
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

135

 Reverse Engineering: An Analysis of Static Behaviors of Object Oriented

Programs by Extracting UML Class Diagram

Mrinal Kanti Sarkar
1
, Trijit Chatterjee

2
, Dipta Mukherjee

3

Abstract

The Unified Modeling Language (UML) has been

accepted as a standard for modeling object oriented

system. It helps the designer to understand a

problem well by focusing on one aspects of a

problem at a time. In this paper we present a novel

approach in which reverse engineering is performed

and we have chosen UML as the modeling language

to achieve a representation of the implemented

system. In this work we have considered java

programs. After a brief introduction to the subject,

we present some analyses which go beyond mere

enumeration of methods and fields. We sketch a

method which determines classes and their

attribute, operation and relationship:

generalization, aggregation, association and various

kind of dependencies in form of a simple class

diagram that can be understood by a programmer

when inspecting the source code of a given java

programs. To fully understand the behavior of a

system, it is crucial to have efficient techniques to

reverse static views of the system. In this paper, we

focus on the reverse engineering to find UML class

diagram from an object oriented system and

analysis of its static behavior.

Keywords

Reverse Engineering; Static; OOP; UML; Class

Diagram;

1. Introduction

Reverse-engineering can help to understand a

complex system by retrieving models and

documentation from a program. Unified Modeling

Languages (UML) offers different types of diagram

so it is a good language for the reverse engineering.

M. K Sarkar, Department of Computer Science &

Engineering, University of Engineering & Management Jaipur,

Rajasthan, India.
T. Chatterjee, Department of Computer Science &

Engineering, University of Engineering & Management Jaipur,

Rajasthan, India.
D. Mukherjee, Department of Computer Science &

Engineering, University of Engineering & Management Jaipur,
India.

The static structure of a system comprises of a

number of class diagrams and their relationship.

After analyzing lots of related works, it shows that

there seems to be no solution for the reverse

engineering of the more complex class diagram. In

the present work, we outline a reverse engineering

approach for UML specification in the form of class

diagram from java programs to analyze its static

behaviors.

Traditional software engineering research and

development focuses on increasing the productivity

and quality of systems under development or being

planned. Without diminishing the importance of

software engineering activities focusing on initial

design and development, empirical evidence suggests

that significant resources are devoted to reversing the

effects of poorly designed or neglected software

systems. In a perfect world, all software systems, past

and present, would be developed and maintained with

the benefit of well-structured software engineering

guidelines. There are several systems which had

negated their structured design but there must be

tools and methodologies to handle these cases.

Reverse Engineering is a methodology that greatly

reduces the time, effort and complexity involved in

solving the program comprehension problem.

Reverse Engineering is best defined by Chikofsky

and Cross [1] as “the process of analyzing a subject

system

 To identify the system’s components and

their inter-relationships and

 To create representations of the system in

another form or at a higher level of

abstraction.”

Reverse Engineering is a well-established practice in

that there are numerous CASE tools available to map

source code to good quality structural models. There

are several tools which have been implanted using

reverse engineering of UML static diagram. Static

views of the system allow engineers to understand its

structure but it does not show the behavior of the

software. If we want to understand its actual

behavior, we need dynamic models such as sequence

diagrams or state charts diagram. Many works has

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

136

been done on reverse engineering of UML class

diagrams. Automatic reverse engineering of UML

dynamic models [2] are describe by Y-G Guhenneuc

and T Ziadi. Another approach by using state vectors

through trace analysis [3] can get the dynamic views

of a system. These CASE tools were being used

alongside sequential programming languages like

COBOL to maintain the design of documentation.

The concept of Reverse Engineering emerged from

the hardware world where hardware circuits were

reverse-engineered to create clones. When the

software engineers adopted the same term to describe

some software engineering practices, there was a

dearth of well-defined terminology to use for both

technical and market-place discussions. A Library

Information System (LIS) application which is being

used extensively in all university’s library in the

world was chosen as a case study for the purpose of

this work. The eLib program is a small Java program

that supports the main functions operated in a library.

