
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

156

Implementation of Prediction Model for Object Oriented Software

Development Effort Estimation using One Hidden Layer Neural Network

Chandra Shekhar Yadav
1
, Raghuraj Singh

2

Abstract

The prediction model for object-oriented software

development effort estimation using one hidden

layer neural network has been implemented in this

paper. This prediction model has been empirically

validated on PROMISE software engineering

repository dataset. Accurate prediction of software

development effort and schedule is still a

challenging job in software industry. This

prediction model has been implemented through

programming in MATLAB using one hidden layer

feed forward neural network(OHFNN) and results

obtained from this program are compared with

existing algorithms like traingda and traingdm of

NNTool. By a large number of simulation work

OHFNN 16-19-1 is found optimal structure for this

prediction model. OHFNN 16-19-1 means 16

neurons in input layer, 19 neurons in hidden layer

and 1 in output layer. Training of the neural

network has been done by using back propagation

with a gradient descent method. Performance of

predictor is better in terms of accuracy than existing

well established constructive cost estimation model

(COCOMO). In this network, convergence is

obtained by minimizing the root mean square error

of the input patterns and optimal weight vector is

determined to predict the software development

effort.

Keywords

Effort Estimation, Artificial Neural Network (ANN), One

Hidden Layer Feed Forward Neural Network (OHFNN),

Back propagation learning with gradient descent

1. Introduction

There are two types of model for prediction of

software development effort i.e. model based and

Manuscript received on February 15, 2014.

Chandra Shekhar Yadav, Computer Science and Engineering,

Noida Institute of Engineering & Technology, Greater Noida,
India.

Raghuraj Singh, Computer Science and Engineering, Harcourt

Butler Technological Institute, Kanpur, India.

model free. Generally model based prediction model

is not well suited for the estimation of software

development effort due to complex mapping between

project characteristics and development effort. In this

situation, model free prediction using soft computing

is well suited for estimating the development effort of

the software project. The most important model

based Constructive Cost Estimation Model

(COCOMO) has been represented in following

equation [1].

Here, a, and b are domain specific parameters. For

predicting the software development effort,

parameters a, and b have been adjusted on the past

data set of various projects. Five scale factors have

been used to generalize and replace the effects of the

development model in COCOMO II. There are

fifteen parameters which affect the effort of software

development. These parameters are analyst

capability , programmer‟s capability ,

application experience , modern programming

practices , use of software tools ,

virtual memory experience , language

experience , schedule constraint , main

memory constraint , database size ,

time constraint for CPU , turn- around time

, machine volatility , process

complexity and required software reliability

.

KLOC is estimated directly or computed from a

function point analysis and c is the product of fifteen

effort multipliers.

Khoshgaftaar et al. (1992, 1994, and 1997) used

artificial neural network (ANN) model as a tool for

predicting development faults and software quality of

a large telecommunications system that have been

classified as fault prone or not fault prone. It has been

found that ANN model gives better predictive

accuracy. In this analysis, raw data has been

transformed into variables that are not correlated to

each other [2, 3, and 4]. K.K. Shukla (2000) proposed

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

157

the neuro-genetic approach for prediction of software

development effort and compared it with both a

regression-tree based approach as well as back

propagation-trained NN approach [5].

The Remaining part of the paper is organized as

follows. In section 2 related works has been

explained. In section 3, mathematical model of

OHFNN approach to effort prediction has been

represented. Section 4 presents result and discussion.

Section 7 gives the conclusion drawn from results

and future scope of the research work.

2. Related Work

Till now more than three hundred research papers

have been published related to software development

effort or cost estimation. Various estimation

approaches have been used in these papers like

regression, expert judgment, work break-down,

function points, classification and regression trees,

artificial neural network, genetic algorithm, particle

swarm optimization, and neuro-fuzzy etc. Colin J.

