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Abstract  
 

The software reliability generally depends upon the 

rate of failures, or the number of faults occurred in 

mean execution time and the numbers of faults are 

expected to occur during the course of execution of 

software. There are various models have been 

proposed to predict the expected number of faults 

for various types of software structure. In this paper 

we are predicting the number of expected faults 

occurred in each component of software as well as 

for the whole software in the expected execution 

time interval using component based neural 

network architecture. The simulation design and 

implementation results are suggesting there may be 

more number of predicted faults in components 

than the number of predicted faults in the complete 

software. 
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1. Introduction 
 

Software Reliability is defined as the probability of 

failure-free software operation for a specified period 

of time in a specified environment [1]. IEEE defines 

the reliability as “The ability of a system or 

component to perform its required functions under 

stated conditions for a specified period of time [2].” 

Software reliability is the probability of a software 

system to perform its specified functions correctly 

over a long period of time or for different input set 

under the usage environments similar to that of its 

target customer [3]. The Software reliability is 

defined in terms of expected number of faults occurs 

in mean execution time interval.  
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The fault prediction to estimate the software 

reliability is a challenging, interesting and important 

exercise, because software reliability is becoming 

more and more important in software industry. 

Various techniques are required to discover the faults 

in the development of software. However the 

reliability of software is measured in terms of failure 

and it is impossible to measure reliability before the 

software is completely developed. Software 

reliability is the most extensively studied quality 

among all the quality attributes [1]. The prediction of 

faults for estimating the software reliability is an 

essential requirement to know the global behaviour of 

the software and to ensure its proper working in 

future. 

  

The software reliability generally depends upon the 

rate of failure in mean execution time or the number 

of faults occurred in execution time interval. The 

faults are likely to occur during the software design 

process i.e. from the requirements to realization. The 

number of faults increased as the size and complexity 

of the software increases. It is understood that as the 

more number of faults in the software, the rate of 

failure of software increases and the reliability of the 

software decreases. The faults that are introduced 

during the implementation are also considered as 

design faults. Generally it is not feasible to develop 

complex fault-free software, and even then, it is 

rarely feasible to guarantee that software is free of 

faults. Some formal methods can prove the 

correctness of software this means it matches to a 

specification document. However, today’s formal 

verification techniques are not designed for the 

application to large software systems such as 

consumer operation systems or word processors. 

Furthermore, correctness does not ensure reliability 

because the specification document can itself be 

faulty. As it is not feasible to develop complex 

software systems free of faults and the absence of 

faults cannot be guaranteed, the reliability of 

software needs to be evaluated in order to fulfil high 

dependability requirements. Obviously, copies of 

(normal) software will fail together, if executed with 

the same parameters. This shows that the 

independence assumption does not hold. More 

precisely, the failure probabilities of software copies 
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are completely dependent. This makes many 

hardware fault tolerance principles ineffective for 

software. Instead of using redundant copies, software 

reliability can be improved by using design diversity. 

A common approach for this is the so called N-

version programming, introduced by Chen and 

Avižienis [4, 5]. However, the research of Knight and 

Leveson [6] indicates, that design diversity is likely 

to be less effective for software than N-modular 

redundancy in hardware reliability engineering. Some 

studies have shown that for complex systems, the 

majority of failures are typically caused by software 

faults. Although software faults are design faults, 

their behaviour in dependable systems is similar to 

transient hardware faults. This is due to the stochastic 

of their activation conditions [7].  

 

It is quite natural that to maintain the correct 

functionality of the software or fault free execution of 

software, the number of faults likely to be occurred in 

future execution time interval should be predicted 

and resolved. This prediction becomes essential for 

the component based software system, because the 

number of faults in complete software execution may 

or may not depend upon the number of faults in the 

components during the same execution time interval. 

Therefore for component based software model, the 

prediction of faults from execution of complete 

software must be observed with the prediction of 

number of faults of each component in the same 

execution time interval. This may suggest the number 

of faults likely to be occurred in future execution 

time interval may depend on the number of faults 

likely to be occurred in each component. In spite of 

different statistical approaches [8-10] for estimating 

the software reliability, techniques of Artificial 

Neural Network (ANN) are emerging as powerful 

tool for predicting the faults in future execution time 

interval for estimating the software reliability 

[11,12,13]. It has proven to be a universal 

approximates for any non-linear continuous function 

with an arbitrary accuracy [14, 15, 16, 17]. It has 

become an alternative method in software reliability 

modelling, evolution and prediction. Karunanithi, et 

al., [18] were the first to propose using neural 

network approach in software reliability prediction. 

Aljahdali, et. al., [19, 20], Adnan, et. al., [21], Park, 

et al., [22] and Liang, et.al., [15, 16] have also made 

contributions to software reliability predictions using 

neural networks, and have gained better results as 

compared to the traditional analytical models with 

respect to predictive performance. Karunanithi et al. 

[18] reports the use of neural networks for predicting 

software reliability, including experiments with both 

feed-forward and Jordan networks with a cascade 

correlation learning algorithm. Wittig and Finnie [23] 

describe their use of back propagation learning 

algorithms on a multilayer perception in order to 

predict development effort. An overall error rate 

(MMRE) obtained which compares favourably with 

other methods. Another study by Samson et al. [24] 

uses an Albus multilayer perception to predict 

software efforts on Boehm’s COCOMO dataset. The 

work compares linear regression with a neural 

networks approach using the COCOMO dataset. But, 

both approaches seem to perform badly with MMRE 

of 52.7% and 42.1%, respectively. Srinivasan and 

Fisher [25] also report the use of a neural network 

with a back propagation learning algorithm. They 

found that the neural network outperformed other 

techniques and gave results up to 70%. However, it is 

not clear that how the dataset was divided for training 

and validation purposes. Khoshgoftaar et al. [26] 

presented a case study considering real time software 

to predict the testability of each module from source 

code static measures. They consider ANNs as 

promising techniques to build predictive models, 

because they are capable of modelling nonlinear 

relationships. The new trends in software engineering 

are for component based software design. Now it is 

important to estimate the reliability of component 

based software. 