It is not so easy to understand how the classes are

organized, how they interact with each other to fulfill

the main functions, how responsibilities are

distributed among the classes, what is computed

locally and what is delegated. In this paper we extract

the static behavior of an object oriented system. We

have chosen UML class diagram to understand the

static behavior of an OOP. Our paper is organized as

follows. In section 2, we present the concept of

reverse engineering and analysis the difficulties of

reverse engineering. Section 3 explores the class

diagram and its perspective. In section 4, we address

the design issues to extract class diagram from a java

source code. We present our result in section 5.

Finally, we give the concluding remarks of the whole

paper and future scope in Section 6.

2. Reverse Engineering

A. Reverse Engineering Defined

Chikofsky and Cross [1] made a very successful

attempt at providing some precise and long standing

definitions for much of the terminology used to this

day in the field of Reverse Engineering. The

following terms and definitions are adapted from the

canonical taxonomy given in [1].

Forward Engineering: Forward engineering takes

sequences from feasibility study through designing

its implementation. We can conclude that the forward

engineering is opposite of reverse engineering.

Reverse Engineering: It is a process by which one

can identify and analysis the component of software’s

system, their inter-relationships and the

representation of their entities at a higher level of

abstraction [1]. Reverse engineering by itself

involves only analysis; it does not involve changing

the subject system or not create any new system [1].

It has been found that there are many sub-areas of

reverse engineering. But re-documentation and

design recovery are widely used in reverse

engineering.

Re-documentation: It is another of reverse

engineering and it involves creating or revising of

system documentation at the same level of

abstraction [1]. It is the simple and oldest form of

reverse engineering and it gives you the alternate

views of the system. The primary goals of these tools

are to provide easier ways to visualize relationship

among program component.

Design recovery: Using domain knowledge and other

external information, system component can be re-

documents where possible to create a model of the

system at a higher level of abstraction [1]. According

to Ted Bigger Staff “Design recovery recreates

design abstraction from a combination of code,

existing design documentation, personal experience,

and general knowledge about problem and

application domains. It must reproduce all of the

information required for a person to fully understand

what a program does, how does it, why does it, and

so forth.”

Re-structuring: The engineering process of

transforming the system from one representation to

another at the same relative abstraction level, while

preserving the subject’s systems external functional

behavior [1]. Using re-structuring, we can maintain

the code’s structure in the sense of structured design.

Re-engineering: Re-engineering changes the

functionality and direction of the system [1]. It

involves a combination of reverse engineering for

comprehension, and a re-application of forward

engineering and maximize which functionalities

that need to be retained, deleted or added [1]. It

includes some form of reverse engineering followed

by some form of forward engineering or

restructuring.

B. Objectives of Reverse Engineering

The primary purpose of reverse engineering a

software system is to increase the overall

comprehensibility of the system for both maintenance

and new development. When we try to characterize

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

137

reverse engineering in terms of its objectives, there

are six key objectives (Chikofsky and Cross II 1990)

in reverse engineering [1].Cope with complexity: We

must develop method to better deal with the share

volume and complexity of the system. A key to

controlling these attributes is automated support.

Reverse Engineering methods and tools, combined

with case environments, will provide a way to extract

relevant information so decision makers can control

the process and the product in the system.Generate

alternate views: Graphical representation have long

accepted as comprehension aids. However, creating

and maintaining them continuous to be a bottleneck

in the process. Reverse-engineering tools facilitate

the generation or regeneration of graphical

representation from other forms. Many designers

work from a single, primary perspective (like

dataflow diagrams), reverse-engineering tools can

generate additional views from other perspective

(like control flow diagram, structure chart, and entity

relationship diagrams) to aid the review and

verification process.

Re-cover lost information: Its recover the lost

information of a large system by performing

continuous evaluation. Modifications are frequently

not reflected in the documentation, particularly at a

higher level than the code itself. We cannot substitute

for preserving design history in the first place;

Design recovery is our way to salvage whatever we

can form the existing system.