Burgess et al. (2001) used genetic programming for

improving the software effort estimation and

evaluated potential of genetic programming (GP) in

software development effort estimation against

existing approaches and found machine learning

method can estimate development effort accurately

comparison to using only human expertise. Eung Sup

Jun et al. (2001)used quasi-optimal case selective

neural network model for estimating software

development effort and found neural network is more

suitable for predictor and estimator than existing

statistical models [6, 7]. N. Gupta et al. (2005) used

pattern mapping technique of artificial neural

network for estimating the reliability of software with

execution time model [8].Gyimothy et al. (2005)

empirically validated chidamber and kamerer metrics

on various open source software for predicting the

fault. The regression (linear and logistic regression)

and machine learning methods have been applied for

prediction model [9].Liang Tian et al. (2005)

modified Levenberg-Marquardt algorithm with

Bayesian regularization for improving the ability to

predict the software cumulative failure time

[10].Parameters of COCOMO model have been tuned

to predict software development effort by using GA,

e.g. Alaa F. Sheta (2006) [11]. K.K. Agarwal et al.

(2006) used artificial neural network for predicting

the maintainability of object oriented system [12]. S.

Kanmani et al. (2007) used neural network model for

predicting the fault during the development of object

oriented system [13].Yogeshet al. (2008) predicted

testing effort using ANN method for NASA projects

and established relationship between OO metrics and

testing effort [14].JieXu et al. (2008) validated object

oriented metrics for fault prediction [15]. The

network has been trained with back propagation

learning algorithm and resilient back propagation

algorithm for comparing network prediction with the

actual effort e.g. Ch. Satyananda Reddy (2009, 2010)

[16, 17].Yuming Zhou et al. (2010) analyzed object-

oriented design metrics set for predicting high and

low severity faults [18]. Alaa F. Sheta et al. (2010)

proposed GA effort estimation model to predict

software development with the help of line of code

and methodology. In this model only two

independent parameters have been considered. In the

proposed model all the sixteen parameters proposed

in COCOMO II model are used to predict the

software development effort [19]. Ruchika Malhotra

et al. (2011) used machine learning techniques for

predicting fault in object oriented software [20]. Anil

Kumar et al. (2012) proposed model using particle

swarm optimization (PSO) for tuning the parameters

of basic COCOMO model to predict the software

development effort accurately. In this model only

KLOC parameter has been considered [22].Manisha

et al. (2013) explored multilayer feed forward neural

network as bidirectional associative memory (BAM)

for function approximation. In future this network

can be used for faster convergence [23]. Performance

Analysis of Software Effort has been done using

neural networks, e.g. E. Praynlin (2013) [24].

Somesh Kumar et al. (2013) used feed forward neural

network with a descent gradient of distributed error

and the genetic algorithm (GA) for recognizing the

handwritten „SWARS‟ of Hindi curve script [25].

C.S. Yadav et al. (2014) modified the COCOMO81

model for better prediction of development effort

using GA. This modified model has been validated

on PROMISE project data set [26].

3. OHFNN Approach to Effort

Prediction

To estimate the mapping function between input

vector and desired output vector, OHFNN with

gradient descent back propagation learning method

has been used in this model. Let us consider input

vector say where n=16 and

output vector say . The Neural

Network can be trained by using the input and output

vector mapping. Flow chart of back propagation

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

158

training is shown in figure 1. P is set of Q training

vector pairs;

Here generates an output signal vector ,

 is vector of activations of output layer neuron.

Error at training pair (is as follows

Figure 1: Flow chart of back propagation training

Squared error is sum of squares of each individual

output error , i.e.

The mean square error (), is computed over the

entire training set P

Hidden to output layer weights are updated as

follows

Input to hidden layer weights are updated as follows

Where and are weight changes computed

in previous step

Here is the component of the input vector

and

For the hidden layer

Where is the bias value at hidden layer, and)

is the hidden layer bias neuron signal.

For the output layer

Here are the biases of output neurons.

