
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

164

Horizontal Aggregation in SQL to Prepare Dataset for Generation of Decision

Tree using C4.5 Algorithm in WEKA

Mayur N. Agrawal
1
, Ankush M. Mahajan

2
, C.D. Badgujar

3
, Hemant P. Mande

4,
Gireesh Dixit

5

Abstract

In this paper we are taking a Database Table, a

database is an organized collection of data. We are

performing a Horizontal Aggregation on that

particular Database Table; there are three methods

from which we are performing Horizontal

Aggregation. These three methods give us the

output as the dataset of that particular database

table. A Dataset is a collection of data, usually

presented in tabular form. By providing these

dataset as an input to the C 4.5 algorithm in WEKA,

we are generating Decision tree for that database

table. Three methods for Horizontal aggregation are

SPJ, PIVOT and CASE. C4.5 is the Decision tree

Generation Algorithm which generates Decision

tree.

Keywords

 Aggregation, PIVOT, SPJ, CASE, Dataset

1. Introduction

A Dataset are the most important part For data

Mining and Preparing data set time consuming task

as it requires many complex SQL queries, joining

tables and aggregating columns. Current

Aggregations have limitations to prepare data sets

because in Current Aggregation they return one

column per aggregated group proposed method is to

generate SQL code to return aggregated columns in a

horizontal tabular layout, returning a set of numbers

instead of one number per row. Horizontal

Aggregation build data sets with a horizontal

denormalized which is the standard layout required

by most data mining algorithms. Three methods are

there for Horizontal Aggregation i.e SPJ, CASE,

PIVOT. One is discussing in detail (SPJ).

2. Horizontal Aggregation

For data mining analysis datasets are required and

preparing datasets in data mining is the most time

consuming task. We proposed an abstract, but

minimal, extension to SQL standard aggregate

functions to compute horizontal aggregations which

just requires specifying subgrouping columns inside

the aggregation function call, we proposed three

query evaluation methods.

i) SPJ relies on standard relational operators.

ii) CASE relies on the SQL CASE construct.

iii) PIVOT uses a built-in operator in a

commercial DBMS that is not widely

available.

The SPJ method is based on select, project and joins

(SPJ) queries. The CASE method is our most

important contribution. It is in general the most

efficient evaluation method and it has wide

applicability since it can be programmed combining

GROUP-BY and CASE statements. We have

explained it is not possible to evaluate horizontal

aggregations using standard SQL without either joins

or ”case” constructs using standard SQL operators.

 Our proposed horizontal aggregations can be used as

a database method to automatically generate efficient

SQL queries with three sets of parameters: grouping

columns, subgrouping columns and aggregated

column. The fact that the output horizontal columns

are not available when the query is parsed makes its

evaluation through standard SQL mechanisms

infeasible. Our experiments with large tables show

our proposed horizontal aggregations evaluated with

the CASE method have similar performance to the

built-in PIVOT operator. We believe this is

remarkable since our proposal is based on generating

SQL code and not on internally modifying the query

optimizer. Both CASE and PIVOT evaluation

methods are significantly faster than the SPJ method.

3. SPJ Method

The SPJ method is based on relational operators only.

The basic idea is to create one table with a vertical

aggregation for each result column, and then join all

those tables to produce FH. We aggregate from F into

d projected tables with the Select- Project-Join-

Aggregation queries. Each table FI corresponds to

one sub grouping combination and has {L1, . . ., Ln}

as primary key and an aggregation on A as the only

non-key column. It is necessary to introduce an

additional table F0 that will be Outer joined with

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

165

projected tables to get a complete result set. We

propose two basic sub strategies to compute FH.

The first one directly aggregates from F. The second

one computes the equivalent vertical aggregation in a

temporary table FV grouping by (L1, . . ., Ln), (R1, . .

.,Rm). Then horizontal aggregations can be instead

computed from FV, which is a compressed version of

F, since standard aggregations are distributive. In a

horizontal aggregation there are four input

parameters to generate SQL code:-

(i) The input table F

(ii) The list of GROUP BY columns L1, ……

,Ln

(iii) The column to aggregate (A) and

(iv) The list of transposing columns R1, … ,Rk.

