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Abstract 
 

The prediction model for object-oriented software 

development effort estimation using one hidden 

layer neural network has been implemented in this 

paper. This prediction model has been empirically 

validated on PROMISE software engineering 

repository dataset. Accurate prediction of software 

development effort and schedule is still a 

challenging job in software industry. This 

prediction model has been implemented through 

programming in MATLAB using one hidden layer 

feed forward neural network(OHFNN) and results 

obtained from this program are compared with 

existing algorithms like traingda and traingdm of 

NNTool. By a large number of simulation work 

OHFNN 16-19-1 is found optimal structure for this 

prediction model. OHFNN 16-19-1 means 16 

neurons in input layer, 19 neurons in hidden layer 

and 1 in output layer. Training of the neural 

network has been done by using back propagation 

with a gradient descent method. Performance of 

predictor is better in terms of accuracy than existing 

well established constructive cost estimation model 

(COCOMO). In this network, convergence is 

obtained by minimizing the root mean square error 

of the input patterns and optimal weight vector is 

determined to predict the software development 

effort. 
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1. Introduction 
 

There are two types of model for prediction of 

software development effort i.e. model based and  
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model free. Generally model based prediction model 

is not well suited for the estimation of software 

development effort due to complex mapping between 

project characteristics and development effort. In this 

situation, model free prediction using soft computing 

is well suited for estimating the development effort of 

the software project. The most important model 

based Constructive Cost Estimation Model 

(COCOMO) has been represented in following 

equation [1]. 

 

 
Here, a, and b are domain specific parameters. For 

predicting the software development effort, 

parameters a, and b have been adjusted on the past 

data set of various projects. Five scale factors have 

been used to generalize and replace the effects of the 

development model in COCOMO II. There are 

fifteen parameters which affect the effort of software 

development. These parameters are analyst 

capability , programmer‟s capability , 

application experience , modern programming 

practices , use of software tools , 

virtual memory experience , language 

experience , schedule constraint , main 

memory constraint , database size , 

time constraint for CPU , turn- around time 

, machine volatility , process 

complexity and required software reliability 

. 

 
 

KLOC is estimated directly or computed from a 

function point analysis and c is the product of fifteen 

effort multipliers. 

 
Khoshgaftaar et al. (1992, 1994, and 1997) used 

artificial neural network (ANN) model as a tool for 

predicting development faults and software quality of 

a large telecommunications system that have been 

classified as fault prone or not fault prone. It has been 

found that ANN model gives better predictive 

accuracy. In this analysis, raw data has been 

transformed into variables that are not correlated to 

each other [2, 3, and 4]. K.K. Shukla (2000) proposed 
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the neuro-genetic approach for prediction of software 

development effort and compared it with both a 

regression-tree based approach as well as back 

propagation-trained NN approach [5].  

The Remaining part of the paper is organized as 

follows. In section 2 related works has been 

explained. In section 3, mathematical model of 

OHFNN approach to effort prediction has been 

represented. Section 4 presents result and discussion. 

Section 7 gives the conclusion drawn from results 

and future scope of the research work. 
 

2. Related Work 
 

Till now more than three hundred research papers 

have been published related to software development 

effort or cost estimation. Various estimation 

approaches have been used in these papers like 

regression, expert judgment, work break-down, 

function points, classification and regression trees, 

artificial neural network, genetic algorithm, particle 

swarm optimization, and neuro-fuzzy etc. Colin J. 

Burgess et al. (2001) used genetic programming for 

improving the software effort estimation and 

evaluated potential of genetic programming (GP) in 

software development effort estimation against 

existing approaches and found machine learning 

method can estimate development effort accurately 

comparison to using only human expertise. Eung Sup 

Jun et al. (2001)used quasi-optimal case selective 

neural network model for estimating software 

development effort and found neural network is more 

suitable for predictor and estimator than existing 

statistical models [6, 7]. N. Gupta et al. (2005) used 

pattern mapping technique of artificial neural 

network for estimating the reliability of software with 

execution time model [8].Gyimothy et al. (2005) 

empirically validated chidamber and kamerer metrics 

on various open source software for predicting the 

fault. The regression (linear and logistic regression) 

and machine learning methods have been applied for 

prediction model [9].Liang Tian et al. (2005) 

modified Levenberg-Marquardt algorithm with 

Bayesian regularization for improving the ability to 

predict the software cumulative failure time 

[10].Parameters of COCOMO model have been tuned 

to predict software development effort by using GA, 

e.g. Alaa F. Sheta (2006) [11]. K.K. Agarwal et al. 

