
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-2 Issue-10 June-2013

193

An Efficient Algorithm for Calculating Maximum Bipartite matching in a

Graph

Neha Bora
1
, Swati Arora

2
, Nitin Arora

3

Abstract

In this paper we proposed a new approximation

algorithm for calculating the min-cut tree of an

undirected edge-weighted graph. Our algorithm

runs in O (V
2
.logV + V

2
.d), where V is the number

of vertices in the given graph and d is the degree of

the graph. It is a significant improvement over time

complexities of existing solutions. We implemented

our algorithm in objected oriented programming

language and checked for many input cases.

However, because of an assumption it does not

produce correct result for all sorts of graphs but for

the dense graphs success rate is more than 90%.

Moreover in the unsuccessful cases, the deviation

from actual result is very less and for most of the

pairs we obtain correct values of max-flow.

Keywords

Approximation Algorithm, Max-Flow, Min-Cut, Object

Oriented Programming.

1. Introduction

Graph connectivity is one of the classical subjects in

graph theory and has many applications like

Reliability of communication networks, cluster

analysis, transportation planning, chips and circuit

design. In the maximum flow problem we are given a

flow network G = (V, E) which is a graph in which

each edge (u, v)  E has a non-negative capacity

c(u, v) ≥ 0. If (u, v)  E then it is assumed that

c(u, v) = 0 [1][2]. We distinguish two vertices in a

flow network a source s and a sink t. In this we wish

to compute the greatest rate at which material can be

shipped from the source s to the sink t without

violating any capacity constraints.

Neha Bora, Computer Science & Engineering Department,

Uttarakhand Technical University, G. B. Pant Engineering
College, Pauri, India.

Swati Arora, Computer Science & Engineering Department,

Uttarakhand Technical University, G. B. Pant Engineering
College, Pauri, India.

Nitin Arora, Computer Science & Engineering Department,

Uttarakhand Technical University, Women Institute of
Technology, Dehradun, India.

Finding the minimum cut of an undirected edge-

weighted graph is the fundamental algorithmic

problem. Precisely it consists in finding a non-trivial

partition of graph vertex set V into two parts such

that the cut weight, the sum of weights of the edges

connecting the two parts is minimum. Given a graph

G = (V, E) with vertex set V, edge set E and weight

function w: E  R, it can be shown that there

are at most n-1 distinct min-cuts among the total n(n-

1)/2 pairs of nodes. We represent these n-1 min-cuts

by a tree, called Min-Cut Tree, which always exists

and not need to be necessarily unique and has some

properties. The nodes of the tree are the same as the

nodes of the initial graph, (i.e. V). Each edge is

assigned a value. For every pair s, t, we can find the

min-cut value by following the (unique) path between

s and t in the min-cut tree. Suppose that e is the edge

with minimum value on that path. Then value (e) is

also the min-cut value between s and t in the initial

graph G. To actually find the cut between s and t, we

simply cut off the edge e of minimum value on the s-t

path. The two connected subsets of nodes in the tree,

also define the min-cut between s and t in the initial

graph G [4][5][6].

2. Literature Survey

Ford and Fulkerson [8] shown the duality of the

maximum flow and minimum s-t cut. This theorem

states that the value of maximum flow in a flow

network G with source s and sink t is equal to the

value of minimum s-t cut of Graph G.

In 1961, Gomory and Hu [7] shown that in a Graph

having n nodes, there can be only n-1 numerically

different flows. They proposed a method to compute

min-cut tree by computing only n-1 minimum s-t cuts.

In 1997, M. Stoer and F. Wagner [3] presented an

algorithm for finding the min-cut tree of an undirected

edge-weighted graph without using any flow

techniques. This algorithm is one of a small number

of papers treating questions of graph connectivity by

non-flow-based methods. Time complexity of this

algorithm is much better than those of flow based

algorithms.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-2 Issue-10 June-2013

194

3. Novel Approximation Algorithm

We present a new approximation algorithm for

constructing the minimum cut tree. We calculate an

upper-bound value for each node in the graph. We

define the upperbound value of each node as the

value of cut which separates this node from rest of

the graph. We used the Lemma: The value of

minimum cut of a graph G separating Ni and Nj is

less than or equal to minimum of the upperbound

values of two nodes Ni and Nj. We proceed by finding

an edge uv such that upon merging the two nodes Nu

and Nv we are able to reduce the upperbound value of

the new node, i.e.

upperbound (Nu) + upperbound(Nv) – 2*w(u,v) ≤

max (upperbound(Nu), upperbound(Nv))

We start from the node having the minimum

upperbound value and check for all of the edges

leaving it. If we are able to reduce the upperbound

value by merging it with any of the nodes, we merge

the nodes and repeat the same procedure. If we are

not able to reduce the upperbound value of node, we

check for rest of the nodes in the increasing order of

upperbound value. If at any stage it is not possible to

merge any node, then we merge that pair of nodes

which results in minimum increment of the

upperbound value. After all the nodes in the graph

are merged and it has only one node left, we proceed

to construct the min-cut tree by using the information

from intermediate stages. We move from last to first

stage and at each stage we see the two nodes that

were merged during last stage and separate the node

with smaller of the two upperbound values from the

other by an arc bearing the value equal to the smaller

of the two upperbound values. Since we are

considering the nodes in the increasing order of

upperbound values, checking for Ni itself implies that

Nj has already been checked and it was not possible

to reduce its upperbound value at all. So in this case

upperbound(Nj) cannot be reduced.