 

Component reliability can be derived using Software 

Reliability Models (SRMs), Software Reliability 

Growth Models (SRGM), or fault seeding models 

[27]. First, components should be tested and/or 

inspected separately before they are integrated with 

other components. The faults can be detected and 

tested in each component during component testing 

and/or inspection. Thus, reducing the number of 

faults must be managed during system testing. It is 

possible to estimate component reliability after 

predicting the number of faults for complete software 

and testing each component. The calculation for the 

prediction of number of faults for complete software 

based on the prediction of faults for the components 

does not produce an accurate prediction for the 

number of faults likely to be occurred in the software 

system. When components are integrated and interact 

with one another, new faults are expected to be 

triggered and the component reliabilities derived 

during component testing will diminish. However, 

the prediction for the number of faults of the software 

as estimated after the prediction of number of faults 

likely to be occurred in components provide an upper 
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limit for reliability for fault prediction. Since more 

faults are expected to be detected once components 

are integrated, the number of faults in the software 

system is expected to be no better than that derived 

from the component's faults prediction. 

 

Most existing analytical methods to obtain reliability 

measures for software systems are based on the 

Markovian models [28, 29], and they rely on the 

assumption on exponential failed components time 

distribution. The Markovian models are subject to the 

problem of intractably large state space. Methods 

have been proposed to model reliability growths of 

components, which can be accounted for by the 

conventional analytical methods [30], but they are 

also facing the state space explosion problem. 

Discrete event simulation, on the other hand, offers 

an attractive alternative to analytical methods as it 

can capture a detailed system structure when 

performing software reliability analysis. Some 

simulation methods have been proposed, and a 

detailed description of simulation techniques for 

software reliability analysis and evaluation can be 

found in [31]. However, for component based 

software systems, it is difficult to analyse the 

influence to reliability caused by dependency among 

components. Based on the Shooman model [32, 33], 

a new structure based software reliability model is 

proposed. This model assumes that the software 

components have a high reliability, the component 

failures are independent, and the execution path 

failures are independent.  

 

The reliability of a software product is usually 

defined to be “the probability of execution without 

failure for some specified interval of natural units or 

time”. This is an operational measure that varies with 

how the product is used. Reliability of a component 

is measured in the context of how the component will 

be used. That context is described in an operational 

profile. Reliability of a piece of software may be 

computed or measured. If the software has not been 

built yet, its reliability can be computed from a 

structural model and the reliabilities of the individual 

parts that will be composed to form the software. 

There is error associated with this technique due to 

emergent behaviours, i.e. interaction effects, which 

arise when the components must work together. If the 

software is already assembled, the reliability can be 

measured directly. The measurement is taken by 

repeatedly executing the software over a range of 

inputs, as guided by the operational profile. The test 

results for the range of values are used to compute 

the probability of successful execution for a specific 

value. The error associated with this approach arises 

from the degree to which the actual operation 

deviates from the hypothesized operation assumed in 

the operational profile. Roshanak [34] discussed the 

uncertainty of the execution profile is modelled using 

stochastic processes with unknown parameters, the 

compositional approach to calculate overall reliability 

of the system as a function of the reliability of its 

constituent components and their (complex) 

interactions and sensitivity analysis to identify 

critical components and interactions will be provided. 

Lance Fiondella and Swapna S. Gokhale [35] 

considered the estimation of software reliability in 

the presence of architectural uncertainties and 

presented a methodology to estimate the confidence 

levels in the architectural parameters using limited 

testing or simulation data based on the theory of 

confidence intervals of the multinomial distribution. 

The sensitivity of the system reliability to uncertain 

architectural parameters was then quantified by 

varying the parameters within their confidence 

intervals. C. Smidts [36] presented architecturally 

based software reliability model and underlines its 

benefits. The models based on architecture derived 

from the requirements which captures both functional 

and non-functional requirements and on a generic 

classification of functions, attributes and failure 

modes. The model focuses on evaluation of failure 

mode probabilities and uses a Bayesian quantification 

frame work. Leslie Cheung and Leana Golubchik 

[37] discussed representative uncertainties which 

have identified at the level of a system’s components, 

and illustrate how to represent them in reliability 

modelling framework. 

 

In this paper, we are predicting the number of faults 

likely to be occurred in each component of the 

software as well as for the whole software for the 

future execution time interval using Component 

Based Neural Network Architecture (CBNNA). In 

this, we consider three layers of Feed Forward Neural 

Network Architecture (FFNNA) consisting of Input 

layer, Hidden layer and Output layer. In this 

architecture, the hidden layer consist with number of 

units correspond to the number of components in the 

software. Thus each unit of hidden layer itself is a 

separate Multilayer Feed Forward Neural Network 

Architecture (MFFNNA) consisting with three layers. 

Neural network architecture for each component is 

considered the execution time interval as an input 

pattern to the input layer of components and trained 

with generalized delta learning rule for the observed 
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number of faults in components. This process is 

considered for each component of the software. The 

output units of each component will provide the input 

to the output layer which is also a MFFNNA. In this 

neural network architecture, we have a input layer, 

two hidden layer and a output layer. The input layer 

considers the input pattern vector which is 

constructed from the simulated output of each 

component for the given execution time interval. This 

neural network considers the number of faults 

observed from the execution of complete software for 

the given execution time interval as target or object 

output pattern vector. This neural network is also 

trained with generalized delta learning rule and it is 

used to predict the expected number of faults in the 

future execution time interval. In this process, for the 

same execution time interval the CBNNA is trained 

for the observed faults of the complete software. 

Therefore on completion of training pattern from the 

training set the future execution time interval is 

presented as input pattern to the input layer for 

CBNNA and it is expected that this trained network 

will predict the number of faults likely to be 

occurred. Thus, our proposed CBNNA is expected to 

predict the number of faults for the complete 

software with the dependency of predicted faults in 

the each component of the component based 

software. The prediction for the expected number of 

faults in future execution time interval is also 

observed from each component and the predicted 

faults is presented as input pattern to the input layer 

of CBNNA to predict the faults from complete 

software for the same expected execution time 

interval. Thus, the faults prediction for the complete 

software depends upon the prediction of faults from 

each component. The simulated results indicate that 

the predicted faults for the whole software shows a 

weak dependency upon the predicted faults of 

components. Result also shows that the numbers of 

predicated faults from the complete software are less 

than total number of predicated faults of all 

components. 