(2006) used artificial neural network for predicting 

the maintainability of object oriented system [12]. S. 

Kanmani et al. (2007) used neural network model for 

predicting the fault during the development of object 

oriented system [13].Yogeshet al. (2008) predicted 

testing effort using ANN method for NASA projects 

and established relationship between OO metrics and 

testing effort [14].JieXu et al. (2008) validated object 

oriented metrics for fault prediction [15]. The 

network has been trained with back propagation 

learning algorithm and resilient back propagation 

algorithm for comparing network prediction with the 

actual effort e.g. Ch. Satyananda Reddy (2009, 2010) 

[16, 17].Yuming Zhou et al. (2010) analyzed object-

oriented design metrics set for predicting high and 

low severity faults [18]. Alaa F. Sheta et al. (2010) 

proposed GA effort estimation model to predict 

software development with the help of line of code 

and methodology. In this model only two 

independent parameters have been considered. In the 

proposed model all the sixteen parameters proposed 

in COCOMO II model are used to predict the 

software development effort [19]. Ruchika Malhotra 

et al. (2011) used machine learning techniques for 

predicting fault in object oriented software [20]. Anil 

Kumar et al. (2012) proposed model using particle 

swarm optimization (PSO) for tuning the parameters 

of basic COCOMO model to predict the software 

development effort accurately. In this model only 

KLOC parameter has been considered [22].Manisha 

et al. (2013) explored multilayer feed forward neural 

network as bidirectional associative memory (BAM) 

for function approximation. In future this network 

can be used for faster convergence [23]. Performance 

Analysis of Software Effort has been done using 

neural networks, e.g. E. Praynlin (2013) [24]. 

Somesh Kumar et al. (2013) used feed forward neural 

network with a descent gradient of distributed error 

and the genetic algorithm (GA) for recognizing the 

handwritten „SWARS‟ of Hindi curve script [25]. 

C.S. Yadav et al. (2014) modified the COCOMO81 

model for better prediction of development effort 

using GA. This modified model has been validated 

on PROMISE project data set [26]. 

 

3. OHFNN Approach to Effort 

Prediction 
 

To estimate the mapping function between input 

vector and desired output vector, OHFNN with 

gradient descent back propagation learning method 

has been used in this model. Let us consider input 

vector say  where n=16 and 

output vector say . The Neural 

Network can be trained by using the input and output 

vector mapping. Flow chart of back propagation 
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training is shown in figure 1. P is set of Q training 

vector pairs; 

 

 

 
Here  generates an output signal vector , 

 is vector of activations of output layer neuron. 

Error at training pair ( is as follows  

 

 

 
 

 
Figure 1: Flow chart of back propagation training 

 

Squared error is sum of squares of each individual 

output error , i.e. 

 
The mean square error ( ), is computed over the 

entire training set P 

 
Hidden to output layer weights are updated as 

follows 

 
Input to hidden layer weights are updated as follows 

 

 
Where  and  are weight changes computed 

in previous step 

 

 
Here  is the   component of the input vector  

and 

 
For the hidden layer 

 
 

 
Where is the bias value at hidden layer, and ) 

is the hidden layer bias neuron signal. 

For the output layer 

 
 

 
 

Here  are the biases of output neurons. 

