. One of the main

goals of this library was to make it server

independent. We created classes not dependent on

any specific server vendor, and although not

extensively tested yet, you should even be able to run

it on your desktop computer.

The new feature not available in the Google library

was handling of registration ids. We added support

for automatic sending of the registration id in a

background thread from the client to the server

application. By adding a server URL in the

@OnRegistered annotation (figure 5), it would

automatically trigger this feature.

@OnRegistered("http://server-url")

public voidregistered(String registrationId) {}

@OnMessage

public voidmessage(String msg) {}

@OnError

public voiderror(String errorMsg) {}

Figure 5: Simple-Cloudtarun API

public class Receiver

extendsCloudtarunBaseReceiver {

publicSCloudtarunReceiver() {
super(“email@test.com”);
 }

@Override
protected voidonMessage(Context context,
 Intent intent) {}

@Override
public voidonError(Context context,
 String errorMsg) {}

@Override
public voidonRegistered(Context context,
 String registrationId) throws IOException {}
}

International Journal of Advanced Computer Research (ISSN (print):2249-7277 ISSN (online):2277-7970)

 Volume-3 Number-2 Issue-10 June-2013

157

The main goals we had was a simple library that

would make it easier to use Cloudtarun and not tie

down the developer in any predefined technology

choice. This is quite different from the Eclipse plugin

Google is working on for Cloudtarun. The Google

plugin for Eclipse [17] contains a wizard for auto

generating a project containing the basis for a

Cloudtarun project connected to Google App Engine.

This is very different from our library by using code

generation and being directly tied to technologies

including App Engine, GWT (Google Web Toolkit)

and several other Google specific libraries.

7. Conclusion and future work

For the first question we investigated what the

development tools and libraries are for standard

Cloudtarun. We also implemented a test application

where we conducted a small performance test to try

out the technology. In our opinion the Cloudtarun

technology is particularly interesting because it

integrates push technology on the Android platform

with cloud computing.

We did find room for improvement in the standard

API offered by Google. We have tried to improve

this in our own open source project called Simple-

Cloudtarun. The project is still under development

and has not been released in a final version. More

testing and experimentation is needed before it is

released to the community in a stable version.

In future work we want to further expand on the

performance test. We would like to include other

technologies like XMPP (Extensible Messaging and

Presence Protocol) and MQTT (Message Queue

Telemetry Transport). The test would also benefit

from having the commercial Cloudtarun libraries,

mainly Urban Airship [18] and Xtify [19], included

in the performance tests and general investigation.

This would give a complete report on the status of

push messaging on Android.

Last but not least, working towards a final release of

Simple-Cloudtarun is also something we would like

to continue with in future work.

References

[1] Gartner, “Gartner Says Worldwide Mobile

Device Sales to End Users Reached 1.6 Billion

Units in 2010; Smartphone Sales Grew 72

Percent in 2010,” Gartner Says Worldwide

Mobile Device Sales to End Users Reached 1.6

Billion Units in 2010; Smartphone Sales Grew 72

Percent in 2010.

[2] M. Armbrust et al., “Above the Clouds: A

Berkeley View of Cloud Computing,” 2009.

[3] Gartner, “Gartner Identifies the Top 10 Strategic

Technologies for 2011,” Gartner Identifies the

Top 10 Strategic Technologies for 2011.

[Online]. Available:

http://www.gartner.com/it/page.jsp?id=1454221.

[4] Google, “Android Cloud to Device Messaging

Framework,” Android Cloud to Device

Messaging Framework.

[5] S. Kächele, J. Domaschka, and F. J. Hauck,

“COSCA: an easy-touse component-based PaaS

cloud system for common applications,” in

Proceedings of the First International Workshop

on Cloud Computing Platforms, New York, NY,

USA, 2011, pp. 4:1–4:6.

[6] Google, “What Is Google App Engine?,” What Is

Google App Engine?[Online]. Available:

http://code.google.com/appengine/docs/whatisgo

ogleappengine.htm l.

[7] Lijun Mei, W. K. Chan, and T. H. Tse, “A Tale

of Clouds: Paradigm Comparisons and Some

Thoughts on Research Issues,” in IEEE Asia-

Pacific Services Computing Conference, 2008.