 

2. Literature Review 
 

In recent years, many papers have presented various 

models for software reliability prediction [1]. In this 

section, the work related to neural network modelling 

for software reliability and prediction is presented. 

Numerous factors like software development process, 

organization, testing, software complexity, software 

faults and possibility of occurrence affect the 

software reliability. These factors represent non-

linear pattern. Neural network methods normally 

approximate any non-linear continuous function. So, 

now-a-days, more attention is given to neural 

network based methods. 

 

Karunanithi et al. [38, 14] first presented neural 

network based software reliability model to predict 

cumulative number of failures. They used execution 

time as the input of the neural network. They used 

different networks like feed forward neural networks, 

Jordan neural network and Elman neural network in 

their approach. They used two different training 

regimes like prediction and generalization in their 

study. They compared their results with statistical 

models and found better prediction. Karunanithi et al. 

[18] also used connectionist models for software 

reliability prediction. They applied the Falman’s 

cascade Correlation algorithm to find out the 

architecture of the neural network. They considered 

the minimum number of training points as three and 

calculated the average error (AE) for both end point 

and next-step prediction. Their results concluded that 

the connectionist approach is better for end point 

prediction.  

 

Sitte [13] presented a neural network based method 

for software reliability prediction. He compared the 

approach with recalibration for parametric models 

using some meaningful predictive measures with 

same datasets. They concluded that neural network 

approach is better predictors. 

 

Cai et al. [39] proposed a neural network based 

method for software reliability prediction by using 

back propagation algorithm for training. They used 

multiple recent 50 failure times as input to predict the 

next-failure time as output and evaluated the 

performance of approach by varying the number of 

input nodes and hidden nodes. They concluded that 

the effectiveness of the approach generally depends 

upon the nature of the handled data sets.  

 

Tian and Noore [15, 16] presented an evolutionary 

neural network based method for software reliability 

prediction by using multiple-delayed-input single 

output architecture. They used genetic algorithm to 

optimize the number of input nodes and hidden nodes 

of neural network.  

 

Viswanath [40] proposed two models such as neural 

network based exponential encoding (NNEE) and 

neural network based logarithmic encoding (NNLE) 

for prediction of cumulative number of failures in 
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software. He encoded the input i.e. the execution time 

using the above two encoding scheme. He applied the 

approach on four datasets and compared the result of 

the approach with statistical models and found better 

results.  

 

Hu et al. [41] proposed ANN model to improve the 

early reliability prediction for current projects/ 

releases by reusing the failure data from past 

projects/ releases. Su et al. [42] proposed a dynamic 

weighted combinational model (DWCM) based on 

neural network for software reliability prediction. 

They used different activation functions in the hidden 

layer depending upon the SRGM. They applied the 

approach on two data sets and compared the result 

with statistical models. The experimental result 

shows that DWCM approach provides better result 

than the traditional models.  

 

Aljahdali et al. [43] investigated the performance of 

four different paradigms for software reliability 

prediction. They presented four paradigms like multi-

layer perceptron neural network, radial-basis 

functions, Elman recurrent neural networks and a 

neuro-fuzzy model. They concluded that the adopted 

model has good predictive capability. All of the 

above mentioned models only consider single neural 

network for software reliability prediction. In [44], it 

was presented that the performance of a neural 

network system can be significantly improved by 

combining a number of neural networks. Jheng [45] 

presented neural network ensembles for software 

reliability prediction. He applied the approach on two 

software data sets and compared the results with 

single neural network model and statistical models. 

Experimental results show that neural network 

ensembles have better predictive capability.  

 

In [46, 63] feed forward neural network for software 

reliability prediction is used. In this approach back 

propagation algorithm is applied to predict software 

reliability growth trend. The experimental result had 

shown that the proposed system has better prediction 

than some traditional software reliability growth 

models. 

 

3. Component Based Software 

Prediction Models 
 

Computer system plays a very important role in our 

daily lives as computer system failures can lead to a 

huge economic loss or even endanger human life. 

Reliability is one of the most important quality 

requirements of computer systems. A computer 

system comprises of hardware and software. The 

growing importance of software dictates that the 

software reliability is the major stumbling block in 

highly dependent computer system. Researchers have 

focused on procedural and object oriented software 

reliability. However, at present, there is a lack of 

similar research effort for Component Based 

Software (CBS). Furthermore, owing to certain 

specific features of CBS, existing reliability 

assessment frameworks for procedural or object 

oriented software cannot be applied as such to CBS. 

However, neither Black Box Statistical Software 

Testing (BBSST) nor any other existing testing 

models are capable of adequately support modern 

CBS development techniques. To support these 

techniques, testing models are needed to: 

1. Explain the dependency of failure 

probability for software on its components.  

2. Exploit reused software components of 

known reliability to estimate overall system 

reliability.  

 

The above two points requires statistical models to 

describe the failure patterns for both individual 

software components and compositions of those 

components. The existing software reliability models 

for legacy systems are inappropriate for CBS. There 

is a need of such type of models which is based upon 

the system architecture. Many reliability models 

based upon the system architecture have been 

proposed. These models are known as architecture 

based reliability model, which may be used for the 

following reasons: 

 To develop a method that analyses the 

application reliability built from the 

commercial off-the-shelf components 

(COTS) software components.  

 To understand system reliability dependency 

on individual component reliabilities and 

their interconnection mechanism. 

 

Swapna S. Gokhale [48] proposed some limitations 

for architecture based analysis technique. She 

classified the limitations into five categories namely 

modelling, analysis, parameter estimation, validation 

and optimization. Modelling limitations include 

concurrent execution, non-Markov transfer of 

control, non-exponential sojourn time, and interface 

failures etc. Analysis limitation includes reliability 

estimation, sensitivity and interface analysis, 

uncertainty quantification etc. Standard software 

engineering concept of a component is the basic 
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entity in the architecture based approach. A 

component is conceived as a logically independent 

entity of the system which performs a particular 

function. Component can be independently designed, 

implemented, and tested. User can define the 

component which depends on the factors such that 

probability of getting required data. Software 

architecture is the way of defining the software 

behaviour with respect to the manner in which 

different software components interact with each 

other. Beside this the failure behaviour is also 

associated with software architecture. Component 

failure behaviour can be expressed in terms of their 

reliabilities or failure rates.  