 

 
Here η is learning rate and  is weight from node i 

to node j. The activation of each node j, for pattern X 

is as follows 

 
The output from each node j is as follows 

 
Weights are adjusted due to change in error by the 

following equation 

 
 

Now the weights have been updated in output and 

hidden layer by the following equations 

 

 
We can introduce the momentum into back 

propagation with the help of following equations 

 

 

 
All the fifteen parameters which have linguistic 

values affect the effort are shown in Table 1. 
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Table 1: Various parameters which affect the 

effort estimation with addition to KLOC 

 

S. No Name Meaning 

1  Analyst capability  

2  Programmer‟s capability  

3  Application experience  

4  Modern Programming practices 
 

5  Use of software tool  

6  Virtual machine experience  

7  Language experience  

8  Schedule constraint  

9  Main memory constraint 

 

10  Database size  

11  Time constraint for CPU 

 

12  Turn- around time  

13  Machine volatility  

14  Process complexity  

15  Required software reliability 

 

 

 

 

 
Suppose we assign 1 to VL, 2 to L, 3 to N, 4 to H, 5 to 

VH and 6 to EH. After normalizing the value we get 

the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In normalization we use formula 

 

Suppose vector  then normalized 

vector . If we want to obtain vector a 

from vector b, then we use the following formula: 

 
Here  is the first element of vector a,  is 

the first element of vector b. 

OHFNN comprises of many processing units which 

have been organized in various layers. Every 

processing unit in a layer is connected with all the 

processing units of the previous layer. All the 

connections in this network are not equal. Each 

connection has a different strength or weight. In this 

network, data has been given at input layer and signal 

passes through hidden layer reaches at output layer. 

OHFNN consists of one input layer, one output layer 

and one hidden layer. The computation has been done 

by hidden layer. Each processing unit in hidden layer 

performs additional operation based on input from 

previous layer. The result obtained from hidden layer 

is transformed by sigmoid function [21]. 

 

4. Result and Discussion  
 

First, OHFNN with one neuron is used in this 

prediction model with two bias values at hidden 

layer and  at output layer as shown in figure 2. The 

parameters used in this architecture OHFNN 16-1-1 

are shown in table 5. After training the network on 40 

patterns, weights of various connections from input 

to hidden layer and from hidden to output layer are 

shown in table 3. This network reduces sum of 

squared error to 0.0125 in 10 million epochs. Though 

this network is taking exponential time for the 

execution but good thing is that network converges.  

After that three neurons have been taken at hidden 

layer with two bias values at hidden layer and  at 

output layer as shown in figure 3. After training the 

network on same data set, this network reduces the 

sum of squared error to 1.3589e-005 in 70, 63978 

epochs. The weights of various connections of this 

network from input to hidden layer and from hidden 

to output layer are shown in Table 4. This network 

also takes large time to converge but less than the 

previous network. Both the networks predict the 

software development effort precisely. From this 

experiment, it is clear that as the neurons at hidden 

layer increases, network is taking less time to 

converge. But it is not always true because in further 

experiment it is shown that OHFNN 16-19-1 takes 

less time to converge than OHFNN 16-23-1. The 

basic data processing unit of neural network is called 

the neuron. The parameters used in OHFNN 16-3-1 
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are shown in Table 6. From various simulation runs 

OHFNN 16-19-1 is optimal structure for convergence 

in less time. Root mean square errors for OHFNN 16-

19-1 at different learning rates are represented in 

Table 7.  Using this model software development 

efforts of 19 projects have been predicted as shown in 

Table 2. In this architecture only three neurons have 

been taken at hidden layer. How many neurons 

should be taken at hidden layer is not decided by any 

formulae in neural network. By hit and trial method 

number of neurons at hidden layer can be decided. 

Here a program is written in MATLAB to implement 

this prediction model in which a variable is taken for 

number of neurons at hidden layer. By varying the 

number of neurons at hidden layer, sum of mean 

squared error can be reduced up to tolerance range in 

minimum number of epochs. In this simulation work 

first neural network has been trained on 40 patterns 

and then validated on another data set [27]. In this 

model gradient descent with momentum training has 

been used.The proposed algorithm shows better 

results in terms of predicted accuracy than the 

existing algorithms of NN Tool as shown in table 8. 

But this model takes large epochs for convergence to 

obtain the accuracy. Here our main objective is to 

predict software development effort accurately. 

