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Abstract 
 

Faster implementations of public-key cryptography 

and in particular of RSA are of uttmost importance 

nowadays. Performing fast modular multiplication 

for large integers is of special interest because it 

provides the basis for performing fast modular 

exponentiation, which is the key operation of the 

RSA cryptosystem. Currently, it seems that in a 

radix representation, all major performance 

improvements have been achieved. Nevertheless, the 

use of Residue Number System(RNS) proves to be a 

promising alternative for achieving a breakthrough. 

All these aspects are detailed throughout this 

research paper. Also presents an overview of the 

RSA cryptosystem, followed by a short proof of why 

the encryption-decryption mechanism works. With 

considerations regarding the employed key-sizes 

and with an example of a small RSA cryptosystem. 
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1. Introduction 
 

Generally cryptography falls into two main 

categories: secret and public key cryptography. 

Secret-key cryptography is based on a prior exchange 

of a common secret key. Since a single key is used 

for both encryption and decryption, the major issue 

associated with symmetric-key systems is the key 

distribution problem that is an efficient method has to 

be devised for the parties to agree upon and then 

exchange keys securely. In 1970, W. Diffie and M. E. 

Hellman proposed in [2][4] an efficient method of 

exchanging a shared secret key over an unsecured 
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communications channel and thus setting up the basis 

of a new type of cryptography: the public-key 

cryptography. The assymetric-key cryptography uses 

a key (public) for encryption, which is made 

available to everyone at the sending end, and another 

one (secret) for decryption that is known only by the 

recipient of the message. In 1977, R. Rivest, A. 

Shamir, and L. Adleman introduced the RSA 

cryptosystem [7], which became the most widely 

used public-key cyptosystem in the world. Its 

security depends upon the intractability of the integer 

factorization problem and it can be used to provide 

both data encryption and digital signatures.  

 

2. RSA algorithm 
 

Prior to the execution of the encryption-decryption 

protocol, outlined in Algorithm 2, each party that 

wants to communicate should generate first its own 

public/private key pair, as described in Algorithm 1. 

 

Algorithm 1 Public key generation 

Ouput: a public key (n,e) and a private key d. 

1. Generate randomly two large primes p and q, 

which are kept secret. 

2. Compute the modulus n = p • q and Euler's 

totient function  = (p - 1)(q - 1). 

3. Select a random integer e, 1 < e <, coprime 

with . 

4. Compute the multiplicative inverse of e with 

respect to modulus  (d • e = 1 (mod ))  

 

Algorithm 2 RSA encryption-decryption protocol 

B encrypts a message m and sends it to A; A decrypts 

the message 

1. Encryption 

a. B should obtain the public key (n, e) of A. 

b. B represents the message m as an integer  

     between 0 and n - 1. 

c. B computes c = m
e
 mod n. 

d. B sends the cipher text to A. 

 

2. Decryption 
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a. A should use its private key d to recover the 

message m form the cipher text m = 

c
d
mod n 

 

2.1. RSA proof 

The RSA encryption system is based on Euler's 

theorem and its generalization, the Carmichael's 

theorem. 

 

Theorem 1 (Euler's Theorem) If n and a are two 

positive, relatively prime integers, then it holds 

 

                          a
(n)

     = 1 

 

where (n) is the Euler's totient function (the number 

of integers less than n, and relatively prime with n). 

 

Theorem 2 (Carmichael's theorem) If n and a are two 

positive, relatively prime integers, then 

 

a
(n)       

= 1 

 

where (n) is the Carmichael function (the least 

common multiple of the factors of  (n)). 

 

Theorem 3 If n is a product of distinct primes, then, 

for all integers a 

 

                           a
(n)+1        

=      a   n.

 

The correctness of the RSA scheme, i.e., the fact that 

the encryption and decryption are inverse operations, 

relies on the fact that 

 

 

 

 

There are two cases to consider.  