Here η is learning rate and is weight from node i

to node j. The activation of each node j, for pattern X

is as follows

The output from each node j is as follows

Weights are adjusted due to change in error by the

following equation

Now the weights have been updated in output and

hidden layer by the following equations

We can introduce the momentum into back

propagation with the help of following equations

All the fifteen parameters which have linguistic

values affect the effort are shown in Table 1.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

159

Table 1: Various parameters which affect the

effort estimation with addition to KLOC

S. No Name Meaning

1 Analyst capability

2 Programmer‟s capability

3 Application experience

4 Modern Programming practices

5 Use of software tool

6 Virtual machine experience

7 Language experience

8 Schedule constraint

9 Main memory constraint

10 Database size

11 Time constraint for CPU

12 Turn- around time

13 Machine volatility

14 Process complexity

15 Required software reliability

Suppose we assign 1 to VL, 2 to L, 3 to N, 4 to H, 5 to

VH and 6 to EH. After normalizing the value we get

the following:

In normalization we use formula

Suppose vector then normalized

vector . If we want to obtain vector a

from vector b, then we use the following formula:

Here is the first element of vector a, is

the first element of vector b.

OHFNN comprises of many processing units which

have been organized in various layers. Every

processing unit in a layer is connected with all the

processing units of the previous layer. All the

connections in this network are not equal. Each

connection has a different strength or weight. In this

network, data has been given at input layer and signal

passes through hidden layer reaches at output layer.

OHFNN consists of one input layer, one output layer

and one hidden layer. The computation has been done

by hidden layer. Each processing unit in hidden layer

performs additional operation based on input from

previous layer. The result obtained from hidden layer

is transformed by sigmoid function [21].

4. Result and Discussion

First, OHFNN with one neuron is used in this

prediction model with two bias values at hidden

layer and at output layer as shown in figure 2. The

parameters used in this architecture OHFNN 16-1-1

are shown in table 5. After training the network on 40

patterns, weights of various connections from input

to hidden layer and from hidden to output layer are

shown in table 3. This network reduces sum of

squared error to 0.0125 in 10 million epochs. Though

this network is taking exponential time for the

execution but good thing is that network converges.

After that three neurons have been taken at hidden

layer with two bias values at hidden layer and at

output layer as shown in figure 3. After training the

network on same data set, this network reduces the

sum of squared error to 1.3589e-005 in 70, 63978

epochs. The weights of various connections of this

network from input to hidden layer and from hidden

to output layer are shown in Table 4. This network

also takes large time to converge but less than the

previous network. Both the networks predict the

software development effort precisely. From this

experiment, it is clear that as the neurons at hidden

layer increases, network is taking less time to

converge. But it is not always true because in further

experiment it is shown that OHFNN 16-19-1 takes

less time to converge than OHFNN 16-23-1. The

basic data processing unit of neural network is called

the neuron. The parameters used in OHFNN 16-3-1

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

160

are shown in Table 6. From various simulation runs

OHFNN 16-19-1 is optimal structure for convergence

in less time. Root mean square errors for OHFNN 16-

19-1 at different learning rates are represented in

Table 7. Using this model software development

efforts of 19 projects have been predicted as shown in

Table 2. In this architecture only three neurons have

been taken at hidden layer. How many neurons

should be taken at hidden layer is not decided by any

formulae in neural network. By hit and trial method

number of neurons at hidden layer can be decided.

Here a program is written in MATLAB to implement

this prediction model in which a variable is taken for

number of neurons at hidden layer. By varying the

number of neurons at hidden layer, sum of mean

squared error can be reduced up to tolerance range in

minimum number of epochs. In this simulation work

first neural network has been trained on 40 patterns

and then validated on another data set [27]. In this

model gradient descent with momentum training has

been used.The proposed algorithm shows better

results in terms of predicted accuracy than the

existing algorithms of NN Tool as shown in table 8.