 

Component Based Software Reliability Prediction 

Component Based Software Engineering (CBSE) is a 

branch of software engineering which emphasizes the 

separation of concerns in respect of the wide-ranging 

functionality available throughout a given software 

system. Software engineers regard components as 

part of the starting platform for service-orientation. 

Components play this role, for example, in Web 

Services, and more recently, in Service-Oriented 

Architecture (SOA) – whereby a component is 

converted into a service and inherits further 

characteristics beyond that of an ordinary component. 

An individual component is a software package. To 

make a component based system the required 

components are put together, each component can 

communicate to other component via their interface 

characteristics. 

 

Many of the researchers have proposed the various 

models for the estimation for the prediction of 

component based software reliability. The number of 

techniques for estimating the reliability of CBS 

system has been proposed. In order to estimate the 

reliability of CBS system, it is required to measure 

the reliability of each component of the system. The 

reliability of the system is based on the reliabilities of 

the individual components and the system 

architecture. Jean Dolbec and Terry Shepard 

proposed a model that estimates software system 

reliability from the reliability of its components and 

the usage ratio of each component. The Shooman’s 

execution path model when transformed into a 

component based model, defines the reliability of a 

system as a function of the reliability of the 

components and it’s usage ratios.  

In [49] provide a survey of the research techniques 

and performed an analytical study for the estimation 

of system reliability based on component reliability 

and architectures. In their approach they considered 

the attribute of reliability component and credibility 

value, i.e. the risk parameter associated with 

reliability and computed the reliability as the product 

of reliability of successful reading data with the 

probability of correct execution of the actual function 

provided by the component and the probability for 

successful writing of the data. They could not 

estimate the values of these components and the 

credibility parameter and remain as the limitations of 

their work for Modelling of component 

dependencies. 

 

In [50] proposes an approach to analysing the 

reliability of the system based on the reliability of the 

individual components and architecture of the 

system. They assumed the failures of software 

components are independent and the transfer of 

control among software components follows a 

Markov process. They predicated the reliability of the 

system is the product of components reliability. They 

utilized the Markov process to model the failure 

behaviour of the applications. They have proposed 

three methodologies for estimating the reliability of 

software system. The limitations of their study were 

that they have not explained anything about to assess 

reliability of individual component and have not 

studied effect of component failure on system failure. 

No specific reason was given for the second 

assumption which contradicts the study for the 

dynamic systems. 

 

In [51] a reliability assessment method is proposed 

for incorporating the interaction among software 

components based on Analytic Hierarchy Process 

(AHP) to consider the effect of each software 

component on the reliability of entire system under 

distributed development environment and concluded 

that, the logarithmic Poisson execution time model 

fits better than the other SRGM’s for the actual data 

set. They have also compared the inflection S-shaped 

software reliability growth model and the other 

models based on a Non-Homogeneous Poisson 

Process (NHPP), applied to reliability assessment of 

the entire system. They have not explained how AHP 

works in this area whether it requires some expert to 

use it, was the limitation here. 

 

In [52] an integrated approach is proposed for 

modelling and analysing of component based systems 

with multiple levels of failures and faults recovery 

both at the software as well as the hardware level. 

Then they have used this approach to analyse overall 
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reliability. In their approach they encompass Markov 

Chain and queuing network modelling for estimating 

system reliability. They have extended the existing 

Discrete Time Markov Chain (DTMC) based 

reliability modelling techniques, modelling 

component based system with restarts and retries. 

Their assumptions of a failure at any software 

component will cause overall failure is not realistic 

and component retries is not true were turn on to the 

limitations.  

 

In [53] a method is proposed to calculate the 

reliability of entire software system based on 

Stochastic Petri Nets (SPN) that evaluates component 

software reliability at the early stages of software 

development by decomposing component software 

into several subsystems and analysing the reliability 

of every subsystem and then by applying 

combinational analysis method. It can describe the 

process of dynamic changes of software, and it also 

considers the factors that affect software reliability by 

analysing the characteristic of software architecture. 

They depend on Markov process to calculate the 

reliability.  In [54] a new approach is proposed to 

evaluate the reliability of CBS in open distributed 

environment by analysing the reliabilities of the 

components in different application domains, the 

reliabilities of the connections to these components 

and the architecture style of their composition. He 

has done a detailed reliability analysis for 

components, connections, architecture styles and 

software system. He depends totally on the previous 

models without any modification to calculate 

component, connection and system reliability. 

 

In [55] a framework is proposed for assessing 

reliability of individual component, model analysis 

for assessing reliability of software system and for 

extension of reliability assessment model to complex 

distributed software system. It came out with the 

limitation that it is not easy to apply. 

 

In [56] overruled the basic assumption that the 

component failure does not necessarily cause a 

system failure unless and until the failure of that 

component propagate the error. They have associated 

each component with error propagation probability, 

propagation path probability; depending on that they 

proposed probabilistic model of a component-based 

system. It is difficult to assess the error propagation 

probability. 

In [57] a methodology is based on the execution 

scenario analysis of the COTS component based 

software application proposed to help the developer 

and integrators to regain some control over their 

COTS components by predicting the upper and lower 

bound on the reliability of their application systems. 

The maximum and minimum reliability values are 

obtained from various execution scenarios. This 

model requires lot of effort. The reliability of 

component can be predicted only after its existence 

with available failure data and not during its 

development. 

 

In [58] a reliability assessment method based on the 

neural network in terms of estimating the effect of 

each component on the entire system is proposed by 

estimating the weight parameter for each component 

from input-output rules of neural network. However 

it is difficult to apply, and require more effort. 

 

In [59] a framework for reliability prediction of 

components at architecture level is proposed. They 

overcome the lack of operational profile information 

by utilizing a variety of other available information 

sources. Also they proposed an approach to use 

hidden Markov models. Their framework provides 

meaningful reliability prediction in the context of 

early stages of software development; but for 

obtaining that, it requires more development time, so 

that their framework is time consuming and requires 

more effort. 