Case 1.gcd(m,n) = 1 

We have |d • e| (n) = 1, relation which rewritten for 

an integer a >1 becomes 

 

 

 
 

 

 

 

 

 

Case 2.gcd(m, n)> 1 

 

For n, a product of two odd distinct primes, 

 

 

 

 

 

will always be a divisor of (n).  Since (n)| (n), 

the equality |e • d|(n) = 1 implies that |e • d|(n) = 1. 

Using a derivation similar to case 1, and based on 

Theorem 3, we obtain 

 

 

 

2.2. RSA key sizes 

As far as the operands sizes are concerned, the 

following remarks can be made.  

The stochastic prime’s p and q should be chosen such 

that they have approximately the same bit length to 

ensure that any attempts to factor the modulus are 

computationally infeasible. For instance, for 1024-bit 

modulus n, p and q should be chosen about 512-bits 

each. 

 

The exponent e is usually chosen small and 

preferably with a small Hamming weight (the number 

of 1's in its binary representation), in order to 

increase the efficiency of the exponentiation. One 

exponent currently used in practice is e = 2
16

 + 1 = 

65537. The exponentiation algorithm would require 

in this case 16 modular squaring and 2 modular 

multiplications (since the Hamming weight is 2). 

For security reasons, the bit length of the modulus n 

is typically in the range 5122048 bits or even more, 

and thus efficient long integer modular arithmetic is 

required for achieving high throughput rates at these 

bit precisions. 

 

3. Modular Exponentiation 
 

Modular exponentiation (a
b 

mod m) and its key 

constituent operation, modular multiplication (a • b 

mod m), are the fundamental operations underlying 

cryptographic algorithms. Since modular 

multiplications account for most of the time spent for 

encryption and decryption, their optimization is 

crucial. This can be achieved either by reducing the 

number of modular multiplications or by reducing the 

latency of each modular multiplication. Assuming m 

and e have a bit length of 1024 each, c = m
e
 would 

require a total number 

 

n 

n 

form [ 0, n – 1 ].   m
e-d

 
n 

= m, 

d•e = α• (n) +1 

 

|c
d
|n =|(m

e
)
d
|n 

=|m
1+a•(n)

|n 

=|m• (m
(n)

)
a
|n 

=|m•1|n 

=|m|n 

 

 (n) 

gcd(p – 1 , q - 1) 
(n) =  

|m
d-e

|n=|m|n , n 
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1og2(m
e
) = e • log2m 2

1024
 • 1024 = 2

1034 

bits in order to store its value. Therefore c cannot be 

obtained by performing first the modular 

exponentiation m
e
 and only after that the reduction 

modulo n. Thus these operations have to be 

interleaved at each step.  A straight forward way of 

performing exponentiation is 

 

           m
  
→   

   
→    

   
→    

   
→      

However, this naive approach requires e-1 1 modular 

multiplications, which would be infeasible for large 

exponents. Taking into consideration that not all 

powers of m need to be computed in order to obtain 

m
e
, a faster method would be: a faster method would 

be: 

 

          m
   
→   

   
→    

  
→   

   
→        

 

This method is called the square-and-multiply 

algorithm. The algorithm provides a systematic way 

for finding the exact sequence in which squarings and 

multiplications by m have to be performed in order to 

efficiently compute m
e
. 

 

4. Binary Exponentiation Method 

 

The method is based on scanning bit-by-bit the 

exponent. At each step (i.e., for every scanned bit) a 

squaring is performed. If and only if the currently 

scanned exponent bit is 1, then a subsequent 

multiplication is performed. Depending on the 

direction of processing the exponent bits (i.e., from 

MSB to LSB, or vice-versa), there exist two versions 

of the algorithm: the left-to-right binary method 

which is described below and the right-to-left binary 

method that is similar but requires an extra variable 

to keep the powers of m. Let k = log2e + 1 denote 

the bit length of the exponent e whose binary 

expansion 

 

               e= (ek-1 ek-2 .....e1 e0) =∑    
    

    

 

The left-to-right binary exponentiation algorithm 

computes the exponentiation starting from the most 

significant bit position of the exponent E and 

proceeding to the right, as described in Algorithm 3. 