But this model takes large epochs for convergence to

obtain the accuracy. Here our main objective is to

predict software development effort accurately.

Therefore, the large number of epochs can be

compromised for better prediction because the

training is one time process. When the network is

trained correctly with the training pattern set;

software development effort is predicted precisely

using this network. Comparison between actual

efforts with predicted efforts of 19 object oriented

software projects using existing traingda learning

algorithm of NNTool is shown in the Figure 4. By

varying the number of neurons at hidden layer of

neural network architecture, the optimal neural

architecture of OHFNN is 16-19-1 for traingdm and

traingda training methods of NNTool. Best validation

performance of OHFNN 16-19-1 with traingda is

0.0088132 at epoch 2173 and the best validation

performance of OHFNN 16-19-1 with traingdm is

.012839 at epoch 1, 00,900. During the analysis of

this work it has been found that development effort of

some projects is not predicted precisely. From table 7

best root mean square error is 0.00149074 for

network architecture OHFNN 16-19-1 at learning

rate 1.01 and at momentum 0.7 in one million

epochs.

5. Conclusion and Future Scope

In this research work, by a large number of

simulation work some of the above suitable

architecture of OHFNN has been given to predict the

development effort accurately. Performance index of

prediction model depends not only on the architecture

of network and learning algorithm for training but

also on historical data sets of various projects. In this

study, OHFNN 19-16-1 has been fixed with both the

training algorithms for having common platform in

the comparison of the performance. In future other

neural network like Radial Basis Function (RBF) can

be used for the prediction model. With the help of

wide range data sets on various diverse projects,

prediction model can be trained and used to predict

the software development effort. Software

development cost and time are also dependent on

development effort. So by predicting development

effort accurately requirements of software cannot be

overestimated or underestimated. Correlation

coefficient between actual and predicted effort using

proposed algorithm is 0.999966 and correlation

coefficient between actual and predicted effort using

NNTool is 0.980257. So, it can be said that proposed

algorithm of prediction model is better than algorithm

of NNTool in terms of accuracy. But in terms of

number of epochs and time algorithms of NNTool is

better than proposed algorithm. In this model,

training of network is very slow. Training may be

fast by using faster algorithm. The fast algorithm uses

heuristic and optimization techniques for increasing

the speed of network training. Conjugate gradient,

Quasi-Newton and Levenberg-Marquardt algorithms

of MATLAB NN tool may be used to increase the

performance of network. These fast algorithm uses

optimization techniques for increasing the

performance. Multilayer feed forward network as

bidirectional associative memory architecture can

also be used to train this prediction model of software

development effort. Two hidden layers feed forward

network may be used to train the network of

prediction model. For adjusting the weights of

connection for better results Neuro GA or Neuro PSO

may be applied. Both GA and PSO are optimization

techniques.

References

[1] B.W. Boem, Software Engineering Economics,

Prentice-Hall, Englewood Cliffs, NJ, 1981.

[2] Taghi M. Khoshgoftaar, Abhijit S. Pandya, and

Hemant B. More, “A Neural Network Approach

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

161

for Predicting Software Development Faults”, 0-

8186-2975-4/92 IEEE, 1992.

[3] Taghi M. Khoshgoftaar, Robert M. Szabo,

“Improving Neural Network Predictions of

Software Quality Using Principal Components

Analysis”, IEEE World congress on

computational Intelligence, 1994 IEEE

international conference volume:5, pp. 3295-

3300 DOI:10.1109/ICNN.1994.374764.

[4] Taghi M. Khoshgoftaar, Edward B. Allen et.al,

“Application of Neural Networks to Software

Quality Modeling of a Very Large

Telecommunication System”, IEEE Transactions

on Neural Networks VOL. 8, NO. 4, July 1997.

[5] K.K. Shukla, “Neuro-genetic prediction of

software development effort”, Information and

Software Technology 42(2000) 701-713

ELSEVIER.