 

In [60] a reliability model has developed and a 

reliability analysis technique for architecture-based 

reliability valuation and developed an approach to 

improve the accuracy of model evaluation by 

improving the accuracy of component reliability as 

well as transition probability. But they have not 

explained how to apply the proposed model to real 

software application. 

 

In [61] reliability prediction model of component-

based software architectures depends on reliabilities 

of components and operational profiles of use case 

packages is proposed. Component Based Software 

Reliability Model (CBSRM) based on the reliabilities 

of resources and component: while a resource can fail 

at any time independent of its usages, so that, the 

reliability of a resource is a function of time, CBSRM 

based on operational profiles: by using the Markov 

model as basic to give prediction of reliability, they 

have developed a way to build operational profile 

which accounts for the influence of the input data and 

user behaviour. 
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4. Artificial Neural Network 
 

The SRM are widely used to assess the software 

reliability. Selecting an appropriate model based on 

the characteristics of the software projects is 

challenging because most of the SRM possesses 

certain restrictions or assumptions. Basically two 

approaches both require users to manually opt for 

candidates are adapted to locate the suitable model. 

The first one is to design a guideline, which could 

suggest fitting models for software projects. The 

other is to select the one with the highest confidence 

after various assessments. The decision-making 

processes would be a huge overhead while the 

software projects are huge and complicated. 

 

In order to reduce such overhead, researchers 

proposed an alternative approach that can adapt the 

characteristics of failure processes from the actual 

data set by using neural networks. For example, 

Karunaithi et al. [38] applied neural network 

architecture to estimate the software reliability and 

used the execution time as input, cumulative the 

number of detected faults as desired output, and 

encoded the input and output into the binary bit 

string. The results showed that the neural network 

approach was good at identifying defect-prone 

modules software failures. Khoshgoftaar et al. [47] 

ever used the neural network as a tool for predicting 

the number of faults in programs. They introduced an 

approach for static reliability modelling and 

concluded that the neural networks produce models 

with better quality of fit and predictive quality. In 

addition, Cai et al. [39] examined the effectiveness of 

the neural network approach in handling dynamic 

software reliability data overall and present several 

new findings. They found that the neural network 

approach is more appropriate for handling datasets 

with smooth trends than for handling datasets with 

large fluctuations and the training results are much 

better than the prediction results in general.  

 

It is well known that the neural networks are learning 

mechanisms that can approximate any non-linear 

continuous functions based on the given data. In 

general, neural networks consist of three components 

mainly neuron, network architecture and learning 

algorithm. Each neuron can receive signal, process 

the signals and finally produce an output signal. 

Figure 1 depicts a neuron, where f is the activation 

function that processes the input signals and produces 

an output of the neuron, x are the outputs of the 

neurons in the previous layer, and w are the weights 

connected to the neurons of the previous layer.   

 
 

Figure 1: Artificial neuron. 

 

The most common type of neural network 

architecture is called feed-forward network as shown 

in Figure 2. This architecture is composed of three 

distinct layers, i.e. an input layer, a hidden layer, and 

an output layer. In this figure the circles are 

represented as neurons and the connection of neurons 

across layers is called connecting weight. The back-

propagation learning algorithm or the generalized 

delta learning rule describes the process to adjust the 

weights of neural network. During the learning 

processes, the weights of network are adjusted to 

reduce the errors of the network outputs as compared 

to the objective answers. In back-propagation 

algorithm, the weights of the network are iteratively 

trained with the errors propagated back from the 

output layer. 

 

Subsequently, we describe the learning algorithm of 

the neural network in a mathematical form. The 

objective of the neural networks is to approximate an 

non-linear function that can receive the vector  

 

 
 

Figure 2: Neural Network Architecture for a Feed 

Forward Network. 
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Figure 3: Design of proposed component based 

Neural Network Architecture (CBNNA). 

 

(x1,x2,...,xn ) in R
N
 and output the vector (y1, y2,…,ym) 

in R
M

. Thus, the network can be denoted as:  

y = F (x),   (1) 

Here x = (x1 ,x2,...,xn ) and y = (y1, y2,…,ym). The 

values of yk are given as: 

 (2) 

Where 
0

jkw is the output “weight” from hidden layer 

node j to output layer node k, bk is the bias of the 

node k, hj is the output of the hidden layer, and g is an 

activation function in output layers. The values of the 

hidden layer is given by  

  (3) 

Where wij is the input “weight” from input layer node 

i to hidden layer node j, bj is the bias of the node in 

the hidden layer, xi is the value at input node i, and f 

is the activation function in hidden layer. The 

approximated function of the neural networks can be 

considered as some compound functions, which can 

be rewritten as nested functions, such as f(g(x)). 

Because of this feature, the neural network can be 

applied to software reliability modelling since 

software reliability modelling is likely to build a 

model to explain the software failure behaviour. 

 

5. Implementation & Simulation 

Design 
 

The reliability prediction in software engineering for 

any type of software whether simple software, 

modular software and CBS, mostly depends upon 

failure intensity. The failure intensity is itself 

depends upon so many factors. The prominent factor 

is on which failure intensity directly proportional to 

the number of faults likely to be occurred in mean 

execution time interval. For any software if the 

numbers of faults are observed in given execution 

time interval then the failure intensity of software can 

be easily determined. The major issue for estimating 

the generalized failure intensity from the predicted 

number of faults in future execution time interval is 

an important phenomenon in software reliability. 

There are several methods in the literature has been 

proposed as we have discussed in previous section. 

The new trends for predicting the failure rate or faults 

with the help of ANN are also applied in various 

manners. The major contribution to use ANN for 

predicting the number of faults is mainly for the 

simple software structure. Here our concern is to 

apply ANN paradigms for predicting the number of 

faults likely to be occurred in future execution time 

interval for CBS. It is quite natural to understand that 

for any CBS the number of faults in the software 

depends upon the number of faults occurring in each 

component. It is also obvious that in a particular 

execution time interval if components are presenting 

more number of faults then in the same time interval 

the whole software will also exhibit more number of 

faults. Thus, we can say that the number of faults in 

entire software is directly depending upon the 

number of faults occurs in the components of the 

software. 

