
International Journal of Advanced Computer Research (ISSN (print): 2249-7277   ISSN (online): 2277-7970)  

Volume-3 Number-2 Issue-10 June-2013 

193          

 

An Efficient Algorithm for Calculating Maximum Bipartite matching in a 

Graph 
 

Neha Bora
1
, Swati Arora

2
, Nitin Arora

3 
 

 

Abstract  
 

In this paper we proposed a new approximation 

algorithm for calculating the min-cut tree of an 

undirected edge-weighted graph. Our algorithm 

runs in O (V
2
.logV + V

2
.d), where V is the number 

of vertices in the given graph and d is the degree of 

the graph. It is a significant improvement over time 

complexities of existing solutions. We implemented 

our algorithm in objected oriented programming 

language and checked for many input cases. 

However, because of an assumption it does not 

produce correct result for all sorts of graphs but for 

the dense graphs success rate is more than 90%. 

Moreover in the unsuccessful cases, the deviation 

from actual result is very less and for most of the 

pairs we obtain correct values of max-flow. 
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1. Introduction 
 

Graph connectivity is one of the classical subjects in 

graph theory and has many applications like 

Reliability of communication networks, cluster 

analysis, transportation planning, chips and circuit 

design. In the maximum flow problem we are given a 

flow network G = (V, E) which is a graph in which 

each edge (u, v)  E has a non-negative capacity           

c(u, v) ≥ 0. If (u, v)  E then it is assumed that      

c(u, v) = 0 [1][2]. We distinguish two vertices in a 

flow network a source s and a sink t. In this we wish 

to compute the greatest rate at which material can be 

shipped from the source s to the sink t without 

violating any capacity constraints. 
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Finding the minimum cut of an undirected edge-

weighted graph is the fundamental algorithmic 

problem. Precisely it consists in finding a non-trivial 

partition of graph vertex set V into two parts such 

that the cut weight, the sum of weights of the edges 

connecting the two parts is minimum. Given a graph 

G = (V, E) with vertex set V, edge set E and weight 

function w:         E  R, it can be shown that there 

are at most n-1 distinct min-cuts among the total n(n-

1)/2 pairs of nodes. We represent these n-1 min-cuts 

by a tree, called Min-Cut Tree, which always exists 

and not need to be necessarily unique and has some 

properties. The nodes of the tree are the same as the 

nodes of the initial graph, (i.e. V). Each edge is 

assigned a value. For every pair s, t, we can find the 

min-cut value by following the (unique) path between 

s and t in the min-cut tree. Suppose that e is the edge 

with minimum value on that path. Then value (e) is 

also the min-cut value between s and t in the initial 

graph G. To actually find the cut between s and t, we 

simply cut off the edge e of minimum value on the s-t 

path. The two connected subsets of nodes in the tree, 

also define the min-cut between s and t in the initial 

graph G [4][5][6]. 

 

2. Literature Survey 
 

Ford and Fulkerson [8] shown the duality of the 

maximum flow and minimum s-t cut. This theorem 

states that the value of maximum flow in a flow 

network G with source s and sink t is equal to the 

value of minimum s-t cut of Graph G. 

 

In 1961, Gomory and Hu [7] shown that in a Graph 

having n nodes, there can be only n-1 numerically 

different flows. They proposed a method to compute 

min-cut tree by computing only n-1 minimum s-t cuts. 

In 1997, M. Stoer and F. Wagner [3] presented an 

algorithm for finding the min-cut tree of an undirected 

edge-weighted graph without using any flow 

techniques. This algorithm is one of a small number 

of papers treating questions of graph connectivity by 

non-flow-based methods. Time complexity of this 

algorithm is much better than those of flow based 

algorithms. 
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3. Novel Approximation Algorithm 

 

We present a new approximation algorithm for 

constructing the minimum cut tree. We calculate an 

upper-bound value for each node in the graph. We 

define the upperbound value of each node as the 

value of cut which separates this node from rest of 

the graph. We used the Lemma: The value of 

minimum cut of a graph G separating Ni and Nj is 

less than or equal to minimum of the upperbound 

values of two nodes Ni and Nj. We proceed by finding 

an edge uv such that upon merging the two nodes Nu 

and Nv we are able to reduce the upperbound value of 

the new node, i.e. 