APSCC ’08, 2008, pp. 464-469.

[8] C. Binnig, D. Kossmann, T. Kraska, and S.

Loesing, “How is the weather tomorrow?:

towards a benchmark for the cloud,” in

Proceedings of the Second International

Workshop on Testing Database Systems, New

York, NY, USA, 2009, pp. 9:1–9:6.

[9] M. Rosen, B. Lublinsky, K. T. Smith, and M. J.

Balcer, Applied SOA: Service-Oriented

Architecture and Design Strategies, 1st ed.

Wiley, 2008.

[10] H. Demirkan, R. J. Kauffman, J. A. Vayghan, H.-

G. Fill, D. Karagiannis, and P. P. Maglio,

“Service-oriented technology and management:

Perspectives on research and practice for the

coming decade,” Electron. Commer. Rec. Appl.,

vol. 7, no. 4, pp. 356–376, Dec. 2008.

[11] W. T. Tsai, R. A. Paul, C. Fan, and X. Wei,

“Dynamic Architectures ForSoa-Based

Applications,” J. Integr. Des. Process Sci., vol.

11, no. 4, pp. 65–105, Dec. 2007.

International Journal of Advanced Computer Research (ISSN (print):2249-7277 ISSN (online):2277-7970)

 Volume-3 Number-2 Issue-10 June-2013

158

[12] M. Alhamad, T. Dillon, C. Wu, and E. Chang,

“Response time for cloud computing providers,”

in Proceedings of the 12th International

Conference on Information Integration and

Webbased Applications & Services, New

York, NY, USA, 2010, pp. 603–606.

[13] T. Goyal, A. Singh and A. Agrawal,” Cloudtarun:

Application Simulated over GAE using Android

Emulators” in IJCA, vol. 57, no. 4, pp. 26-31,

Nov. 2012.

[14] Open Handset Alliance, “Open Handset

Alliance,” Open Handset Alliance. [Online].

Available: http://www.openhandsetalliance.com/.

[Accessed: 13-Oct-2011].

[15] T. Bray, “Android Cloud to Device Messaging,”

Android Cloud to Device Messaging. [Online].

Available:

http://androiddevelopers.blogspot.com/2010/05/a

ndroid-cloud-to-devicemessaging.html.

[Accessed: 13-Oct-2011].

[16] J. Hansen, “Simple-C2DM,” Simple-

C2DM.[Online]. Available:

http://code.google.com/p/simple-c2dm/.

[Accessed: 14-Oct-2011].

[17] Google, “Google Plugin for Eclipse,” Google

Plugin for Eclipse. [Online]. Available:

http://code.google.com/eclipse/. [Accessed:
 14-Oct-2011].

[18] Urban Airship, “Urban Airship,” Urban Airship.

[Online]. Available: http://urbanairship.com/.

[Accessed: 14-Oct-2011].

[19] Xtify, “Xtify,” Xtify. [Online]. Available:

http://xtify.com/. [Accessed: 14-Oct-2011].

I am Tarun Goyal,M.Tech CSE(H)

from BTKIT, Dwarahat, Uttarakhand &

B,Tech IT(H) from GECB, Bikaner,

Rajasthan. Presently I am working as

Assistant Professor CSE/IT, SGI, Sikar,

Rajasthan, India. My area of researches

are cloud computing, Web technology,

data structures. I have published around

10 research papers in international journals (including

IEEE, Elsevier, etc).

I am Aakanksha Agrawal ,M.Tech

CSE(H) from BTKIT, Dwarahat,

Uttarakhand & B,Tech CSE(H) from

AITS, Halwani, Uttarakhand. Presently

I am working as Teaching Personnel IT,

GBPUAT, Pantnagar, Uttarakhand,

India. My area of researches are

Networking, Cloud Computing &

Mobile Computing Technology. I have published around

10 research papers in international journals till date

(including IEEE, Elsevier, etc).

I am Somil Jain, M.Tech CSE (H) from Jagannath

University, Jaipur, Rajasthan & B,Tech CSE from SGI,

Sikar, Rajasthan. Presently I am working as Assistant

Professor CSE/IT, SGI, Sikar, Rajasthan, India. My areas

of researches are Networking, C language & Data

Structures. I have published around 02 research papers in

international journals till date.