 

Algorithm 3: Left-to-right binary exponentiation 

algorithm 

 

Input: m, e, n  

Output: c = |m
e
|n 

 

1. if ek_1 = 1 then c := m else c := 1 

2. for i = k -2 downto0 

2a. c:=|c • c|n 

2b. if ei= 1 then c := |c • m|n 

3. return c  

 

Assuming ek-1=1,the algorithm requires k— 1 squaring 

(step 2a.) and H(e)— 1 multiplications (step 2b.), 

where H(e) is the Hamming weight of the exponent 

(the number of ones in its binary representation). 

Since 0 < H(e) —  1 < k —  1,  we have a total maximum 

number of multiplications of 2 •  (k— 1), a minimum of 

k— 1 , while in the average case (H(e)= 0.5 •  k, that is 

half of the bits of e are 1), 1.5 •  (k—  1) 

multiplications are needed. For instance, for 1024-bit 

exponents, the square-and-add algorithm has a 

logarithmic computational complexity, requiring on 

average only 1.5 *  1023 = 1535 multiplications, while 

the straightforward exponentiation needs a linear 

amount of 2
1024 

multiplications. 

 

The binary method is used frequently in smart cards 

and embedded devices, due to its simplicity and low 

memory requirements. 

 

This method can be generalized by scanning multiple 

bits of the exponent at a time. Generally, if log2m 

bits are scanned, the method is called m-ary. When 

compared to the binary method, it requires fewer 

iterations (clock cycles), but at the expense of higher 

memory resources. Usually, this method is used for 

software implementations on processors which have 

access to bigger memory resources. 

 

5. Modular Multiplication 
 

The modular multiplication operation may be 

decomposed in two parts: a normal multiplication 

followed by a reduction. In its simple form, modular 

reduction requires trial division for finding the 

multiple of the modulus that has to be subtracted 

from the result and thus it is inherently slow. For this 

reason, faster alternative algorithms are utilized 

(Fast-Fourier Transforms, Karatsuba-Ofman 

algorithm Barret reduction and Quisquater's 

modification, redundant-digit division, etc.). 

 

6. RNS Modular Multiplication 
 

RNS exhibits several advantages over commonly 

employed fixed-radix, weighted number 
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representations, that facilitate fast, parallel 

implementations of long integer arithmetic. This 

makes RNS a good candidate for supporting the long 

multiplications involved in Montogomery method. 

The Montgomery multiplication algorithm relies on 

the following two relations, repeated here for 

convenience: 

 

|t + |t ·n′|r·n|r= 0, 

|t + |t ·n′|r·n|n = t. 
 

The rationale behind choosing the value of r is to 

easily compute the operation modulo r in the first 

aforementioned equation. For weighted, binary 

number systems, this is achieved by letting r be an 

integer power of the radix 2, but for RNS 

representation, it is preferable to take r as the 

dynamic range of the RNS base. This way, all 

numbers less than r are already reduced modulo r. 

However, there is a drawback induced by this choice: 

all numbers greater than r need a larger RNS base to 

be represented. Therefore, costly base extension 

operations are required in order to compute these 

additional RNS residues. 

 

The Montgomery algorithm was first adapted to RNS 

by Posch & Posch in [6]. In what follows, the RNS 

version of Montgomery multiplication Algorithm 4, 

is presented according to [1]. 