 

upperbound (Nu) + upperbound(Nv) – 2*w(u,v) ≤  

max (upperbound(Nu), upperbound(Nv)) 

We start from the node having the minimum 

upperbound value and check for all of the edges 

leaving it. If we are able to reduce the upperbound 

value by merging it with any of the nodes, we merge 

the nodes and repeat the same procedure. If we are 

not able to reduce the upperbound value of node, we 

check for rest of the nodes in the increasing order of 

upperbound value. If at any stage it is not possible to 

merge any node, then we merge that pair of nodes 

which results in minimum increment of the 

upperbound value. After all the nodes in the graph 

are merged and it has only one node left, we proceed 

to construct the min-cut tree by using the information 

from intermediate stages.  We move from last to first 

stage and at each stage we see the two nodes that 

were merged during last stage and separate the node 

with smaller of the two upperbound values from the 

other by an arc bearing the value equal to the smaller 

of the two upperbound values. Since we are 

considering the nodes in the increasing order of 

upperbound values, checking for Ni itself implies that 

Nj has already been checked and it was not possible 

to reduce its upperbound value at all. So in this case 

upperbound(Nj) cannot be reduced. 

 

Our algorithm is based on the assumption that if we 

are merging two nodes Ni and Nj and if 

upperbound(Ni) < upperbound(Nj) then it is not 

possible to merge Nj with any other node which will 

result in a node having upperbound value which is 

less than upperbound(Ni). 

 

After running the procedure with more than 20000 

randomly generated graphs we have figured out that 

for graphs having density >= 0.4, success rate of 

algorithm is more than 90%. Moreover in the 

unsuccessful cases, the deviation from actual result is 

very less (usually for less than 5% pairs) and for most 

of the pairs we obtain correct values of max-flow. 

Procedure: Min-Cut Tree(G) 
Input: Undirected edge-weighted graph G 

Output: Min-Cut Tree 

Calculate the upperbound values for each node. 

while(number of vertices in the current graph > 1) 

       loop(Consider the vertices in the increasing 

order of upperbound value) 

             if(upperbound value can be reduced by 

merging a node with any adjacent node) 

             then merge those two adjacent nodes  

                    break; 

            End if 

       End loop 
 if (it is not possible to merge any pair of nodes) 

 then merge the pair of nodes which results in 

minimum increment of the upperbound        value. 

End if 

End While 
Construct Min-Cut Tree T by using the information 

from intermediate stages as described: 

Move from last to first stage. 

At each stage check the two nodes that were merged 

during last stage. 

Separate the node with lower upperbound value from 

the other by an arc bearing the value equal to the 

lower upperbound value. 

return T 
 

Time Complexity of our algorithms is          

O(V
2
.logV + V

2
.d), where V is the number of vertices 

in the given graph and d is the degree of the graph. 

This is an improvement over the best existing O(V
4
) 

solution for minimum cut tree problem. 

 

4. Snapshots and Results 
 

In the following figures we have shown the steps 

used in our efficient algorithm by taking some 

Undirected edge-weighted graph G. We start from 

the node having the minimum upperbound value and 

check for all of the edges leaving it. If we are able to 

reduce the upperbound value by merging it with any 

of the nodes, we merge the nodes and repeat the same 

procedure. If we are not able to reduce the 

upperbound value of node, we check for rest of the 

nodes in the increasing order of upperbound value. 

If at any stage it is not possible to merge any node, 

then we merge that pair of nodes which results in 

minimum increment of the upperbound value. 
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Figure 1.1: Input Undirected edge-weighted graph 

G 

 
 

Figure 1.2: Graph G after merging the node 0 and 

node 1 

 

Figure 1.3: Graph G after merging the node 10 

and node 11 

 
 

Figure 1.4: Graph G after merging the node 3 and 

node 6 

 

Figure 1.5: Graph G after merging the node 2 and 

node 3, 6 

 

 
 

Figure 1.6: Graph G merging the node 0, 1 and 

node 2, 3, 6 
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Figure 1.7: Graph G after merging the node 0, 1, 

2, 3, 6 and node 4 

 
 

Figure 1.8: Graph G after merging the node 0, 1, 

2, 3, 4, 6 and node 7 

 
 

Figure 1.9: Graph G after merging the node 5 and 

node 9 

 

 
 

Figure 1.10: Graph G after merging the node 5, 9 

and node 8 

 
 

Figure 1.11: Graph G after merging the node 5, 8, 

9 and node 10, 11 

 

Figure 1.12: Graph G after merging all the nodes 

 

After all the nodes in the graph are merged and it has 

only one node left, we proceed to construct the min-

cut tree by using the information from intermediate 

stages.  