 

Now it is very important to select a particular model 

and technique for software reliability assessment. But 

sometimes software projects cannot fit the 

assumption of a unique model. Therefore to 

overcome from this problem, Lyu and Allen [62] 

have proposed a solution by combining the results of 

different software reliability models. This approach 

inspired us to use the NN based approach to combine 

the fault prediction assessment for each component of 

the software for predicting the number of faults 

assessment for complete software. Now we present 

our proposed approach to accomplish the task of 

predicting the numbers of faults occur in any CBS.  

 

In our proposed method we consider a Component 

Based Feed Forward Neural Network Architecture 

(CBFFNNA) which consists with three layers as 

shown in figure 3. The first layer is an Input layer 

which is presented with input pattern in the form of 

execution time interval as (Δt1, Δt2,......,Δtn) and 

corresponding output patterns are in the terms of 

number of faults observed from the execution of 

complete software in the respected execution time 
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interval Δt. i.e. (F1, F2,......,Fn) . Thus the training set 

for the complete software consist with input-output 

pattern pairs. Now we present the input pattern vector 

to the second layer of our model. The second layer 

consists with the number of components in the 

software. In this layer each component is a feed-

forward neural network. Thus if we have n number of 

components in the software, then we have n neural 

network architectures as NC1, NC2, NC3,......,NCi. 

Each neural network architecture corresponding to 

component say NCi for the i
th 

component consist with 

three layers i.e. Input layer, hidden layer and output 

layer. Thus we can represent the neural network 

architecture for the i
th

 component as NC(xi,hi,yi). 

Therefore, the output for the i
th 

component of neural 

network architecture can be shown as: 

( )i i i iNC x t      (4) 

1

( )
H

i i h hi i

h

NC h f w t


 
  

 
   (5) 

1

( ) ( )
J

i i j jh i i h

j

NC y f w NC h


 
  

 
  (6) 

Let the number of faults observed from the i
th

 

component are (Cf1, Cf2 ,...Cfn ). It is considered as 

the target output for the i
th

 component i.e. NCi to train 

this neural network with back propagation learning 

rule. Here we consider back propagated error in the 

terms of least-mean-square as:  

2

1

1
( ( ) )

2i

J

NC j i i j

j

E Cf NC y


   (7) 

The generalized data learning rule is used to update 

weight vector for the i
th

 component neural network 

architecture. The weight update can be presented as  

ih

i
jh

w

ENC
W




     (8) And, 

hi

i
hi

w

ENC
W




     (9) 

Hence every component provides the simulated 

output after the training for each execution time 

interval of training set. Let for execution time interval 

Δt1 ...Δtn each component say i
th

 provides the 

simulated output as: 
1 2( , ,....., )n

i i iSNC SNC SNC    (10) 

Now we consider input pattern vector to train the 

neural network for complete software i.e. 

CBFFNNA. The input pattern vector for the neural 

network of complete software is of order j×1; so that 

now we select the maximum value of component 

output among the components simulated output for 

execution time interval 
it as:   

1

1 2max( , ,....., )n

i i i i tP SNC SNC SNC   (11) 

Therefore, in this way we construct the input pattern 

vector to the input layer of neural network 

architecture of complete software as: 

]........[ )1()1(2)1(1

T

toNi

T

toN

T

toN PPPP    (12) 

Hence, the input pattern vector P is applied to the 

input layer of the neural network for the complete 

software. This neural network is constructed with two 

hidden layers and one output layer. The target output 

pattern vector to accomplish the training is the 

number of faults observed from the execution of 

software for the given execution time interval i.e. (F1, 

F2, .....,Fn). The output from each hidden layer and 

output layer for this neural network architecture can 

be represented as:  


1

1

1
][1

H

h

iihh PwfCSW    (13) 





2

2

21

1

12 ][
H

h

hhh hwfCSW   (14) 





n

o

hoho CSWwfCSW
1

][
22

  (15) 

Again we consider the generalized the delta learning 

rule to train this neural network. The weights are 

modified according to gradient descent approach to 

minimize the mean square error as:  

 
2

1

1

2

n
F

o o

o

E F csw


 
  

 


  

 (16) 

2

2

oh

k

oh
W

E
W




     (17) 

21

21

hh

k

hh
W

E
W




     (18) 

ih

k

ih
W

E
W

2

1 


     (19) 

In our experiment, we consider a component based 

software system which consists with 5 components 

say C1, C2, C3, C4, C5. Now, we observed the 

execution of software for the execution time from t0 

to t99. We also observed the number of faults during 

the execution from time t0 to t49 as represented in 

table 1.  
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Table 1: Training set in the form of Input-Output 

Pattern pairs for complete software 

 
Execution 

time 

interval 

Execution 

time 

Input to first layer 

(complete software) 

Observed 

faults in 

Dec.& Bin. 

t0 – t4 Δt1 000100 5 00101 

t5 – t9 Δt2 000101 12 01100 

t10 – t14 Δt3 001110 7 00111 

t15 – t19 Δt4 001111 17 10001 

t20 – t24 Δt5 011000 11 01011 

t25 – t29 Δt6 011001 9 01001 

t30 – t34 Δt7 100010 6 00110 

t35 – t39 Δt8 100011 18 10010 

t40 – t44 Δt9 101100 14 01110 

t45 – t49 Δt10 101101 10 01001 

 

In this table 1, we obtained the execution time 

interval by considering the Exclusive OR (XOR) 

operation for the time step of 5. The execution time 

interval is in gray code. The observed faults are 

obtained in decimal numbers and converted them in 

binary code. Thus, our training set represents the 

input-output pattern pairs in which the inputs is of 6 

bit gray code representing the execution time interval 

and the output pattern is of 5 bit representing the 

observed fault. In a same manner, we consider the 

training set for the neural network architectures of 

components as in table 2.  