 

Algorithm 4: Montgomery Multiplication for RNS 

Input: two RNS bases B = ( m 1 , . . . , mk) and  

B' = (mi,. . . , m'k) with gcd(M, M') = 1 a positive 

integer N represented in both bases such that  

gcd(N, M) = 1 and 0 <4N < M <M' two integers a 

and b, represented in both bases, with a • b < M • N 

Output: r' = |a • b • M
-1

|N, represented in both bases 

1. t = a • b in base B U B' 

2. q = t • ( - N
-1

) in base B 

3. base extension: q from base B   q' in base 

B' 

4. r' = (t + q' • N) M
-1

in base B' 

5. base extension: r' from base B'   r in base B 

 

In order to derive the RNS Montgomery 

multiplication method, we consider two RNS bases B 

= ( m 1 , . . . , mk) and B' = (mi,. . . , m'k) of relatively 

prime moduli which implies that gcd(M, M') = 1, 

where M and M' are the dynamic ranges of the two 

bases. Even though it is not mandatory, it is assumed 

an equal number of elements for both bases, for 

regularity purposes of the correspondent hardware 

architecture or softwareimplementation. Next we take 

M=∏   
 
   

as the Montgomery constant r. 

Thereforethe Montgomery method yields 

 |a .b . M
-1 

|N 

where a, b, and the modulus N are positive integers 

represented in the predefined bases B and B , as 

 

(a )B= 
(a

i
, . . . , a

k
)             

 (
a

) B '  = 
(a

i,
. . . , a

k
) 

  
 

(b)B = (bi, . . . , b k)            (b)£, = (bi, . . . , b k)  

   

( N ) B = ( N i, . . . , N k) ( N  )B, = ( N i, . . . , N k)  

 

In step 1. we compute the product a •  b in both RNS 

bases. This can be done in parallel for all moduli, in 

constant time, according to Equation as follows: 

t=|a^b|M=(|a1^b1|m1>.... > |ak ^ bk|mk) 

t′ =|a^b|M′=(|a
1
^b

1
|m1>.... > |a′k ^ b′k|mk) 

 

In step 2. we have to compute q such that r = a •  b + 

q•  N is a multiple of M. The term a •  b + q • N 

represented in base B, composed solely of 0, since 

any multiple of M, represented modulo M equals 0. 

Thus, we have 

(r)B = 0      ^       ri=|ai •  bi  + qi  •  Ni | m .= 0     for i 

= 1,. . . ,  k. 

 

The value of q is then given by the solutions of the 

previous equations 

qi = |ai . bi .| - N 
-1 

|mi|mi  for i=1,….,k 

 

Step3. Since r is a multiple of M, as pointed out 

previously, it is composed only of 0 in base B, which 

further divided by M yields 0. Moreover, we have to 

perform the division by M, that reduces in RNS to a 

multiplication by the multiplicative inverse of M 

which unfortunately does not exist modulo M. Thus, 

we need a larger dynamic range to accommodate r. 

Also the new base moduli should be prime to M for 

the inverse |M
~ 1

|M '  to exist. 

 

In step 3, a base extension is performed to obtain q', 

the RNS representation of q in base 

 

Step4. Now we can evaluate r' = |(t' + q' • N') •|M
-1

 

|m  |M'. The term t' = |a • b|M' is already computed 

from step 1, the multiplicative inverse |M
_1

|M' is a pre 

computed constant, hence we obtain 

 

ri =| (ti+ qi • Ni) •||M~
1
| M ' | M ' | M '  

 

Step5. In order to be able to perform modular 

exponentiation by repeating the Montgomery 
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multiplication, the range of the output should be 

made compatible with the range of the input. Hence 

we need to convert the result r back to base B, which 

is achieved by applying again a base extension. 

 

We note that if a • b < M • N we have the output in 

the desired range that is < 2N, as suggested by the 

following derivation: 

 
          

 
 
       

 
  = 2N   M. 

If only one multiplication is desired, then the 

condition 2N < M suffices for the algorithm to give 

the correct result. Otherwise, it is required that 4N < 

M < M′ in order to reuse the output as input for a 

subsequent modular multiplication without any 

preceding reduction 

 

 (2N)
2
< M • N        4N < M. 

 

There exist several RNS Montgomery multiplication 

methods in the literature. The main difference 

between them is the base extension algorithm, which 

induces different conditions for the range of the input 

and output values, or necessitates additional oper-

ations to counterbalance other introduced effects. In 

the following chapter, a survey of existing base 

extension methods is presented. 

