
International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970)

Volume-4 Number-4 Issue-17 December-2014

973

Modular Arithmetic in RSA Cryptography

Sridevi
1*

 and Manajaih.D.H
2

Received: 15-December-2014; Revised: 18-January-2015; Accepted: 18-January-2015

©2014 ACCENTS

Abstract

Faster implementations of public-key cryptography

and in particular of RSA are of uttmost importance

nowadays. Performing fast modular multiplication

for large integers is of special interest because it

provides the basis for performing fast modular

exponentiation, which is the key operation of the

RSA cryptosystem. Currently, it seems that in a

radix representation, all major performance

improvements have been achieved. Nevertheless, the

use of Residue Number System(RNS) proves to be a

promising alternative for achieving a breakthrough.

All these aspects are detailed throughout this

research paper. Also presents an overview of the

RSA cryptosystem, followed by a short proof of why

the encryption-decryption mechanism works. With

considerations regarding the employed key-sizes

and with an example of a small RSA cryptosystem.

Keywords

 Residue Number Systems (RNS), Public key,

Cryptosystem, encryption, RSA.

1. Introduction

Generally cryptography falls into two main

categories: secret and public key cryptography.

Secret-key cryptography is based on a prior exchange

of a common secret key. Since a single key is used

for both encryption and decryption, the major issue

associated with symmetric-key systems is the key

distribution problem that is an efficient method has to

be devised for the parties to agree upon and then

exchange keys securely. In 1970, W. Diffie and M. E.

Hellman proposed in [2][4] an efficient method of

exchanging a shared secret key over an unsecured

*Author for correspondence

Sridevi, Assistant Professor, Department of Computer Science,

Karnatak University Dharwad, Karnataka State, India.
Manajaih.D.H, Professor,Department of Computer Science,

Managlore University, Mangalore, Karnataka State, India.

communications channel and thus setting up the basis

of a new type of cryptography: the public-key

cryptography. The assymetric-key cryptography uses

a key (public) for encryption, which is made

available to everyone at the sending end, and another

one (secret) for decryption that is known only by the

recipient of the message. In 1977, R. Rivest, A.

Shamir, and L. Adleman introduced the RSA

cryptosystem [7], which became the most widely

used public-key cyptosystem in the world. Its

security depends upon the intractability of the integer

factorization problem and it can be used to provide

both data encryption and digital signatures.

2. RSA algorithm

Prior to the execution of the encryption-decryption

protocol, outlined in Algorithm 2, each party that

wants to communicate should generate first its own

public/private key pair, as described in Algorithm 1.

Algorithm 1 Public key generation

Ouput: a public key (n,e) and a private key d.

1. Generate randomly two large primes p and q,

which are kept secret.

2. Compute the modulus n = p • q and Euler's

totient function  = (p - 1)(q - 1).

3. Select a random integer e, 1 < e <, coprime

with .

4. Compute the multiplicative inverse of e with

respect to modulus  (d • e = 1 (mod ))

Algorithm 2 RSA encryption-decryption protocol

B encrypts a message m and sends it to A; A decrypts

the message

1. Encryption

a. B should obtain the public key (n, e) of A.

b. B represents the message m as an integer

 between 0 and n - 1.

c. B computes c = m
e
 mod n.

d. B sends the cipher text to A.

2. Decryption

International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970)

Volume-4 Number-4 Issue-17 December-2014

974

a. A should use its private key d to recover the

message m form the cipher text m =

c
d
mod n

2.1. RSA proof

The RSA encryption system is based on Euler's

theorem and its generalization, the Carmichael's

theorem.

Theorem 1 (Euler's Theorem) If n and a are two

positive, relatively prime integers, then it holds

 a
(n)

 = 1

where (n) is the Euler's totient function (the number

of integers less than n, and relatively prime with n).

Theorem 2 (Carmichael's theorem) If n and a are two

positive, relatively prime integers, then

a
(n)

= 1

where (n) is the Carmichael function (the least

common multiple of the factors of (n)).

Theorem 3 If n is a product of distinct primes, then,

for all integers a

 a
(n)+1

= a n.

The correctness of the RSA scheme, i.e., the fact that

the encryption and decryption are inverse operations,

relies on the fact that

There are two cases to consider.

Case 1.gcd(m,n) = 1

We have |d • e| (n) = 1, relation which rewritten for

an integer a >1 becomes

Case 2.gcd(m, n)> 1

For n, a product of two odd distinct primes,

will always be a divisor of (n). Since (n)| (n),

the equality |e • d|(n) = 1 implies that |e • d|(n) = 1.