[6] Colin J. Burgess, Martin Leffley, “Can genetic

programming improve software effort

estimation? A comparative evaluation”,

Information and Software Technology 43(2001)

863-873 ELSEVIER.

[7] Eung Sup Jun, Jae Kyu Lee, “Quasi-optimal

case-selective neural network model for software

effort estimation”, Expert Systems with

Applications 21(2001) 1-14 PERGAMON.

[8] Nidhi Gupta, Manu Pratap Singh, “Estimation of

software reliability with execution time model

using the pattern mapping technique of artificial

neural network”, Computers & Operations

Research 32(2005) 187-199, ELSEVIER.

[9] Tibor, Gyimothy, Rudolf Ferenc, and IstvanSiket,

“Empirical Validation of Object- Oriented

Metrics on Open Source Software for Fault

Prediction”, IEEE Transactions on Software

Engineering, VOL. 31, NO. 10 October 2005 pp

897-910.

[10] Liang Tian, AfzelNoore, “Evolutionary neural

network modeling for software cumulative failure

time prediction”, Reliability Engineering &

System Safety 87(2005) 45-51 ELSEVIER.

[11] Alaa F. Sheta, “Estimation of the COCOMO

Model Parameters using Genetic Algorithms for

NASA Software Projects”, Journal of Computer

Science 2(2): 118-123, ISSN 1549-3636, 2006.

[12] K.K. Agarwal, Yogesh Singh, ArvinderKaur, and

RuchikaMalhotra, “Application of Artificial

Neural Network for Predicting Maintainability

using Object Oriented Metrics”, World Academy

of Science Engineering and Technology 22 2006.

[13] S. Kanmani, V. RhymendUthariaraj, V.

Sankaranarayanan, P. Thambidurai, “Object-

oriented software fault prediction using neural

networks”, Information and Software Technology

49(2007) 483-492 ELSEVIER.

[14] Yogesh Singh, ArvinderKaur, RuchikaMalhotra,

“Predicting Testing Effort using Artificial Neural

Network”, Proceedings of the World Congress on

Engineering and Computer Science 2008.

[15] JieXu, Danny Ho and Luiz Fernando Capretz,

“An Empirical Validation of Object-Oriented

Design Metrics for Fault Prediction”, Journal of

Computer Science 4(7): 571-577, 2008.

[16] Ch. Satyananda Reddy, KVSVN Raju, “A

Concise Neural Network Model for Estimating

Software Effort”, International Journal of Recent

Trends in Engineering, Issue.1, Vol. 1, May 2009

pp. 183-193.

[17] Ch. Satyananda Reddy and KVSVN Raju, “An

Optimal Neural Network Model for Software

Effort Estimation”, Int. J. of Software

Engineering, IJSE Vol.3 No.1 January 2010 pp

63-78.

[18] Yuming Zhou, BaowenXu, Hareton Leung, “On

the ability of complexity metrics to predict fault-

prone classes in object-oriented systems”, The

Journal of Systems and Software 83(2010) 660-

674, ELSEVIER.

[19] Alaa F. Sheta, Alaa Al-Afeef, “A GP Effort

Estimation Model utilizing Line of Code and

Methodology for NASA software projects” 978-

1-4244-8136-1 IEEE Transaction, 2010 pp. 284-

289.

[20] RuchikaMalhotra, Yogesh Singh, “On the

Applicability of the Machine Learning

Techniques for Object Oriented Software Fault

Prediction” Software Engineering: An

International Journal (SEIJ), VOL. l, NO. 1,

September 2011.

[21] SaurabhShrivastava, Manu Pratap Singh,

“Performance evaluation of feed-forward neural

network with soft computing techniques for hand

written English alphabets”, Applied Soft

Computing 11(2011) 1156-1182.

