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Abstract 
 

Recently A.Alotaibi, M.Mursaleen , H. Dutta and 

S.A.Mohiuddine [1] proved the ulam stability of 

Cauchy functional equation f(x+y)=f(x)+f(y) in the 

intuitionistic fuzzy normed spaces.  S.A.Mohiuddine 

and A. Alotaib i[2] proved the Fuzzy stability of a 

cubic functional equation via fixed point technique 

In this paper we prove the intuitionistic fuzzy 

stability of cubic functional equation f(2x+y)+f(2x-

y)=2f(x+y)+2f(x-y)+12f(x) by using the fixed point 

alternative. 

 

Keywords 
 

Stability, Functional equation, intuitionistic fuzzy space, 

cubic mapping.  

 

1. Introduction 
 

 A question in the theory of functional equations is 

the following “When is it true that a function which 

approximately satisfies a functional equation   must 

be close to an exact solution ?” If the problem 

accepts a solution, than we say that the equation   is 

stable. S.M.Ulam [3] discussed the following 

question concerning the stability of homomorphism:   

“Let (G1, *) be a group and (G2, o,d) be a metric 

group with the metric d. Given  >0, does there 

exists a  >0 such that if a mapping h: G1 G2 

satisfies the inequality d(h(x*y),h(x)o h(y))<   

x,yG1, then there is a mapping H: G1 G2 such 

that for each x,y  G1 H(x*y)=H(x) oH(y) and 

d(h(x),H(x))< ?” In the next year, D.H.Hyers [4], 

gave answer to the above question for additive 

groups under the assumption that groups are Banach  
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spaces. In 1978, T.M.Rassias [5] proved a 

generalization of Hyers’ theorem for additive 

mapping as a special case in the form of following 

result. 

 

Theorem 1.1[4]. Suppose that E and F are real 

normed spaces with F a complete normed space, f: E

F is a mapping such that for each fixed xE the 

mapping t f (tx) is continuous on R, and let there 

exist ε >0 and p[0,1) s.t 
p p

f (x y) f (x) f (y) ε( x yθ )    

x,yE. 

Then there exist a unique linear mapping T:EF s.t 

)21(
)()(

1


p

p
x

xTxf  , xE 

The functional equation 

f(2x + y) + f(2x  y) = 2f(x +y) +2 f(x y) + 12f(x) 

is said to be the cubic functional equation since cx
3
 is 

its solution. The solution of the cubic functional 

equation is said to be cubic mapping. Another cubic 

functional equation is  

 

f(x+y+2z)+f(x+y-2z)+f(2x)+f(2y) 

=2f(x+y)+4f(x+z)+4f(x-z) +4f(y+z)+4f(y-z). 

 

The stability problem for the cubic functional 

equation was proved by K.W.Jun and H.M.Kim [6] 

for mappings f: X Y where X is a real normed 

space and Y is Banach space and also provedthe 

stability for the functional equation f(2x + y) + f(2x  

y) = 2f(x +y) +2 f(x y) + 12f(x) in real vector 

spaces. The objective of paper is  to prove the 

stability of this cubic functional equation in 

intuitionistic  fuzzy normed space. S.M. Jung and 

T.S.Kim,[7], Chang, I.S., Jun, K.M. and Jung, Y.S 

[8], Y. Jung and I.Chang,[9 ] and A.K.Mirmostafaee 

and M.S.Moslehian[11] proved the stability of cubic 

functional equations in various spaces. Recently  the 

stability of Jensen. Quadratic and mixed type additive 

cubic functional equations have been considered in 

[12], [13],[14] and[15]. 
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K.T.Atanassov [10] introduced the Intuitionistic 

fuzzy sets. The notion of intuitionistic fuzzy normed 

space was introduced by S.B.Hasseini, D.O’Regan 

and R.Saadati [16] as generalization of fuzzy normed 

space as:  

 

Definition 2.1. Let  and  be the membership and 

the nonmembership degree of an intuitionistic fuzzy 

set from X ),0(   to [0,1] such that

1)()(  tt xx   for all Xx and t>0. The 

triple ),,( , PX is said to be an intuitionistic 

fuzzy normed space (briefly IFN-space) if X is a 

vector space,   is a continuous -representable, and 

 ,P is a mapping X
*),0( L satisfying the 

following conditions: for all x,y X and t, s>0, 

(a) *0)0,(, L
xP  ;  

(b) *1),(, L
txP   if and only if x=0;  

(c) )/,(),( ,, atxPtaxP    for all 0a ;  

(d) )),(),,((),( ,,, syPtxPstyxP    

In this case,  ,P is called an intuitionistic fuzzy 

norm. Here, ))(),((),(, tttxP xx   . 