Therefore, the large number of epochs can be 

compromised for better prediction because the 

training is one time process. When the network is 

trained correctly with the training pattern set; 

software development effort is predicted precisely 

using this network. Comparison between actual 

efforts with predicted efforts of 19 object oriented 

software projects using existing traingda learning 

algorithm of NNTool is shown in the Figure 4. By 

varying the number of neurons at hidden layer of 

neural network architecture, the optimal neural 

architecture of OHFNN is 16-19-1 for traingdm and 

traingda training methods of NNTool. Best validation 

performance of OHFNN 16-19-1 with traingda is 

0.0088132 at epoch 2173 and the best validation 

performance of OHFNN 16-19-1 with traingdm is 

.012839 at epoch 1, 00,900. During the analysis of 

this work it has been found that development effort of 

some projects is not predicted precisely. From table 7 

best root mean square error is 0.00149074 for 

network architecture OHFNN 16-19-1 at learning 

rate 1.01 and at momentum 0.7 in one million 

epochs. 

 

 

 

 

5. Conclusion and Future Scope 
 

In this research work, by a large number of 

simulation work some of the above suitable 

architecture of OHFNN has been given to predict the 

development effort accurately. Performance index of 

prediction model depends not only on the architecture 

of network and learning algorithm for training but 

also on historical data sets of various projects. In this 

study, OHFNN 19-16-1 has been fixed with both the 

training algorithms for having common platform in 

the comparison of the performance. In future other 

neural network like Radial Basis Function (RBF) can 

be used for the prediction model. With the help of 

wide range data sets on various diverse projects, 

prediction model can be trained and used to predict 

the software development effort. Software 

development cost and time are also dependent on 

development effort. So by predicting development 

effort accurately requirements of software cannot be 

overestimated or underestimated.  Correlation 

coefficient between actual and predicted effort using 

proposed algorithm is 0.999966 and correlation 

coefficient between actual and predicted effort using 

NNTool is 0.980257. So, it can be said that proposed 

algorithm of prediction model is better than algorithm 

of NNTool in terms of accuracy. But in terms of 

number of epochs and time algorithms of NNTool is 

better than proposed algorithm. In this model, 

training of network is very slow. Training may be 

fast by using faster algorithm. The fast algorithm uses 

heuristic and optimization techniques for increasing 

the speed of network training. Conjugate gradient, 

Quasi-Newton and Levenberg-Marquardt algorithms 

of MATLAB NN tool may be used to increase the 

performance of network. These fast algorithm uses 

optimization techniques for increasing the 

performance. Multilayer feed forward network as 

bidirectional associative memory architecture can 

also be used to train this prediction model of software 

development effort. Two hidden layers feed forward 

network may be used to train the network of 

prediction model. For adjusting the weights of 

connection for better results Neuro GA or Neuro PSO 

may be applied. Both GA and PSO are optimization 

techniques. 
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Table 2: Actual and predicted software development effort of 19 projects 

 

S. No. I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 A_Eff P_Eff 

1 VH H H VH VH N N VH VH VH N H H H L 227 1181 1181 

2 H L H N N L L N N N N H H N L 14 60 51.73565 

3 N N H H N N N N N N N N N N N 16 114 113.5806 

4 N N H N N N N N N N N N N N N 13 60 60.06093 

5 N N H N N N N N N N N N N N N 8 42 44.5997 

6 N N N N N N N N H H N N N N N 10 48 51.73565 

7 H L H N N L L N N N N H H N L 24.6 117.6 99.90332 

8 H L H N N L L N N N N H H N L 2.2 8.4 19.0292 

9 H L H N N L L N N N N H H N L 3.5 10.8 21.40785 

10 N L H N N L L H VH H N H N N N 15 48 44.5997 

11 N L H N N L L H H H N H N N N 31.5 60 59.46626 

12 N L H N N L L H VH H N H N N N 6 24 20.81319 

13 N L H N N L L H VH VH N H N N N 20 72 66.00755 

14 H L H N N L L N N H N N H VL N 302 2400 2400.058 

15 H N H H H L H N H N N N L VH N 219 2120 2119.972 

16 H N H H H L H N H N N N L VH N 50 370 368.6908 

17 N N H N H N N H H N N H H N H 47.5 252 252.137 

18 H H N N N L L N H H N H N N N 79 400 400.208 

19 N H L N N H N H H N N N H H N 282 1368 1367.724 

 