Detect side effect: Both haphazard initial design and

successive modification can lead to unintended

ramification and side effects that impede a system’s

performance in subtle ways.

Synthesize higher abstraction: Reverse-engineering

requires methods and techniques for creating

alternate views that transcend to higher abstraction

levels. There is a debate in the software community

as to how completely process can be automated.

Clearly, expert-system technology will play a major

role in achieving the full potential of generating high-

level abstraction.

Facilitate reuse: A significant issue in the movement

toward software reusability is the large body of

existing software assets. Reverse-engineering can

help detect candidates for reusable software

components from present system.

C. Difficulties in Reverse Engineering

Michael L. Nelson [5] has discussed detailed of the

practical difficulties involved in the reverse

engineering. The difficulties of reverse engineering

show that there is different level of abstraction, and

that is the formal/ cognitive distinction. Computers

and programming languages are formal, while the

human cognitive capabilities [6] are non-formal.

Therefore, the result of any reverse engineering work

could be very subjective. Any program is

“understood to the extent that the reverse engineer

can build up correct high level chunks from the low

level details available in the program.”

A discussion of how these difficulties are manifested

to the reverse engineer follows. The choice of

methodology, representation and tools used will

define the usefulness of the derived reverse

engineering information. The work done on

integrating the top-down and bottom-up approaches

to understanding a program to develop an approach,

called the Synchronized Refinement is described.

This approach is based on the detection of design

decisions in the source code and the organization of

the information into an information structure suitable

for browsing by software maintainers. However, the

process suggested is labor intensive, though the paper

suggests that automating the individual tasks in the

process can reduce the rigor involved. The author

suggests that many of the activities described in the

Synchronized Refinement methodology are

automatable. He suggests that if a comprehensive

information structure is populated with information

about a program, different views of the system can be

extracted from the database as required for

understanding a particular part of the source code.

Currently, reverse engineering is currently heavily

dependent on human interaction and memorization.

While there are tools to assist the reverse engineer in

program comprehension, it is not a fully automated

process. The human element present in program

comprehension is the subject of another field,

software psychology [6]. Software psychology

measures human performance while interacting with

computer and information systems.

3. Class Diagram

Static behavior of a system can be represented by a

class diagram. So, we represent the static view of an

application using class diagram. Class diagram is not

only used for visualizing, describing and

documenting different aspects of a system but also

for constructing executable code of the software

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

138

application.The class diagram describes the attributes

and operations of a class and also the constraints

imposed on the system. The class diagrams are

widely used in the modeling of object oriented

systems because they are the only UML diagrams

which can be mapped directly with object oriented

languages. The class diagram shows a collection of

classes, interfaces, associations, collaborations and

constraints. It is also known as a structural diagram.

Fig 1: Class Diagram

Now the above diagram is an example of a Library

Management System. So it describes a particular

aspect of the entire application. A typical class

diagram looks like the one in Fig 1. Here Class

Library has three association relationship with classes

User, Book and publisher. Class student, staff and

faculty are inherited from base class User. Class

reference book, general book and book bank are also

inherited from Books, so there is a generalization.

4. Approach to Create Class

Diagram

In this chapter we will address the design issues of

the class diagram from a java source code. Some

generic ideas imbibed from previous work and

intuitive notation were decided upon initially to set

up the environment for the reverse engineering effort.

There are different steps to find out the class diagram

from a java source code. So, we have different types

of several artifacts in any software system like the

source code, design documents, specification

documents and the developer knowledge/experience

that are the most vital importance for the Reverse

Engineering effort. These are gathered together in an

effort to build the knowledge base for the software

system.

A. Design of Class Diagram

Recovery of the class diagram from the source code

is a difficult task. The decision about what elements

to show/hide profoundly affects the usability of the

diagram. A basic algorithm for the recovery of the

class diagram can be obtained by a purely syntactic

analysis of the source code, provided that a precise

definition of an interclass relationship is given.

Fig 2: OOP source code to class diagram

For example, an association can be inferred when a

class attribute stores a reference to another class. One

problem of the basic algorithm for the recovery of the

class diagram is that declared types are an

approximation of the classes actually instantiated in a

program, due to inheritance and interfaces.