[22] Anil Kumar, C. S. Yadav et.al, “Parameter

Tuning of COCOMO Model for Software Effort

Estimation using PSO” ISBN 978-93-81583-34-0

pp. 99-105 ICIAICT 2012.

[23] Manisha Singh, Somesh Kumar, “Exploring

Optimal Architecture of Multi-layered Feed-

forward (MLFNN) as Bidirectional Associative

Memory (BAM) for Function Approximation”,

IJCA (0975-8887), Vol. 76, No. 16, August 2013.

[24] E. Praynlin, P. Latha, “Performance Analysis of

Software Effort Estimation Models Using Neural

Networks”, I.J. Information Technology and

Computer Science, 2013, 09,101-107.

[25] Somesh Kumar, Manu Pratap Singh et al

,“Hybrid evolutionary techniques in feed forward

neural network with distributed error for

classification of handwritten Hindi (SWARS)”,

Connection Science, 2013 Taylor & Francis pp.

197-215.

[26] Chandra Shekhar, Raghuraj Singh, “Tuning of

COCOMO81 Model Parameters for estimating

software development effort using GA for

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

162

PROMISE Project Data Set”, International

Journal of Computer Applications (0975-8887)

vol. 90, No. 1 Foundation of computer science,

New York, USA,2014 pp. 37-43.

[27] Data Website:

http://promise.site.uottawa.ca/SERepository/datas

ets/cocomo81.arff.

Mr. Chandra Shekhar Yadav is an

Associate Professor in Computer Science &

Engineering Department at Noida Institute

of Engineering & Technology (NIET),

Greater Noida. He has about 15 years of

experience in teaching. He received Master

of Computer Application degree from

Institute of Engineering & Technology (IET), Lucknow in

year 1998, M. Tech (Computer Science & Engineering)

from JSSATE, Noida in year 2007. Currently he is

pursuing Ph.D. (Computer Science & Engineering) from

U.P. Technical University, Lucknow. He has supervised 06

M. Tech. theses.

Dr. Raghuraj Singh is Professor and

Head in Computer Science &

Engineering Department at Harcourt

Butler Technological Institute (HBTI),

Kanpur. He has about 24 years of

experience in teaching & research at

various other Institutions like Birla

Technical Training Institute, Pilani and C. R. State College

of Engineering, Murthal, Distt.-Sonepat. He received B.

Tech. degree from H.B.T.I., Kanpur, M.S. (Software

Systems) from BITS, Pilani and Ph.D. degree from U. P.

Technical University, Lucknow. His area of research is

software Engineering and Human Computer Interface. He

has published more than 80 research papers in various

National and International journals & conferences. He has

supervised 07 Ph.D. and 20 M. Tech. theses.

Table 2: Actual and predicted software development effort of 19 projects

S. No. I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 A_Eff P_Eff

1 VH H H VH VH N N VH VH VH N H H H L 227 1181 1181

2 H L H N N L L N N N N H H N L 14 60 51.73565

3 N N H H N N N N N N N N N N N 16 114 113.5806

4 N N H N N N N N N N N N N N N 13 60 60.06093

5 N N H N N N N N N N N N N N N 8 42 44.5997

6 N N N N N N N N H H N N N N N 10 48 51.73565

7 H L H N N L L N N N N H H N L 24.6 117.6 99.90332

8 H L H N N L L N N N N H H N L 2.2 8.4 19.0292

9 H L H N N L L N N N N H H N L 3.5 10.8 21.40785

10 N L H N N L L H VH H N H N N N 15 48 44.5997

11 N L H N N L L H H H N H N N N 31.5 60 59.46626

12 N L H N N L L H VH H N H N N N 6 24 20.81319

13 N L H N N L L H VH VH N H N N N 20 72 66.00755

14 H L H N N L L N N H N N H VL N 302 2400 2400.058

15 H N H H H L H N H N N N L VH N 219 2120 2119.972

16 H N H H H L H N H N N N L VH N 50 370 368.6908

17 N N H N H N N H H N N H H N H 47.5 252 252.137

18 H H N N N L L N H H N H N N N 79 400 400.208

19 N H L N N H N H H N N N H H N 282 1368 1367.724

http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.arff
http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.arff