Our algorithm is based on the assumption that if we

are merging two nodes Ni and Nj and if

upperbound(Ni) < upperbound(Nj) then it is not

possible to merge Nj with any other node which will

result in a node having upperbound value which is

less than upperbound(Ni).

After running the procedure with more than 20000

randomly generated graphs we have figured out that

for graphs having density >= 0.4, success rate of

algorithm is more than 90%. Moreover in the

unsuccessful cases, the deviation from actual result is

very less (usually for less than 5% pairs) and for most

of the pairs we obtain correct values of max-flow.

Procedure: Min-Cut Tree(G)
Input: Undirected edge-weighted graph G

Output: Min-Cut Tree

Calculate the upperbound values for each node.

while(number of vertices in the current graph > 1)

 loop(Consider the vertices in the increasing

order of upperbound value)

 if(upperbound value can be reduced by

merging a node with any adjacent node)

 then merge those two adjacent nodes

 break;

 End if

 End loop
 if (it is not possible to merge any pair of nodes)

 then merge the pair of nodes which results in

minimum increment of the upperbound value.

End if

End While
Construct Min-Cut Tree T by using the information

from intermediate stages as described:

Move from last to first stage.

At each stage check the two nodes that were merged

during last stage.

Separate the node with lower upperbound value from

the other by an arc bearing the value equal to the

lower upperbound value.

return T

Time Complexity of our algorithms is

O(V
2
.logV + V

2
.d), where V is the number of vertices

in the given graph and d is the degree of the graph.

This is an improvement over the best existing O(V
4
)

solution for minimum cut tree problem.

4. Snapshots and Results

In the following figures we have shown the steps

used in our efficient algorithm by taking some

Undirected edge-weighted graph G. We start from

the node having the minimum upperbound value and

check for all of the edges leaving it. If we are able to

reduce the upperbound value by merging it with any

of the nodes, we merge the nodes and repeat the same

procedure. If we are not able to reduce the

upperbound value of node, we check for rest of the

nodes in the increasing order of upperbound value.

If at any stage it is not possible to merge any node,

then we merge that pair of nodes which results in

minimum increment of the upperbound value.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-2 Issue-10 June-2013

195

Figure 1.1: Input Undirected edge-weighted graph

G

Figure 1.2: Graph G after merging the node 0 and

node 1

Figure 1.3: Graph G after merging the node 10

and node 11

Figure 1.4: Graph G after merging the node 3 and

node 6

Figure 1.5: Graph G after merging the node 2 and

node 3, 6

Figure 1.6: Graph G merging the node 0, 1 and

node 2, 3, 6

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-2 Issue-10 June-2013

196

Figure 1.7: Graph G after merging the node 0, 1,

2, 3, 6 and node 4

Figure 1.8: Graph G after merging the node 0, 1,

2, 3, 4, 6 and node 7

Figure 1.9: Graph G after merging the node 5 and

node 9

Figure 1.10: Graph G after merging the node 5, 9

and node 8

Figure 1.11: Graph G after merging the node 5, 8,

9 and node 10, 11

Figure 1.12: Graph G after merging all the nodes

After all the nodes in the graph are merged and it has

only one node left, we proceed to construct the min-

cut tree by using the information from intermediate

stages.

We move from last to first stage and at each stage we

see the two nodes that were merged during last stage

and separate the node with smaller of the two upper

bound values from the other by an arc bearing the

value equal to the smaller of the two upper bound

values. Since we are considering the nodes in the

increasing order of upper bound values, checking for

Ni itself implies that Nj has already been checked and

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-2 Issue-10 June-2013

197

it was not possible to reduce its upper bound value at

all. So in this case upperbound(Nj) cannot be

reduced.

Figure 2.1: Partial Min-Cut tree after separating

the nodes 0, 1, 2, 3, 4, 6, 7 and node 5, 8, 9, 10, 11

Figure 2.2: Partial Min-Cut tree after separating

the node 5, 8, 9 and node 10, 11

Figure 2.3: Partial Min-Cut tree after separating

the node 5, 9 and node 8

Figure 2.4: Partial Min-Cut tree after separating

the node 0, 1, 2, 3, 4, 6 and node 7

Figure 2.5: Partial Min-Cut tree after separating

the node 0, 1, 2, 3, 6 and node 4

Figure 2.6: Partial Min-Cut tree after separating

the node 0, 1 and node 2, 3, 6

Figure 2.7: Partial Min-Cut tree after separating

the node 2, node 3 and node 6

Figure 2.8: Partial Min-Cut tree after separating

the node 10 and node 11

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-2 Issue-10 June-2013

198

Figure 2.9: Min-Cut tree after separating the node

0 and node 1

We generated 7500 random graphs of different

densities but having fixed number of nodes. Edge-

weights were also random and were between 1-300.