Using a derivation similar to case 1, and based on

Theorem 3, we obtain

2.2. RSA key sizes

As far as the operands sizes are concerned, the

following remarks can be made.

The stochastic prime’s p and q should be chosen such

that they have approximately the same bit length to

ensure that any attempts to factor the modulus are

computationally infeasible. For instance, for 1024-bit

modulus n, p and q should be chosen about 512-bits

each.

The exponent e is usually chosen small and

preferably with a small Hamming weight (the number

of 1's in its binary representation), in order to

increase the efficiency of the exponentiation. One

exponent currently used in practice is e = 2
16

 + 1 =

65537. The exponentiation algorithm would require

in this case 16 modular squaring and 2 modular

multiplications (since the Hamming weight is 2).

For security reasons, the bit length of the modulus n

is typically in the range 5122048 bits or even more,

and thus efficient long integer modular arithmetic is

required for achieving high throughput rates at these

bit precisions.

3. Modular Exponentiation

Modular exponentiation (a
b

mod m) and its key

constituent operation, modular multiplication (a • b

mod m), are the fundamental operations underlying

cryptographic algorithms. Since modular

multiplications account for most of the time spent for

encryption and decryption, their optimization is

crucial. This can be achieved either by reducing the

number of modular multiplications or by reducing the

latency of each modular multiplication. Assuming m

and e have a bit length of 1024 each, c = m
e
 would

require a total number

n

n

form [0, n – 1]. m
e-d

n

= m,

d•e = α• (n) +1

|c
d
|n =|(m

e
)
d
|n

=|m
1+a•(n)

|n

=|m• (m
(n)

)
a
|n

=|m•1|n

=|m|n

 (n)

gcd(p – 1 , q - 1)
(n) =

|m
d-e

|n=|m|n , n

International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970)

Volume-4 Number-4 Issue-17 December-2014

975

1og2(m
e
) = e • log2m 2

1024
 • 1024 = 2

1034

bits in order to store its value. Therefore c cannot be

obtained by performing first the modular

exponentiation m
e
 and only after that the reduction

modulo n. Thus these operations have to be

interleaved at each step. A straight forward way of

performing exponentiation is

 m

→

→

→

→

However, this naive approach requires e-1 1 modular

multiplications, which would be infeasible for large

exponents. Taking into consideration that not all

powers of m need to be computed in order to obtain

m
e
, a faster method would be: a faster method would

be:

 m

→

→

→

→

This method is called the square-and-multiply

algorithm. The algorithm provides a systematic way

for finding the exact sequence in which squarings and

multiplications by m have to be performed in order to

efficiently compute m
e
.

4. Binary Exponentiation Method

The method is based on scanning bit-by-bit the

exponent. At each step (i.e., for every scanned bit) a

squaring is performed. If and only if the currently

scanned exponent bit is 1, then a subsequent

multiplication is performed. Depending on the

direction of processing the exponent bits (i.e., from

MSB to LSB, or vice-versa), there exist two versions

of the algorithm: the left-to-right binary method

which is described below and the right-to-left binary

method that is similar but requires an extra variable

to keep the powers of m. Let k = log2e + 1 denote

the bit length of the exponent e whose binary

expansion

 e= (ek-1 ek-2e1 e0) =∑

The left-to-right binary exponentiation algorithm

computes the exponentiation starting from the most

significant bit position of the exponent E and

proceeding to the right, as described in Algorithm 3.

Algorithm 3: Left-to-right binary exponentiation

algorithm

Input: m, e, n

Output: c = |m
e
|n

1. if ek_1 = 1 then c := m else c := 1

2. for i = k -2 downto0

2a. c:=|c • c|n

2b. if ei= 1 then c := |c • m|n

3. return c

Assuming ek-1=1,the algorithm requires k— 1 squaring

(step 2a.) and H(e)— 1 multiplications (step 2b.),

where H(e) is the Hamming weight of the exponent

(the number of ones in its binary representation).

Since 0 < H(e) — 1 < k — 1, we have a total maximum

number of multiplications of 2 • (k— 1), a minimum of

k— 1 , while in the average case (H(e)= 0.5 • k, that is

half of the bits of e are 1), 1.5 • (k— 1)

multiplications are needed. For instance, for 1024-bit

exponents, the square-and-add algorithm has a

logarithmic computational complexity, requiring on

average only 1.5 * 1023 = 1535 multiplications, while

the straightforward exponentiation needs a linear

amount of 2
1024

multiplications.