We extend standard SQL aggregate functions with a

transposing BY clause followed by a list of columns

to produce a horizontal set of numbers instead of one

number.

Syntax for SPJ Method:-

SELECT (L1,L2 …… ,Ln), H(A BY R1, B BY R2..

,Rm)

FROM F

GROUP BY (L1,L2 …… ,Ln) ;

In SPJ Method there is a use of Left Outer Join, the

left outer join is performed in between two tables i.e.

left table and Right table. Common fields of both the

tables are returned and uncommon fields of left

column are also returned. This is the concept of left

outer join, which joins the table in this manner.

Weather database we are taking as our input

Database Table with columns outlook, temperature,

humidity and play.

Figure 1:- Database Table

In our project we are taking the Database table of

Weather as Shown Above. If we want to apply SPJ

method on this Database table then the following

query is fired.

Query: -

SELECT F1.temp as tem_Play_yes, F2.temp as

temp_Play_no , F1.hum as hum_Play_yes, F2.hum as

hum_Play_no , F1.outlook from

(SELECT outlook, avg (temperature) AS temp, avg

(humidity)as hum FROM weather

WHERE play='yes' GROUP BY outlook) F1 left

outer join

(SELECT outlook, avg (temperature) AS temp, avg

(humidity)as hum FROM weather

WHERE play='No' GROUP BY outlook) F2 on

F1.outlook=F2.outlook ;

Now will see the execution of this query in detail by

breaking down the query into sub-query. Let’s see the

first sub-query

SELECT outlook , avg (temperature)AS temp,

avg(humidity)as hum FROM weather

WHERE play='yes' GROUP BY outlook

Figure 2:-Creation of F1 Table

In this part of query selection of Outlook, average of

temperature, average of humidity is selected from

Weather database when play is yes. Group by outlook

means all the value for same outlook having play =

yes are Aggregated.

We will see one example, when outlook is overcast

see for play when play is yes. Aggregate all the

temperature value for this condition looking at this

database we have,

(83+64+72+81)/ 4 =75

We get the result as 75 this is displayed in table in

Temp column.

In the same way when outlook is overcast, see for

play when play= yes. Aggregate all the Humidity

value for this condition looking at this database table

we have,

(86+65+90+75)/4 =79

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

166

We get the result as 79 displayed in the table in Hum

column. This contributes a single row for the output

generated in figure 2 given below. This procedure is

repeated for all outlook. The resulted table that we

have got is F1 table which we use later for

performing join.

SELECT outlook ,avg(temperature)AS temp,

avg(humidity)as hum FROM weather

WHERE play='No' GROUP BY outlook

Figure 3:-Creation of F2 Table

In this part of query selection of Outlook, average of

temperature, average of humidity is selected from

Weather database when play is No. Group by outlook

means all the value for same outlook having play =

No are Aggregated. We will see one example, when

outlook is Rainy see for play when play is No.

Aggregate all the temperature value for this condition

looking at this database we have,

(65+71)/2 =68

We get the result as 68 this is displayed in table in

Temp Column.

In the same way when outlook is Rainy, see for play

when play= No. Aggregate all the Humidity value for

this condition looking at this database table we have,

(70+91)/ 2 =80. We get the result as 80 displayed in

the table in Hum column. This contributes a single

row for the output generated in figure 3 given below.

This procedure is repeated for all outlooks. The

resulted table that we have got is F2 table which we

use later for performing join.

 As we have got F1 and F2 table So another

part of Query is to join F1 and F2 to get us the result

aggregated i.e. horizontal aggregation of that weather

database table. Resulted table is our table which is

aggregated horizontally, shown in figure 4.

Figure 4:-Horizontally Aggregated Table using

SPJ method

Left outer join is performed between F1 and F2. Left

outer join output the common rows of both table and

also the uncommon fields of left table. Here, left

table is F1 and F2 is right table so it result contains

the common outlook of F1 and F2 i.e. Rainy and

Sunny, also the uncommon outlook of F1 i.e.

overcast. F1 table is for the condition for Play=”yes”

and F2 table is for play=”No”.