 

7. RNS Moduli Choice 
 

The Montgomery method works for RNS basis with 

moduli of any form. However, if we choose the 

moduli of a particular form, the overall performance 

can be improved. The number of moduli and their 

form both affect the complexity of the algorithm to 

be performed and the efficiency of the representation. 

Thus, selecting the proper set of moduli is a major 

issue. An important remark is that usually, we tend to 

choose the moduli such that they are comparable in 

magnitude to the largest one, due to the fact that the 

computation speed is dictated by the largest modulus. 

In the following. we present an overview of different 

possible moduli and highlight their advantages and 

disadvantages. 

 

7.1 Mersenne numbers 

Among these special forms, moduli of the form         

m = 2
k

—  1 are of special interest [5][9]. Based on the 

property|2
k
|m = 1the modulo reduction operation |a|m 

is greatly simplified. It requires at most two k-bit 

operations, for a <m
2
, obtained by writing a = a1•  2

k
 

+ a0and then reducing both sides modulo m and 

observing that: 

      |a|m = {
                   

                   
 

When these moduli are prime numbers, they are 

called Mersenne numbers. Nevertheless, this 

approach is rather unpractical. Since there exists only 

one Mersenne number of k bits, choosing as the bases 

moduli only relatively prime moduli of this form 

would result in a base with moduli not comparable in 

magnitude and a dynamic range wider than required. 

 

7.2 Pseudo-Mersenne numbers 
Crandall [3] enlarged the class of Mersenne numbers 

and proposed in 1992 the pseudo-Mersennenumers. 

The pseudo-Mersenne moduli have the form m = 2
k

—  

c, where k € N and c< 2
k/2

. The operation |a|m costs in 

this case 2 •  H(c) + 2 k-bit additions, where a <2
2k

 

and H(c) denotes the Hamming weight of c. Thus, it 

is preferable to choose c, such that H(c) is minimized. 

 

7.3 Generalized Mersenne numbers 
Solinas introduced in 1999, [8] another class of 

moduli, the Generalized Mersenne numbers. A 

Generalized Mersenne number has the following 

polynomial form 

 

     m = f (2
k
) ,     where f (X) = X

n
— C ( X ) with C 

polynomial of degree < =  n / 2 and ||C| |  = 1. 

 

In the above definition ||C||= 1 means that the 

coefficients fi of the polynomial f belong to the set 

{—1, 0, , 1}. Among these numbers, one particular 

form that allows smaller RNS base dynamic ranges 

when compared to Mersenne numbers, while still 

maintaining the efficiency of the modulo reduction, is 

m = 2
kl

—  2
k2

—  1. The operation |a|m, where a < m
2
, 

requires at most 6 k1-bit additions for 0<k2<k l+12. 

Furthermore, the number of additions can be reduced 

to 4, if k2is taken bigger than 1. However, there is a 

drawback when using these numbers: there exists 

only one number for a given bit length of the 

modulus and a fixed f(X). This implies that each 

generalized Mersenne number necessitates a 

dedicated implementation. 

 

8. Conclusion 
 

This research paper provides an overview of the RSA 

cryptosystem, emphasizing its computational 

requirement, the modular exponentiation that is 

broken into a sequence of modular multiplications 
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with respect to a large modulus. The binary 

exponentiation method and the Montgomery 

multiplication are scrutinized. By combining the 

efficient modulo reduction operations provided by 

the Montgomery method with RNS, a powerful 

arithmetic tool is obtained, which improves the 

global performance. We have also given guidelines 

regarding the moduli form and their influence on the 

overall performance. Then, the bottleneck of the RNS 

Montgomery multiplication algorithm is identified, 

most of computational effort is due to the two 

required base extensions. 

 

References 
 

[1] J.C. Bajard, L.S. Didier, and P. Kornerup, 

Modular Multiplications and Base Extension in 

ResidueNumber Systems, Proceedings 

ARITH15, the 15th IEEE Symposium on 

Computer Arithmetic, June 2001, pp.59–65. 