The binary method is used frequently in smart cards

and embedded devices, due to its simplicity and low

memory requirements.

This method can be generalized by scanning multiple

bits of the exponent at a time. Generally, if log2m

bits are scanned, the method is called m-ary. When

compared to the binary method, it requires fewer

iterations (clock cycles), but at the expense of higher

memory resources. Usually, this method is used for

software implementations on processors which have

access to bigger memory resources.

5. Modular Multiplication

The modular multiplication operation may be

decomposed in two parts: a normal multiplication

followed by a reduction. In its simple form, modular

reduction requires trial division for finding the

multiple of the modulus that has to be subtracted

from the result and thus it is inherently slow. For this

reason, faster alternative algorithms are utilized

(Fast-Fourier Transforms, Karatsuba-Ofman

algorithm Barret reduction and Quisquater's

modification, redundant-digit division, etc.).

6. RNS Modular Multiplication

RNS exhibits several advantages over commonly

employed fixed-radix, weighted number

International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970)

Volume-4 Number-4 Issue-17 December-2014

976

representations, that facilitate fast, parallel

implementations of long integer arithmetic. This

makes RNS a good candidate for supporting the long

multiplications involved in Montogomery method.

The Montgomery multiplication algorithm relies on

the following two relations, repeated here for

convenience:

|t + |t ·n′|r·n|r= 0,

|t + |t ·n′|r·n|n = t.

The rationale behind choosing the value of r is to

easily compute the operation modulo r in the first

aforementioned equation. For weighted, binary

number systems, this is achieved by letting r be an

integer power of the radix 2, but for RNS

representation, it is preferable to take r as the

dynamic range of the RNS base. This way, all

numbers less than r are already reduced modulo r.

However, there is a drawback induced by this choice:

all numbers greater than r need a larger RNS base to

be represented. Therefore, costly base extension

operations are required in order to compute these

additional RNS residues.

The Montgomery algorithm was first adapted to RNS

by Posch & Posch in [6]. In what follows, the RNS

version of Montgomery multiplication Algorithm 4,

is presented according to [1].

Algorithm 4: Montgomery Multiplication for RNS

Input: two RNS bases B = (m 1 , . . . , mk) and

B' = (mi,. . . , m'k) with gcd(M, M') = 1 a positive

integer N represented in both bases such that

gcd(N, M) = 1 and 0 <4N < M <M' two integers a

and b, represented in both bases, with a • b < M • N

Output: r' = |a • b • M
-1

|N, represented in both bases

1. t = a • b in base B U B'

2. q = t • (- N
-1

) in base B

3. base extension: q from base B q' in base

B'

4. r' = (t + q' • N) M
-1

in base B'

5. base extension: r' from base B' r in base B

In order to derive the RNS Montgomery

multiplication method, we consider two RNS bases B

= (m 1 , . . . , mk) and B' = (mi,. . . , m'k) of relatively

prime moduli which implies that gcd(M, M') = 1,

where M and M' are the dynamic ranges of the two

bases. Even though it is not mandatory, it is assumed

an equal number of elements for both bases, for

regularity purposes of the correspondent hardware

architecture or softwareimplementation. Next we take

M=∏

as the Montgomery constant r.

Thereforethe Montgomery method yields

 |a .b . M
-1

|N

where a, b, and the modulus N are positive integers

represented in the predefined bases B and B , as

(a)B=
(a

i
, . . . , a

k
)

 (
a

) B ' =
(a

i,
. . . , a

k
)

(b)B = (bi, . . . , b k) (b)£, = (bi, . . . , b k)

(N) B = (N i, . . . , N k) (N)B, = (N i, . . . , N k)

In step 1. we compute the product a • b in both RNS

bases. This can be done in parallel for all moduli, in

constant time, according to Equation as follows:

t=|a^b|M=(|a1^b1|m1>.... > |ak ^ bk|mk)

t′ =|a^b|M′=(|a
1
^b

1
|m1>.... > |a′k ^ b′k|mk)

In step 2. we have to compute q such that r = a • b +

q• N is a multiple of M. The term a • b + q • N

represented in base B, composed solely of 0, since

any multiple of M, represented modulo M equals 0.

Thus, we have

(r)B = 0 ^ ri=|ai • bi + qi • Ni | m .= 0 for i

= 1,. . . , k.