Let’s look into resulted output table temp_play_yes

column when outlook is overcast value is taken from

temp column of F1 table i.e. 75, in the same way

rainy and sunny outlook are carried out. Now look at

Temp_play_No column when outlook is overcast

value is taken from temperature column of F2 in this

case outlook overcast is not present so a NULL value

is displayed, for outlook rainy and sunny respective

values are taken from Temp_play_no. Same

procedure is done for humidity case i.e.

hum_play_yes and hum_play_No. Here we have Got

the Horizontal Aggregation of our Weather database

table.

4. Case Method

The case statement returns a value selected from a set

of values based on Boolean expressions. For this

method we use the ”case” programming construct

available in SQL, where each non key value is given

by a function that returns a number based on some

conjunction of conditions.

Query For CASE Method: -

SELECT

avg(CASE WHEN play='yes'THEN temperature

ELSE null END)as temp_play_yes,

avg(CASE WHEN play='no' THEN temperature

ELSE null END)as temp_play_no,

avg(CASE WHEN play='yes'THEN humidity ELSE

null END)as hum_play_yes,

avg(CASE WHEN play='no' THEN humidity ELSE

null END)as hum_play_no,

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

167

outlook FROM weather GROUP BY outlook;

5. Pivot Method

Pivot is complementary data manipulation operators

that modify the role of rows and columns in a

relational table. In Pivot it transforms a series of rows

into a series of fewer rows with additional columns.

Pivoting refers to transposing columns data into

rows.

Query for PIVOT Method: -

Select [temp_play_yes] as temp_play_yes,

[temp_play_no] as temp_play_no , [hum_play_yes]

as hum_play_yes, [hum_play_no] as hum_play_no,

Table1.outlook from

(SELECT [yes] as temp_play_yes, [no] as

temp_play_no , outlook FROM (SELECT outlook,

play, temperature FROM weather) t1 PIVOT(avg

(temperature) FOR play IN ([yes] , [no])) as t2)

Table1 left outer join

(SELECT [yes]as hum_play_yes, [no]as

hum_play_no, outlook FROM (SELECT outlook,

play, humidity FROM weather) t1 PIVOT(avg

(humidity) FOR play IN ([yes] , [no])) as t2)

Table2 on Table1.outlook=Table2.outlook;

All the three method of Horizontal Aggregation have

there results and depending on their results Datasets

are created. Created dataset’s attributes are depended

upon the attributes of the result all the three

Horizontal Aggregation methods. Creation of

Datasets is Shown in Next point.

6. Creation of Dataset

In our project let us see how datasets are created

using SPJ Practically. Sets given below shows

weather Database created in Microsoft SQL Server

Management Studio 2008. The Microsoft SQL Server

2008 Database Engine is a service for storing and

processing data in either a relational (tabular) format

or as XML documents.Datasets are prepared from the

output of all these three method, so by applying these

three methods on our Weather database we get the

Dataset in .arff file format.

ARFF files have two distinct sections. The first

section is the Header information, and the second

section is Data information. The Header of the

ARFF file contains the name of the relation, a list of

the attributes (the columns in the data), and their

types.

@relation abc

@attribute Team_Play_no real

@attribute Team_Play_yes real

@attribute Humidity_play_no real

@attribute Humidity_play_yes real

@attribute Season {sunny, overcast, rainy, outlook}

@Data

75, 0, 79, 0 overcast

71, 68, 85, 80 rainy

72, 79, 70, 90 sunny

0, 0, 0, 0 outlook

75, 0, 79, 0 overcast

 71, 68, 85, 80 rainy

72, 79, 70, 90 sunny

0, 0, 0, 0 outlook

75, 0, 79, 0 overcast

71, 68, 85, 80 rainy

72, 79, 70, 90 sunny

This is the Dataset created by three methods, this

dataset is given as an input to C 4.5 algorithm using

WEKA to generate Decision tree. On that dataset

Entropy and Information gain Operation are

performed and a suitable decision rules are generated.

Based on that rule Decision Tree is generated.