 

Table 2: Training set in the form of Input-Output 

Pattern pairs for Components 

 

Execu

tion 

time 

interv

al  

Observed faults in components 

FC1 FC2 FC3 FC4 FC5 

Dec Bin Dec Bin Dec Bin Dec Bin Dec Bin 

Δt1 2 010 0 000 1 001 0 000 2 010 

Δt2 4 100 2 010 1 001 7 111 2 010 

Δt3 0 000 3 011 2 010 2 010 0 000 

Δt4 5 101 3 011 2 010 6 110 1 001 

Δt5 2 010 6 110 0 000 2 010 1 001 

Δt6 3 011 4 100 2 010 0 000 0 000 

Δt7 1 001 2 010 1 001 0 000 2 010 

Δt8 6 110 4 100 3 011 2 010 3 011 

Δt9 0 000 5 101 3 011 6 110 0 000 

Δt10 1 001 2 010 3 011 2 010 1 001 

 

In this table 2, the input pattern is considered as 

execution time interval and the observed faults for 

each component in binary code. Now the input-

pattern from Δt1 to Δt10 is presented to the input layer 

of our model as shown in figure 3. The neural 

network architectures for the components are started 

for training with their respected observed faults i.e. 

FC1 to FC5. The rest of the execution time interval 

from t11 to t20 are considered as test pattern set for 

predicting the expected number of faults likely to be 

occurred from each component as well as from 

complete software. 

 

6. Results and Discussion 
 

In our experiment, the component based software 

with 5 components and Δt1 ….Δt10 execution time 

interval is considered to train the neural networks to 

each component. The number of observed faults from 

each component i.e. FC1 to FC5 are used as target 

output pattern for components. Thus for each 

execution time interval, each component has its own 

observed faults. Hence all the 5 neural network 

architecture corresponding to all components are 

trained with trainlm training function of neural 

network available in matlab. The performance for 

each component is shown in figures 4, 5, 6,7, and 8. 

 

 
 

Figure 4: Training performance for First 

Component (FC1). 

 

 
 

Figure 5: Training performance for Second 

Component (FC2) . 
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Figure 6: Training performance for Third 

Component (FC3). 

 

 
 

Figure 7: Training performance for Fourth 

Component (FC4). 

 

 
 

Figure 8: Training performance for Fifth 

Component (FC5). 

 

The training performances are found satisfactory for 

first component (C1), fourth component (C4) and fifth 

component (C5), whereas for the other components 

the performances are found near to convergence. 

After the training, the execution time interval Δt1 to 

Δt10 is presented as input to verify the performance of 

these trained neural networks. The simulated output 

is presented in table 3 as: 

Table 3: Simulated Output from Components on 

given execution time interval 

 
input FC1 FC2 FC3 FC4 FC5 

Δt1 2 0 1 0 2 

Δt2 4 2 1 7 2 

Δt3 0 3 2 2 0 

Δt4 5 3 2 6 1 

Δt5 2 6 0 2 1 

Δt6 1 2 1 0 0 

Δt7 1 2 1 0 2 

Δt8 6 4 3 2 3 

Δt9  0 5 3 6 0 

Δt10 1 2 3 2 1 

 

The difference between simulated faults and actual 

observed faults for the execution time interval from 

Δt0 to Δt10 or each component can be seen in figures 

9, 10,11,12,13 respectively. 

 

 
 

Figure 9: Performance evaluation for Component 

FC1. 

 

 
 

Figure 10: Performance evaluation for 

Component FC2. 

 

fc1

actfc1

fc2

actfc2
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Figure 11: Performance evaluation for 

Component FC3. 

 

 
 

Figure 12: Performance evaluation for 

Component FC4. 

 

 
 

Figure 13: Performance evaluation for 

Component FC5. 

 

Now these simulated faults are used as input pattern 

for the third layer of our model as shown in figure 3. 

The neural network architecture for our third layer 

consists with input layer of 5 neurons, 2 hidden 

layers with 20 and 10 neurons respectively. The 

output layer consists with 5 neurons, because our 

target output pattern in terms of observed faults for 

whole software is of 5 bits. This neural network is 

also trained with training algorithm trainlm of feed-

forward neural network in matlab. The performance 

of training is depicted in figure 14. 

 

  
 

Figure 14: Training performance for complete 

software. 

 

 
 

Figure 15: Performance evaluation for complete 

software. 

fc3

actfc3

fc4

actfc4

fc5

actfc5

sim

actual
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It is found that the neural network could not be 

completely converged for the given training set but 

the performance is near to satisfactory. After this we 

present the execution time interval from time Δt1 to 

Δt10 as input to verify the performance of this trained 

neural network. The comparison between the 

simulated output and actual output are shown in table 

4 and in figure 15 as: 

 

Table 4: Simulated Output from Complete 

Software for given execution time interval 

 

Input Simulated Output 

Actual 

Output 

Δt1 5 5 

Δt2 0 12 

Δt3 7 7 

Δt4 0 17 

Δt5 11 11 

Δt6 9 9 

Δt7 0 6 

Δt8 0 18 

Δt9  7 14 

Δt10 0 10 

 

The combine and comparative performance 

evaluation of neural networks for components and the 

neural network for complete software is represented 

in table 5 and table 6. The table 5 is presenting the 

variance in between simulated output and actual 

output for the components and whole software 

whereas the table 6 is representing the standard 

deviation in between simulated output and actual 

output for the components and whole software. The 

same performance can also be observed from figure 

16 for variance and figure 17 for standard deviation. 

 

 
 

Figure 16: Variance in between Performance 

evaluation of Components and complete software 

for training set. 

 
 

Figure 17: Standard Deviation in between 

Performance evaluation of Components and 

complete software for training set. 
 

 
 

Figure 18: Total number of Predicated faults in 

components and Complete Software. 
 

 
 

Figure 19: Standard Deviation and Variance in 

between predicated faults from components and 

complete software. 
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Table 5: performance evaluation of Components and complete software for training set.   