 

 

 

 

 

 

 
 

http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.arff
http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.arff
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Table 3: Weights of various connections from input to hidden layer (Wih) and from hidden to output layer 

(Whj) for OHFNN 16-1-1 

 

 

Table 4: Weights of various connections from input to hidden layer (Wih) and from hidden to output layer 

(Whj) OHFNN 16-3-1 

 

 
 

 

Table 5: Parameters used in OHFNN 16-1-1 Architecture 

Parameters Number/Values 

Input Neurons 16 

Neurons in hidden layer(h1) q1 01 

Number of patterns Q 40 

Learning rate, η 0.98 

Momentum,  0.7 

Tolerance, τ 0.00001 

Learning Algorithm  Back Propagation with gradient descent 

 

Table 6: Parameters used in OHFNN 16-3-1 Architecture 

Parameters Number/Values 

Input Neurons 16 

Neurons in hidden layer(h1) q1 03 

Number of patterns Q 40 

Learning rate, η 0.98 

Momentum,  0.7 

Tolerance, τ 0.00001 

Learning Algorithm Gradient descent back Propagation 
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Table 7: Root mean square errors for OHFFN 16-19-1 at different learning rates 

 

epochs 

Root Mean Square errors 

Momentum α=0.7 

η= 0.01 η= 0.8 η=0.7 η=0.5 η=1.05 η=1.01 η=0.98 

10 thousand 0.01054032 0.00753939 0.00799794 0.00847195 0.00746453 0.00736268 0.00748933 

50 thousand 0.00615286 0.00457790 0.00503273 0.00519174 0.00484754 0.00448162 0.00489588 

100 thousand 0.00498955 0.00409193 0.00452595 0.00461027 0.00440810 0.00398843 0.00443357 

200 thousand 0.00449541 0.00342913 0.00417068 0.00424649 0.00403550 0.00327033 0.00385286 

300 thousand 0.00429477 0.00289301 0.00389827 0.00402509 0.00359866 0.00271478 0.00317870 

400 thousand 0.00415403 0.00247100 0.00351732 0.00376302 0.00300512 0.00230791 0.00260461 

500 thousand 0.00402252 0.00216147 0.00305622 0.00342543 0.00241248 0.00203263 0.00221567 

1 million 0.00308021 0.00150979 0.00165208 0.00182862 0.00159311 0.00149074 0.00151314 

 

Table 8: Comparison between Actual Effort and Predicted Effort 

 

S. No. I16 Actual Effort Predicted Effort using proposed Algorithm Predicted Effort using NNTool 

1 227 1181 1181 1184.568 

2 14 60 51.73565 77.30614 

3 16 114 113.5806 111.7966 

4 13 60 60.06093 68.38662 

5 8 42 44.5997 56.49295 

6 10 48 51.73565 46.91889 

7 24.6 117.6 99.90332 121.3112 

8 2.2 8.4 19.0292 30.32779 

9 3.5 10.8 21.40785 35.67976 

10 15 48 44.5997 48.76234 

11 31.5 60 59.46626 74.33283 

12 6 24 20.81319 41.03172 

13 20 72 66.00755 83.2527 

14 302 2400 2400.058 1691.815 

15 219 2120 2119.972 2043.856 

16 50 370 368.6908 431.7251 

17 47.5 252 252.137 60.06093 

18 79 400 400.208 411.5066 

19 282 1368 1367.724 1375.455 

 
Figure 2: OHFNN 16-1-1with one neuron 
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Figure 3: OHFNN 16-3-1 with three neurons 
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Figure 4: Comparison between Actual effort and Predicted effort using proposed algorithm and traingda 

algorithm of NNtool 

 