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

163

Table 3: Weights of various connections from input to hidden layer (Wih) and from hidden to output layer

(Whj) for OHFNN 16-1-1

Table 4: Weights of various connections from input to hidden layer (Wih) and from hidden to output layer

(Whj) OHFNN 16-3-1

Table 5: Parameters used in OHFNN 16-1-1 Architecture

Parameters Number/Values

Input Neurons 16

Neurons in hidden layer(h1) q1 01

Number of patterns Q 40

Learning rate, η 0.98

Momentum, 0.7

Tolerance, τ 0.00001

Learning Algorithm Back Propagation with gradient descent

Table 6: Parameters used in OHFNN 16-3-1 Architecture

Parameters Number/Values

Input Neurons 16

Neurons in hidden layer(h1) q1 03

Number of patterns Q 40

Learning rate, η 0.98

Momentum, 0.7

Tolerance, τ 0.00001

Learning Algorithm Gradient descent back Propagation

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

164

Table 7: Root mean square errors for OHFFN 16-19-1 at different learning rates

epochs

Root Mean Square errors

Momentum α=0.7

η= 0.01 η= 0.8 η=0.7 η=0.5 η=1.05 η=1.01 η=0.98

10 thousand 0.01054032 0.00753939 0.00799794 0.00847195 0.00746453 0.00736268 0.00748933

50 thousand 0.00615286 0.00457790 0.00503273 0.00519174 0.00484754 0.00448162 0.00489588

100 thousand 0.00498955 0.00409193 0.00452595 0.00461027 0.00440810 0.00398843 0.00443357

200 thousand 0.00449541 0.00342913 0.00417068 0.00424649 0.00403550 0.00327033 0.00385286

300 thousand 0.00429477 0.00289301 0.00389827 0.00402509 0.00359866 0.00271478 0.00317870

400 thousand 0.00415403 0.00247100 0.00351732 0.00376302 0.00300512 0.00230791 0.00260461

500 thousand 0.00402252 0.00216147 0.00305622 0.00342543 0.00241248 0.00203263 0.00221567

1 million 0.00308021 0.00150979 0.00165208 0.00182862 0.00159311 0.00149074 0.00151314

Table 8: Comparison between Actual Effort and Predicted Effort

S. No. I16 Actual Effort Predicted Effort using proposed Algorithm Predicted Effort using NNTool

1 227 1181 1181 1184.568

2 14 60 51.73565 77.30614

3 16 114 113.5806 111.7966

4 13 60 60.06093 68.38662

5 8 42 44.5997 56.49295

6 10 48 51.73565 46.91889

7 24.6 117.6 99.90332 121.3112

8 2.2 8.4 19.0292 30.32779

9 3.5 10.8 21.40785 35.67976

10 15 48 44.5997 48.76234

11 31.5 60 59.46626 74.33283

12 6 24 20.81319 41.03172

13 20 72 66.00755 83.2527

14 302 2400 2400.058 1691.815

15 219 2120 2119.972 2043.856

16 50 370 368.6908 431.7251

17 47.5 252 252.137 60.06093

18 79 400 400.208 411.5066

19 282 1368 1367.724 1375.455

Figure 2: OHFNN 16-1-1with one neuron

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

165

Figure 3: OHFNN 16-3-1 with three neurons

0 30 60 90 120 150 180 210 240 270 300 330

-250

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Ef
fo

rt
s(

in
 m

on
th

s)

>

KLOC--->

 Actual Effort

 Predicted Effort using proposed Algorithm

 Predicted Effort using NNTools

Figure 4: Comparison between Actual effort and Predicted effort using proposed algorithm and traingda

algorithm of NNtool