 

We move from last to first stage and at each stage we 

see the two nodes that were merged during last stage 

and separate the node with smaller of the two upper 

bound values from the other by an arc bearing the 

value equal to the smaller of the two upper bound 

values. Since we are considering the nodes in the 

increasing order of upper bound values, checking for 

Ni itself implies that Nj has already been checked and 



International Journal of Advanced Computer Research (ISSN (print): 2249-7277   ISSN (online): 2277-7970)  

Volume-3 Number-2 Issue-10 June-2013 

197          

 

it was not possible to reduce its upper bound value at 

all. So in this case upperbound(Nj) cannot be 

reduced. 

 
 

Figure 2.1: Partial Min-Cut tree after separating 

the nodes 0, 1, 2, 3, 4, 6, 7 and node 5, 8, 9, 10, 11 

 
 

Figure 2.2: Partial Min-Cut tree after separating 

the node 5, 8, 9 and node 10, 11 

 
Figure 2.3: Partial Min-Cut tree after separating 

the node 5, 9 and node 8 

 

Figure 2.4: Partial Min-Cut tree after separating 

the node 0, 1, 2, 3, 4, 6 and node 7 

 
Figure 2.5: Partial Min-Cut tree after separating 

the node 0, 1, 2, 3, 6 and node 4 

 
Figure 2.6: Partial Min-Cut tree after separating 

the node 0, 1 and node 2, 3, 6 

 
 

Figure 2.7: Partial Min-Cut tree after separating 

the node 2, node 3 and node 6 

 

Figure 2.8: Partial Min-Cut tree after separating 

the node 10 and node 11 
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Figure 2.9: Min-Cut tree after separating the node 

0 and node 1 

 

We generated 7500 random graphs of different 

densities but having fixed number of nodes. Edge-

weights were also random and were between 1-300. 

Results of running our algorithm with these graphs 

are summarized in following plots: 

 

Random Graphs with fixed number of nodes 

 

 
 

Figure 3: Plot of Success Rate Vs Density 

(Number of nodes were fixed to 50) 

 

 
 

Figure 4: Plot of Deviation Vs Density (For 

unsuccessful test cases) 

It is clear from figure 3 that for desity >= 0.4 success 

rate is about 100%. Figure 4 says that for the 

unsuccessful test cases deviation from the actual 

result is less than 3%. It means that even in the case 

of failure we get correct valus of max-flows or min-

cuts for most of the pair of nodes. 

 

Random Graphs with Random number of nodes 

 
 

Figure 5: Plot of Success Rate Vs Density 

(Number of nodes were random 5-55) 

 

 
 

Figure 6: Plot of Deviation Vs Density (For 

unsuccessful test cases) 

 

It is clear from figure 5 that for density >= 0.4 

success rate is more than 92%. Figure 6 says that for 

the unsuccessful test cases deviation from the actual 

result is less than 5%. It means that even in the case 

of failure we get correct valus of max-flows or min-

cuts for most of the pair of nodes. 

 

5. Conclusion and Future Work 
 

This algorithm runs in O (V
2
.logV + V

2
.d), where V 
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is the number of vertices in the given graph and d is 

the degree of the graph. It is a significant 

improvement over time complexities of existing 

solutions. However, because of an assumption it does 

not produce correct result for all sorts of graphs but 

for the dense graphs success rate is more than 90%. 

Moreover in the unsuccessful cases, the deviation 

from actual result is very less and for most of the 

pairs we obtain correct values of max-flow. 

In future this algorithm can be further improved for 

giving the best result for all the input cases. 
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