Results of running our algorithm with these graphs

are summarized in following plots:

Random Graphs with fixed number of nodes

Figure 3: Plot of Success Rate Vs Density

(Number of nodes were fixed to 50)

Figure 4: Plot of Deviation Vs Density (For

unsuccessful test cases)

It is clear from figure 3 that for desity >= 0.4 success

rate is about 100%. Figure 4 says that for the

unsuccessful test cases deviation from the actual

result is less than 3%. It means that even in the case

of failure we get correct valus of max-flows or min-

cuts for most of the pair of nodes.

Random Graphs with Random number of nodes

Figure 5: Plot of Success Rate Vs Density

(Number of nodes were random 5-55)

Figure 6: Plot of Deviation Vs Density (For

unsuccessful test cases)

It is clear from figure 5 that for density >= 0.4

success rate is more than 92%. Figure 6 says that for

the unsuccessful test cases deviation from the actual

result is less than 5%. It means that even in the case

of failure we get correct valus of max-flows or min-

cuts for most of the pair of nodes.

5. Conclusion and Future Work

This algorithm runs in O (V
2
.logV + V

2
.d), where V

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-2 Issue-10 June-2013

199

is the number of vertices in the given graph and d is

the degree of the graph. It is a significant

improvement over time complexities of existing

solutions. However, because of an assumption it does

not produce correct result for all sorts of graphs but

for the dense graphs success rate is more than 90%.

Moreover in the unsuccessful cases, the deviation

from actual result is very less and for most of the

pairs we obtain correct values of max-flow.

In future this algorithm can be further improved for

giving the best result for all the input cases.

References

[1] Arora N., Kaushik P. K. and Singh S. P., “A

Survey on Methods for finding Min-Cut Tree”,

International Journal of Computer Applications

(IJCA), New York, Vol. 66, pp. 18-22, March

2013.

[2] Kumar A, Singh S. P. and Arora N., “A New

Technique for Finding Min-Cut Tree”,

International Journal of Computer Applications

(IJCA), New York, Vol. 69, pp. 1-7, May 2013.

[3] Stoer M. and Wagner F., “A Simple Min-Cut

Algorithm”, Journal of the ACM (JACM), Vol.

44, issue 4, pp. 585-591, 1997.

[4] Brinkrneier M. “A Simple and Fast Min-Cut

Algorithm”, Theory of Computing Systems, Vol.

41, issue 2, pp. 369-380, 2007.

[5] Hu T. C., “Optimum Communication Spanning

Trees”, SIAM J. Computing, Vol. 3, issue 3,

1974.

[6] Flake G. W., Tarjan R. E. and Tsioutsiouliklis K.,

“Graph Clustring and Minimum Cut Trees,

Internet Mathematics, Vol. 1, issue 4, pp. 385-

408, 2004.

[7] Gomory, Ralph E., and Tien Chung Hu. "Multi-

terminal network flows." Journal of the Society

for Industrial & Applied Mathematics 9, no. 4

(1961): 551-570.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest and

C. Stein, “Introduction to Algorithms”, MIT

Press, PHI, India, pp. 643-663, 2003.

Nitin Arora received B. Tech.

(Computer Science & Engineering)

from MNNIT Allahabad in 2008 and

M. Tech. (Computer Science &

Engineering) from Govind Ballabh

Pant Engineering College, Pauri,

Garhwal Uttarakhand in 2012. He is the

member of IANEG (USA), ISOC

(USA) and IACSIT (USA) and has published over several

research papers in National and International

journals/conferences in the field of Mobile Ad-Hoc

Networks, Data Structures and Algorithms. He started his

career as a Lecturer from Shobhit Institute of Engineering

and Technology, Saharanpur and later on promoted as an

Assistant Professor in the Department of Computer Science

& Engineering at Women’s Institute of Technology (WIT)

Constituent college of Uttarakhand Technical University

(UTU), Dehradun. He finished his M. Tech. from Govind

Ballabh Pant Engineering College, Pauri, Garhwal,

Uttarakhand in the field of Data Structures and Algorithms

Design under Ministry of HRD, Government of India

fellowship. Currently he is working as an Assistant

Professor in the Department of Computer Science &

Engineering at Women’s Institute of Technology (WIT)

Constituent College of Uttarakhand Technical University

(UTU), Dehradun.

Autho r’s Photo