The value of q is then given by the solutions of the

previous equations

qi = |ai . bi .| - N
-1

|mi|mi for i=1,….,k

Step3. Since r is a multiple of M, as pointed out

previously, it is composed only of 0 in base B, which

further divided by M yields 0. Moreover, we have to

perform the division by M, that reduces in RNS to a

multiplication by the multiplicative inverse of M

which unfortunately does not exist modulo M. Thus,

we need a larger dynamic range to accommodate r.

Also the new base moduli should be prime to M for

the inverse |M
~ 1

|M ' to exist.

In step 3, a base extension is performed to obtain q',

the RNS representation of q in base

Step4. Now we can evaluate r' = |(t' + q' • N') •|M
-1

|m |M'. The term t' = |a • b|M' is already computed

from step 1, the multiplicative inverse |M
_1

|M' is a pre

computed constant, hence we obtain

ri =| (ti+ qi • Ni) •||M~
1
| M ' | M ' | M '

Step5. In order to be able to perform modular

exponentiation by repeating the Montgomery

International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970)

Volume-4 Number-4 Issue-17 December-2014

977

multiplication, the range of the output should be

made compatible with the range of the input. Hence

we need to convert the result r back to base B, which

is achieved by applying again a base extension.

We note that if a • b < M • N we have the output in

the desired range that is < 2N, as suggested by the

following derivation:

 = 2N M.

If only one multiplication is desired, then the

condition 2N < M suffices for the algorithm to give

the correct result. Otherwise, it is required that 4N <

M < M′ in order to reuse the output as input for a

subsequent modular multiplication without any

preceding reduction

 (2N)
2
< M • N  4N < M.

There exist several RNS Montgomery multiplication

methods in the literature. The main difference

between them is the base extension algorithm, which

induces different conditions for the range of the input

and output values, or necessitates additional oper-

ations to counterbalance other introduced effects. In

the following chapter, a survey of existing base

extension methods is presented.

7. RNS Moduli Choice

The Montgomery method works for RNS basis with

moduli of any form. However, if we choose the

moduli of a particular form, the overall performance

can be improved. The number of moduli and their

form both affect the complexity of the algorithm to

be performed and the efficiency of the representation.

Thus, selecting the proper set of moduli is a major

issue. An important remark is that usually, we tend to

choose the moduli such that they are comparable in

magnitude to the largest one, due to the fact that the

computation speed is dictated by the largest modulus.

In the following. we present an overview of different

possible moduli and highlight their advantages and

disadvantages.

7.1 Mersenne numbers

Among these special forms, moduli of the form

m = 2
k

— 1 are of special interest [5][9]. Based on the

property|2
k
|m = 1the modulo reduction operation |a|m

is greatly simplified. It requires at most two k-bit

operations, for a <m
2
, obtained by writing a = a1• 2

k

+ a0and then reducing both sides modulo m and

observing that:

 |a|m = {

When these moduli are prime numbers, they are

called Mersenne numbers. Nevertheless, this

approach is rather unpractical. Since there exists only

one Mersenne number of k bits, choosing as the bases

moduli only relatively prime moduli of this form

would result in a base with moduli not comparable in

magnitude and a dynamic range wider than required.

7.2 Pseudo-Mersenne numbers
Crandall [3] enlarged the class of Mersenne numbers

and proposed in 1992 the pseudo-Mersennenumers.

The pseudo-Mersenne moduli have the form m = 2
k

—

c, where k € N and c< 2
k/2

. The operation |a|m costs in

this case 2 • H(c) + 2 k-bit additions, where a <2
2k

and H(c) denotes the Hamming weight of c. Thus, it

is preferable to choose c, such that H(c) is minimized.

7.3 Generalized Mersenne numbers
Solinas introduced in 1999, [8] another class of

moduli, the Generalized Mersenne numbers. A

Generalized Mersenne number has the following

polynomial form

 m = f (2
k
) , where f (X) = X

n
— C (X) with C

polynomial of degree < = n / 2 and ||C| |  = 1.

In the above definition ||C||= 1 means that the

coefficients fi of the polynomial f belong to the set

{—1, 0, , 1}. Among these numbers, one particular

form that allows smaller RNS base dynamic ranges

when compared to Mersenne numbers, while still

maintaining the efficiency of the modulo reduction, is

m = 2
kl

— 2
k2

— 1. The operation |a|m, where a < m
2
,

requires at most 6 k1-bit additions for 0<k2<k l+12.

Furthermore, the number of additions can be reduced

to 4, if k2is taken bigger than 1. However, there is a

drawback when using these numbers: there exists

only one number for a given bit length of the

modulus and a fixed f(X). This implies that each

generalized Mersenne number necessitates a

dedicated implementation.