Aggregation, association and dependency

relationships are displayed in a class diagram to

indicate that a class has access to resources (attributes

or operations) from another class. Now see how the

design can be extended to get a class diagram from a

java source code.

Fig 3: Control flow diagram to find class diagram

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

139

a. Class with Attribute and Operation

Analyzing the syntax of the source code of our

example Library, when we find the keyword class in

the source code, after the class the name coming it

must be the class name. Then first compartment

below the class name shows the attributes. Class

operations are in the bottom compartment. Here we

also give a sample code and its class name, attribute

and operation. If we get the keyword abstract before

the keyword class, then the desired class is the

abstract class. Here Fig 4, we give a sample example.

Fig 4: Model and code for class with attribute and

operation

b. Association Relationship

Two classes are connected by a (bidirectional)

association if there is the possibility to navigate from

an object instantiating the first class to an object

instantiating the second class (and vice versa).

Unidirectional associations exist when only one-way

navigation is possible. Navigation from an object to

another one requires that a stable reference exists in

the first object toward the other one. In this way, the

second object can be accessed at any time from the

first one. There are two types of association 1 to 1

and 1 to many. After analyzing the source code, here

we give a sample code to finding 1 to 1 and 1to many

associations.

Fig 5: Control flow diagram to find association

c. 1 to 1 and 1 to N Association

If a class attributes referencing other object then we

find association relationship and if a class attribute

referencing other object and we get the keyword new

then we find 1 to N association or multiplicity

relationship.

d. Aggregation Relation

A class is related to another class by an aggregation

relationship if the latter is a part-of the former. So,

there is no substantial difference between aggregation

and association. Both relationships are typically

implemented as a class attributes referencing other

objects.

Fig 6: Model and code for 1 to 1Association

Attributes of container type are used whenever the

multiplicity of the target objects is greater than one.

In principle, there would be the possibility to

approximately distinguish between composition and

aggregation, by analyzing the life time of the

referenced objects. However, in practice

implementations of the two relation variants have a

large overlap.

Fig 7: Model and code for 1 to 1 Aggregation

e. Generalization and Realization Relation

Generalization is easily determined from the class

declaration, by looking for the keywords extends. If

we get extends keywords after the class name then

class name is the subclass which got after extends, we

get another class name that is the super class. The Fig

9 gives a sample code and its model of class diagram.

Realization is easily determined from the class

declaration, by looking for the implements extends. If

we get extends keywords after the class name then

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

140

class name is the subclass and after the implements,

we get another class name that is the super class. The

Fig 9 gives a sample code and its model of class

diagram.

5. Implementation Result of Class

Diagram

The design of the class diagram tool has been

implemented in g++ and jdk 1.6.0_16 in LINUX

platform. We have implemented a C programs names

main.c which creates a class diagram from any object

oriented program.

Fig 8: Control flow diagram to find generalization

and realization

Fig 9: Model and code for Generalization and

Realization

We have been able to handle a simple class diagram.

This class diagram only show you the various class

name and their attribute name and operation. Our C

program also finds the relation like association,

generalization, and realization of the classes. Till now

our program does not handle sequence, state diagram

and other model of the UML diagram. Thus our

reverse engineering tool can work only simple

programs.

Results

Fig. 10: Result 1

Fig. 11: Result 2

Fig. 12: Result 3

6. Conclusion

Obviously, it is very hard to implement UML

structural view from an object oriented programming

languages. Software reverse engineering, or program

comprehension, is the difficult task of recovering

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

141

design and other information from a software system.

The formal process described but does not have any

automated approaches involved at this point, but the

emergence of such tools is expected from the tools

industry soon. Now our work consists in generating a

simple class diagram. Till now we are able to handle

a simple class diagram. Though static analysis is not

sufficient to analyze or understand a java source code

properly. So we need dynamic analysis like sequence

diagram, state chart diagram, activity diagram. While

implementing our design we have only handled a

small subset of the languages. Here escape character

are not recognized. Method calls within a method

calls also ignored. The more complicated features of

the programs have to be implemented. A good

graphical user interface is to needed to view the all

diagrams. In future extracting of aggregation,

composition, dependency which require more

advanced technology. The main key issue of reverse

engineering is to discover the abstraction of java

source code.