Entropy of every attribute is calculated. In WEKA

algorithm is implemented and linked with java file.

On the basis of these Datasets Generated from the

three methods of Horizontal Aggregation we will

generate Decision Tree. To generate Decision Tree

we Required an Algorithm. So C4.5 Algorithm is

applied to these Datasets to generate Decision tree.

C4,5 Algorithm is Implemented in WEKA TOOL.

C4.5 is an algorithm which generates Univariate

decision tree. It is the extension of Iterative

Dichotomiser 3 (ID3) algorithm which is used to find

simple decision trees. C4.5 is also known as

Statistical Classifier because its decision trees can be

used for classification purpose. C4.5 builds decision

trees from a set of training data using the concept of

entropy and information gain. The training dataset

consists of various training samples which are

characterized by large number of features and also

consists of target classes.

The WEKA (Waikato Environment for Knowledge

Analysis) project aims to provide a comprehensive

collection of machine learning algorithms and data

preprocessing tools to researchers and practitioners. It

allows users to quickly try out and compare different

machine learning methods on new data sets. Its

modular, extensible architecture allows sophisticated

data mining processes to be built up from the wide

collection of base learning algorithms and tools

provided

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

168

Algorithm
1. Check for base cases.

2. For each Attribute A calculate

a) Normalized information gain from splitting on

Attribute A.

3. Select the best attribute A that has highest

information gain.

4. Create a decision node that splits on best of A as

root node.

5. Recurs on the sub lists obtained by splitting on best

of A, and add those nodes as children node.

Entropy

It is a measure in the information theory, which

characterizes the impurity of an arbitrary collection

of examples. If the target attribute takes on c different

values, then the entropy S relative to this c-wise

classification is defined as

 c

 Entropy (s) = ∑ -pi log2 pi

 t=1

Information Gain

It measures the expected reduction in entropy by

partitioning the examples according to this attribute.

The information gain, Gain (T, X) of an attribute A,

relative to the collection of examples T, is defined as:

Information Gain = Entropy (T) – Entropy (T, X)

Based on these Calculation and Using C4.5 algorithm

in WEKA Decision Tree is Generated and it is shown

in fig below:-

Figure 5: - Generating Decision tree using Dataset

and C 4.5 Algorithm.

Decision Rule:

1. If ((Team_Play_yes <= 0) & (Team_Play_no <= 0

)) => : outlook (2.0)

2. If ((Team_Play_yes <= 0) & (Team_Play_no > 0))

=>: overcast (3.0)

3. If((Team_Play_yes > 0) & (Team_Play_no <= 71)

) => : rainy (3.0)

4. If((Team_Play_yes > 0) & (Team_Play_no > 71))

=> : sunny (3.0)

7. Comparing Results

Suppose we have taken any of the dataset and on that

dataset apply both algorithm in WEKA. We can see

that time required for building model in ID3 is 2.63

sec and time required for building same model in

C4.5 or J48 algorithm is 0.27 sec. from these we can

say that by using C4.5 algorithm in WEKA time

reqired for building model is comparatively very less

as time required in ID3 algorithm.

Figure 6 :- Resulted Graph

8. Conclusion

In this project we have seen how Datasets are created

using methods of Horizontal Aggregation. Horizontal

aggregations represent an extended form of

traditional SQL Aggregations, which return a set of

values in a horizontal layout, instead of a single value

per row. We provide a more efficient, better

integrated and more secure solution compared to

external data mining tools. With the execution of

methods of Horizontal Aggregation Datasets are

created and these Datasets are used to generate

Decision Tree. Decision Tree is generated using C4.5

algorithm in WEKA. Model built time of C4.5 is less

than that of ID3. Memory used for storing C 4.5

Dataset is comparatively less than ID3. So, use of

C4.5 algorithm will help us to reduce time required

for building model of a particular dataset and also it

require less memory to store its Datasets.