8. Conclusion

This research paper provides an overview of the RSA

cryptosystem, emphasizing its computational

requirement, the modular exponentiation that is

broken into a sequence of modular multiplications

International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970)

Volume-4 Number-4 Issue-17 December-2014

978

with respect to a large modulus. The binary

exponentiation method and the Montgomery

multiplication are scrutinized. By combining the

efficient modulo reduction operations provided by

the Montgomery method with RNS, a powerful

arithmetic tool is obtained, which improves the

global performance. We have also given guidelines

regarding the moduli form and their influence on the

overall performance. Then, the bottleneck of the RNS

Montgomery multiplication algorithm is identified,

most of computational effort is due to the two

required base extensions.

References

[1] J.C. Bajard, L.S. Didier, and P. Kornerup,

Modular Multiplications and Base Extension in

ResidueNumber Systems, Proceedings

ARITH15, the 15th IEEE Symposium on

Computer Arithmetic, June 2001, pp.59–65.

[2] J. Chung and A. Hassan, More Generalized

Mersenne Numbers, Selected Areas in

Cryptography SAC 2003, volume 3006 of LNCS,

August 2003.

[3] R.Crandall, 1992, Method and Apparatus for

Public Key Exchange in a Cryptographic

System.U.S. Patent number 5159632.

[4] W. Diffie and M. E. Hellman, New Directions in

Cryptography, IEEE Transactions on

Information Theory, IT-22(6), November 1976,

pp. 644–654.

[5] D. E. Knuth, The art of computer programming:

Seminumerical algorithms–volume2, Addison-

Wesley, 1981.

[6] Modulo Reduction in Residue Number System,

IEEE Transactions on Parallel and Distributed

Systems, vol. 6, May 1995, pp. 449–454.

[7] A. Shamir R. L. Rivest and L. Adleman, A

Method for Obtaining Digital Signatures and

Public-key Cryptosystems, Communications of

the ACM (1978), pp. 120 – 126.

[8] J. Solinas, 1999, Generalized Mersenne numbers.

Research Report CORR-99-39, Center

forApplied Cryptographic Research, University

of Waterloo, Waterloo, ON, Canada.

[9] J. C. Bajard, M. Kaihara, and T. Plantard,

Selected RNS Bases for Modular Multiplication,

18th IEEE International Symposium on

Computer Arithmetic, 2009, pp. 25–32.

Sridevi, at present working as Assistant

Professor at karnatak University,

Dharwad,Karnataka state. And persuing

part time Ph.D at Mangalore

University, under the guidance of

Dr.Manjaih.D.H. Her research areas are

Computer Networks and Mobile

ommunication systems and network

security.

Email:devisris@yahoo.com

Dr. Manjaiah D.H., is currently

Professor and BOS Chairman of the

Dept. of Computer Science.,Mangalore

University, and Mangalore. He is also

the BoE and BoS Member of all

Universities of Karnataka and other

reputed universities in India. He

received PhD degree from University of Mangalore,

M.Tech. fromNITK, Surathkal and B.E. from Mysore

University. Dr. Manjaiah D.H has more than 15years

extensive academic, Industry and Research experience. He

has worked at many technical bodies like CSI [AM IND

00002429], ISTE [LM - 24985], ACS, IAENG, WASET,

IACSIT and ISOC. He has authored more than - 50

research papers in International / National reputed journals

and conferences. He is the recipient of the several talks for

his area of interest in many public occasions. He had

written Kannada text book, with an entitled, ―COMPUTER

PARICHAYA‖, for the benefits of all teaching and

Students Community of Karnataka. Dr. Manjaiah D.H ’s

areas interest are Advanced Computer Networking, Mobile

/ Wireless Communication, Wireless Sensor Networks,

Operations Research, E-commerce, Internet Technology

and Web Programming. He is the expert committee

member of various technical bodies like AICTE, various

technical Institutions and Universities in INDIA. He

sessions of various International & National conference and

reviewer of the Journals. He successfully completed Major

Research project on ―Design Tool of IPv6 Mobility for 4G

Networks‖, around Rs.12lakhs worth funded by UGC, New

Delhi from year 2009 - 2012. He is recognized as a Ph.D.

guide in Computer Science at Mangalore University,

Mangalore and currently five students are doing their

Ph.D., under the guidance of him. He is recognized as

advisory editorial board member of the International

Journal of Advanced Computing [IJAC], International

Journal of Computer Science and Application [IJCSA], and

Journal of Intelligent System Research and Journal of

Computing. He visited most of the countries in the World.