References

[1] E. J. Chikofsky and J. H. Cross, II, “Reverse

Engineering and Design Recovery: A

Taxonomy,” IEEE Software, vol. 7, no. 1, pp.

13-17, January 1990.J. Clerk Maxwell, A

Treatise on Electricity and Magnetism, 3rd ed.,

vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[2] Michael L. Nelson “A Survey of reverse

Engineering and Program comprehension” April

19, 1996.

[3] Yves Le Traon, Benoit Baudry and Romain

Delamare “Reverse Engineering of UML 2.0

Sequence Diagram from execution Traces”

French national institute for research in computer

science April, 2006.

[4] Jarzabek, Stan, and Guosheng Wang. "Model-

based design of reverse engineering

tools." Journal of Software Maintenance 10, no. 5

(1998): 353-380.

[5] Frank Tip, “A survey of Program Slicing

Techniques”, Journal of Programming languages,

Sept. 1995.

[6] Ben Shneiderman , “Software Psychology:

Human Factor in Computer and Information

System”, Little Brown and Co.,

Boston,Massachusetts, 1980.

[7] “Application Reengineering”, Guide Pub, GPP-

208, Guide Int’l Corp., Chicago, 1989.

[8] R. Mall, “Fundamentals of Software

Engineering”, Prentice-Hall, India, 2nd Edition,

August, 2008.

[9] Nicola Howarth, “Abstract Syntax Tree Design”

ANSA Phase III, 23rd August, 1995.

[10] Romain Delamare, Benoit Baudry, Yves

LeTraon, “Reverse engineering of UML 2.0

Sequence Diagrams from Execution Traces” ”

French national institute for research in computer

science and control, April, 2006.

[11] D. Kornack and P. Rakic, “Cell Proliferation

without Neurogenesis in Adult Primate

Neocortex,” Science, vol. 294, Dec. 2001, pp.

2127-2130, doi:10.1126/science.1065467.

[12] F.G. Pagan, "Partial Computation and the

Construction of Language Processors", Prentice

Hall, 1991.

[13] Y.-G. Gu´eh´eneuc and T. Ziadi, “Automated

reverse-engineering of UML 2.0 dynamic

models”, Proceedings of the 6th ECOOP

Workshop on Object-Oriented Reengineering,

2005.

[14] Object Management Group website

http://www.omg. org/uml.

[15] Rational Corporation website

http://www.rational.com.

[16] H. Goto, Y. Hasegawa, and M. Tanaka,

“Efficient Scheduling Focusing on the Duality of

MPL Representatives,” Proc. IEEE Symp.

Computational Intelligence in Scheduling (SCIS

07), IEEE Press, Dec. 2007, pp. 57-64.

Mrinal Kanti Sarkar received his

B.Tech degree in Computer Science &

Engineering from Govt. College of

Engineering & Ceramic Technology

and M.Tceh degree in Computer

Science & Engineering from Indian

Institute of Technology, Kharagpur. He

has worked as a Senior Lecturer at The

ICFAI University Tripura. Now, he is working as an

Assistant Professor at University of Engineering and

Management Jaipur, India.

Trijit Chatterjee received his B.Sc.

degree in Computer Science(Hons)

from Calcutta University and M.Sc.

degree in Computer Science from St.

Xavier’s College, Kolkata, under

Calcutta University, Calcutta, India.

Now, he is working as an Assistant

Professor at University of Engineering

and Management Jaipur, India.

Dipta Mukherjee received his B.Tech

and M.Tech degree in Computer

Science & Engineering from Kalyani

University, West Bengal. He has

worked as an Assistant Professor at

Institute of Engineering & Management

Kolkta. Now, he is working as an

Assistant Professor at University of

Engineering and Management Jaipur,India.