9. Future Scope

As we have seen Generation of Decision Tree using

C4.5 algorithm, we can approach towards C5.0 which

is much more efficient than C4.5. In Future, we can

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

169

design C5.0 algorithm to generate Decision Tree. We

can find new technique from which we can perform

Horizontal Aggregation effectively. Reducing the

number of comparisons needed to compute horizontal

aggregations may lead to changing the algorithm to

parse and evaluate a set of aggregations when they

are combined with "case" statements with disjoint

conditions.

References

[1] C. Ordonez and Z. Chen. “Horizontal

Aggregations in SQL to Prepare Data Sets for

Data Mining analysis”, IEEE Transactions on

Knowledge and Data Engineering (TKDE),

24(4), 2012.

[2] C. Cunningham, G. Graefe, and C.A. Galindo-

Legaria. “PIVOT and UNPIVOT: Optimization

and execution strategies in an RDBMS”, In Proc.

VLDB Conference, pages 998–1009, 2004.

[3] J. Gray, A. Bosworth, A. Layman, and H.

Pirahesh. “Data cube: A relational aggregation

operator generalizing group-by, cross-tab and

subtotal”, In ICDE Conference, pages 152–159,

1996.

[4] C. Ordonez. “Horizontal aggregations for

building tabular data sets”, In Proc. ACM

SIGMOD Data Mining and Knowledge

Discovery Workshop, pages 35–42, 2004.

[5] C. Ordonez. “Vertical and horizontal percentage

aggregations”, In Proc. ACM SIGMOD

Conference, pages 866–871, 2004.

[6] C. Ordonez. “Integrating K-means clustering

with a relational DBMS using SQL”, IEEE

Transactions on Knowledge and Data

Engineering (TKDE), 18(2):188–201, 2006.

[7] C.Ordonez.“Data set preprocessing and

transformation in a database system”, Intelligent

Data Analysis (IDA), 15(4), 2011.

[8] C. Ordonez and S. Pitchaimalai. “Bayesian

classifiers programmed in SQL”, IEEE

Transactions on Knowledge and Data

Engineering (TKDE), 22(1):139–144, 2010.

[9] Sarawagi, Sunita, Shiby Thomas, and Rakesh

Agrawal. Integrating association rule mining with

relational database systems: Alternatives and

implications. Vol. 27, no. 2. ACM, 1998.

[10] G. Graefe, U. Fayyad, and S. Chaudhuri. “On the

Efficient Gathering of Sufficient Statistics for

Classification from Large SQL Databases”,

Proceedings of The Fourth International

Conference on Knowledge Discovery and Data

Mining, 1998, pages 204-208.

[11] Jens-Peter Dittrich, Donald Kossmann and

Alexander “Bridging the Gap between OLAP and

SQL”, Proceedings of the 31st VLDB

Conference, Trondheim, Norway, 2005 .

[12] S. Aishwarya, S. Ramadevi. “Multi

dimensionalised Aggregation in Horizontal

Dataset using Analysis services”, Journal

IJETAE, ISSN: 2250-2459, Jan 2013.

[13] Hall, Mark, Eibe Frank, Geoffrey Holmes,

Bernhard Pfahringer, Peter Reutemann, and Ian

H. Witten. "The WEKA data mining software: an

update." ACM SIGKDD explorations newsletter

11, no. 1 (2009): 10-18.

Mr. Mayur N Agrawal has completed

his BE Computer and Currently Doing

his M.E in Computer science form

North Maharashtra University, Jalgaon.

Has 3 International Publications.

Recent Publication: - IJESRT

Paper name: - Horizontal Aggregation

in SQL to prepare dataset for Data Mining Analysis .

Mr. Ankush Mahajan has completed

his BE Computer and Currently Doing

his M.E in Computer science from

North Maharashtra University, Jalgaon.

Mr. Chandrashekhar D. Badgujar
has completed his M. Tech in Computer

Engineering from NMIMS University,

Mumbai in the year 2010. He has 5

years teaching and 2 years industry

experience. His research interests

include image processing and web

mining. He has 10+ publications on his name till date.

Mr. Hemant Mande has completed his

BE Computer and Currently Doing his

M.E in Computer science form North

Maharashtra University, Jalgaon.

Author’s Photo

Author’s Photo

Author’s Photo

Author’s Photo