[2] J. Chung and A. Hassan, More Generalized 

Mersenne Numbers, Selected Areas in 

Cryptography SAC 2003, volume 3006 of LNCS, 

August 2003. 

[3] R.Crandall, 1992, Method and Apparatus for 

Public Key Exchange in a Cryptographic 

System.U.S. Patent number 5159632. 

[4] W. Diffie and M. E. Hellman, New Directions in 

Cryptography, IEEE Transactions on  

Information Theory, IT-22(6), November 1976, 

pp. 644–654. 

[5] D. E. Knuth, The art of computer programming: 

Seminumerical algorithms–volume2, Addison-

Wesley, 1981. 

[6] Modulo Reduction in Residue Number System, 

IEEE Transactions on Parallel and Distributed 

Systems, vol. 6, May 1995, pp. 449–454. 

[7] A. Shamir R. L. Rivest and L. Adleman, A 

Method for Obtaining Digital Signatures and 

Public-key Cryptosystems, Communications of 

the ACM (1978), pp. 120 – 126. 

[8] J. Solinas, 1999, Generalized Mersenne numbers. 

Research Report CORR-99-39, Center 

forApplied Cryptographic Research, University 

of Waterloo, Waterloo, ON, Canada. 

[9] J. C. Bajard, M. Kaihara, and T. Plantard, 

Selected RNS Bases for Modular Multiplication, 

18th IEEE International Symposium on 

Computer Arithmetic, 2009, pp. 25–32. 

 

 

 

 

 

 

 

Sridevi, at present working as Assistant 

Professor at karnatak University, 

Dharwad,Karnataka state. And persuing 

part time Ph.D at Mangalore 

University, under the guidance of 

Dr.Manjaih.D.H. Her research areas are 

Computer Networks and Mobile 

ommunication systems and network 

security. 

Email:devisris@yahoo.com 

 

Dr. Manjaiah D.H., is           currently 

Professor and BOS Chairman of the 

Dept. of Computer Science.,Mangalore 

University, and  Mangalore. He is also 

the BoE and BoS Member of all 

Universities of Karnataka and other 

reputed universities in India. He 

received PhD degree from University of Mangalore, 

M.Tech. fromNITK, Surathkal and B.E. from Mysore 

University. Dr. Manjaiah D.H has more than 15years 

extensive academic, Industry and Research experience. He 

has worked at many technical bodies like CSI [AM IND 

00002429], ISTE [LM - 24985], ACS, IAENG, WASET, 

IACSIT and ISOC. He has authored more than - 50 

research papers in International / National reputed journals 

and conferences. He is the recipient of the several talks for 

his area of interest in many public occasions. He had 

written Kannada text book, with an entitled, ―COMPUTER 

PARICHAYA‖, for the benefits of all teaching and 

Students Community of Karnataka. Dr. Manjaiah D.H ’s 

areas interest are Advanced  Computer Networking, Mobile 

/ Wireless Communication, Wireless Sensor Networks, 

Operations Research, E-commerce, Internet Technology 

and Web Programming. He is the expert committee 

member of various technical bodies like AICTE, various 

technical Institutions and Universities in INDIA. He 

sessions of various International & National conference and 

reviewer of the Journals. He successfully completed Major 

Research project on ―Design Tool of IPv6 Mobility for 4G  

Networks‖, around Rs.12lakhs worth funded by UGC, New 

Delhi from year 2009 - 2012. He is recognized as a Ph.D. 

guide in Computer Science at Mangalore University, 

Mangalore and currently five students are doing their 

Ph.D., under the guidance of him. He is recognized as 

advisory editorial board member of the International 

Journal of Advanced Computing [IJAC], International 

Journal of Computer Science and Application [IJCSA], and 

Journal of Intelligent System Research and Journal of 

Computing. He visited most of the countries in the World. 

 

 