Example 2.2. Let (X, ||.||) be a normed space. Let 
(a,b)=(a1b1, min(a2+b2,1)) for all a=(a1,a2), b=(b1,b2)

L
*
 and , be membership and non-membership 

degree of an intuitionistic fuzzy set defined by 

,
||||

||||
,

||||
))(),((),(, 












xt

x

xt

t
tttxP xx 

  
 Rt  

Then (X,  ,,P ) is an IFN-space. 

 

Definition 2.3. A sequence {xn} in an IFN-space (X, 

 ,,P ) is called a Cauchy sequence if for any >0 

and t>0, there exists n0   N such that 

0, ,),),((),( * nmnNtxxP slmn 

where Ns is the standard negator. 

 

Definition 2.4. A sequence {xn} is said to be 

convergent to a point xX if  

 nastxxP
Ln *1),(,  for every t>0. 

 

Definition 2.5. An IFN-space(X,  ,,P ) is said to 

be complete if every Cauchy sequence in X is 

convergent to a point xX.  

 

2. Main Results 
 

Theorem 3.1 Let X be a linear space,

),,(
,

'
MZ P 

 an IFN-space, and 

ZXX : a function such that for some 

80  a ,  

)),,((')),2,2((' 2

,, * tyxaPtyxP
L

    

 (x,y X ,t>0)        (1) 

*1)/8),2,2(('lim 2

, L

nnnn

n
tayxP 


   

         (2) 

for all x,y X and t>0. Let ),,( , MPY  be a 

complete IFN-space. If f:XY is a mapping such 

that , for all x,y X ,t>0 

).),,((')),,(( ,, * tyxPtyxDfP
L

    

          (3) 

and f(0)=0, then there is a unique quadratic mapping 

C:XY 

).)216(),0,((')),()(( ,, * taxPtxCxfP
L

 

           (4) 

Where, Df(x,y)=f (2x+y)+f(2x-y)-2f(x+y)-2f(x-y)-

12f(x) for all x,y X .  (*) 

Prof: Put y=0 in (3), we get 

 

).),0,((')),(16)2(2( ,, * txPtxfxfP
L

   

).),0,(
16

1
(')),(

8

)2(
( ,, * txPtxf

xf
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L
   

     (5) 

Replacing x= 2
n
x in ( 5), we have 
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



                           (6) 

We write,  
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Replacing x with 2
m

x in (6), we observe 
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Then {f(2
n
x)/8

n
} is a Cauchy sequence in 

),,( , MPY  . Since ),,( , MPY   is a complete 

IFN-space, this sequence converges to some point 

C(x) Y .Put m=0  and fix x X in (8), we get 
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Taking n  , we get  
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Now show that C(x)satisfies (*) 

Replacing x by 2
n
x and y by 2

n
y in (3),we have  
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we conclude that C fulfils (*). 

To Prove the uniqueness of mapping C, Let there 

exists D: X  Y which satisfies (4). Clearly 

C(2
n
x)=8

n
C(x) and D(2

n
x)=8

n
D(x) for all nN. Then 
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t
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 . Therefore, 

it follows 1)),()((,  txDxCP   for all t>0 so, 

C(x)=D(x). 

Corollary3.2. let X be a linear space 

),,(
,

'
MZ P 

 an IFN-space be complete IFN-

Space, p,q be nonnegative real numbers and let z0 
Z. if f:X   Y  is a mapping such that  
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x,y X,t>0, f(0)=0 and  p,q<1, then there exist a 

unique cubic mapping C:XY such that 

))88(,)||((||')),()(( 0,*, tzxPtxCxfP pp

L  

 for all xX and t>0. 

Proof. Let ZXX :  be defined by 
(x,y)=(||x||

p
+||y||

q
)z0. Then the corollary followed 

from the theorem 3.1 by  =2
p
. 

 

3. Conclusion 
 

In this paper, we have developed the stability of 

cubic type mapping in Intuitionistic fuzzy normed 

linear space using the fixed point theory. 
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