 

Simulated output Actual output Variance 

input fc1 fc2 fc3 fc4 fc5 simcsw actfc1 actfc2 actfc3 actfc4 actfc5 actswf varfc1 varfc2 varfc3 varfc4 varfc5 varSw 

Δt1 2 0 1 0 2 5 2 0 1 0 2 5 0 0 0 0 0 0 

Δt2 4 2 1 7 2 0 4 2 1 7 2 12 0 0 0 0 0 72 

Δt3 0 3 2 2 0 7 0 3 2 2 0 7 0 0 0 0 0 0 

Δt4 5 3 2 6 1 0 5 3 2 6 1 17 0 0 0 0 0 144.5 

Δt5 2 6 0 2 1 11 2 6 0 2 1 11 0 0 0 0 0 0 

Δt6 1 2 1 0 0 9 3 4 2 0 0 9 2 2 0.5 0 0 0 

Δt7 1 2 1 0 2 0 1 2 1 0 2 6 0 0 0 0 0 18 

Δt8 6 4 3 2 3 0 6 4 3 2 3 18 0 0 0 0 0 162 

Δt9 0 5 3 6 0 7 0 5 3 6 0 14 0 0 0 0 0 24.5 

Δt10 1 2 3 2 1 0 1 2 3 2 1 10 0 0 0 0 0 50 

 

Table 6: Standard Deviation for performance evaluation of components and complete software for training. 

set 

 

Simulated output Actual output Standard Deviation 

time fc1 fc2 fc3 fc4 fc5 simcsw actfc1 actfc2 actfc3 actfc4 actfc5 actswf SDfc1 SDfc2 SDfc3 SDfc4 SDfc5 SDSW 

Δt1 2 0 1 0 2 5 2 0 1 0 2 5 0 0 0 0 0 0 

Δt2 4 2 1 7 2 0 4 2 1 7 2 12 0 0 0 0 0 8.485281 

Δt3 0 3 2 2 0 7 0 3 2 2 0 7 0 0 0 0 0 0 

Δt4 5 3 2 6 1 0 5 3 2 6 1 17 0 0 0 0 0 12.02082 

Δt5 2 6 0 2 1 11 2 6 0 2 1 11 0 0 0 0 0 0 

Δt6 1 2 1 0 0 9 3 4 2 0 0 9 1.4142 1.414214 0.707107 0 0 0 

Δt7 1 2 1 0 2 0 1 2 1 0 2 6 0 0 0 0 0 4.242641 

Δt8 6 4 3 2 3 0 6 4 3 2 3 18 0 0 0 0 0 12.72792 

Δt9 0 5 3 6 0 7 0 5 3 6 0 14 0 0 0 0 0 4.949747 

Δt10 1 2 3 2 1 0 1 2 3 2 1 10 0 0 0 0 0 7.071068 

 

Table 7: Predication of faults for Components and complete software for expected execution time interval. 

 

Time 

interval 

Predicted faults from components Predicted faults 

from s/w 

Standard 

Deviation 

Variance 

fc1 fc2 fc3 fc4 fc5 total 

Δt11 2 2 2 0 0 6 5 0.707106781 0.5 

Δt12 2 0 2 4 4 12 9 2.121320344 4.5 

Δt13 0 2 2 0 4 8 5 2.121320344 4.5 

Δt14 2 0 2 4 0 8 6 1.414213562 2 

Δt15 2 2 2 0 4 10 8 1.414213562 2 

Δt16 0 0 2 4 4 10 7 2.121320344 4.5 

Δt17 2 2 2 0 0 6 5 0.707106781 0.5 

Δt18 2 0 2 4 4 12 10 1.414213562 2 

Δt19 0 2 2 0 4 8 6 1.414213562 2 

Δt20 2 0 2 4 0 8 7 0.707106781 0.5 

 

Now, we consider our test pattern set from execution 

time interval Δt11 to Δt20 and predict the number of 

faults from each component. The predicted faults 

from each component for the execution time interval 

from t11 to t20 are now considered as test input pattern 

for the whole software to predict the number of faults 

from the software. The prediction of faults from each 

component and from the whole software is presented 

in table 7. This Table considers the predicted faults 

from each component, total faults around components 

and predicted faults from software. The number of 

predicted faults from each component for every 

execution time interval are added and presented in 
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the column of this table as total faults from 

components. It is compared with predicted faults 

from complete software. 

 

It is observed that the total faults from components 

are approximately seen as predicted faults from 

whole software with small deviation. The standard 

deviation and variance in between total predicted 

faults from components and predicted faults from 

software are presented in last two columns of the 

table. The performance in between total predicted 

faults from components and predicted faults from 

whole software can be seen in figure 18. The figure 

19 is representing standard deviation and variance in 

between total predicted faults from components and 

predicted faults from whole software. Thus the 

observed simulated results are showing that the total 

predicted faults from the complete software are 

approximately less than the total predicted faults 

from the components. 

 

7. Conclusion 
 

In our experiment for component based software with 

5 components and Δt1 ….Δt10 execution time 

interval is considered to train the neural networks for 

each component. The number of observed faults from 

each component i.e. FC1, to FC5 are used as target 

output pattern for components. Thus for each 

execution time interval, each component has its own 

observed faults. Hence all the 5 neural network 

architecture corresponding to all components are  

trained with trainlm training function of neural 

network available in matlab. The performance for 

each component is depicting from figure 4,5,6,7, and 

8. The estimation of software reliability for any type 

of software, whether the modular software, object 

oriented software, depends upon man factors. The 

factor which influences the estimation is determined 

from the number of faults occurs in the software 

during its course of execution. Thus, to maintain the 

correct functionality of software or fault free 

execution of software, the number of expected faults 

in expected execution time interval should be 

predicted correctly and efficiently. This prediction of 

faults becomes more essential for the component 

based system because the number of faults in 

software execution directly depends upon the number 

of faults in the components of software. Therefore to 

understand the necessity for predicting the faults 

during the execution of software, we considered in 

this paper a model for predicting the expected 

number of faults for future execution time interval for 

each component of software and also for the 

complete software. Hence in our approach, we 

consider a CBNNA which consists with three layers. 

The first layer i.e. input layer considers the input 

pattern vector in terms of the execution time interval 

Δt. The second layer i.e. hidden layer consider the 

number of units same as the number of components 

in the software. Thus each unit represents separate 

neural network architecture of three layers. Hence 

each neural network architecture corresponds to each 

component considers the input pattern as execution 

time interval and the output pattern as the observed 

fault in that component. Each neural network trained 

and after the training produces the simulated output 

as simulated faults. These simulated faults are used as 

input pattern for the third layer of our proposed 

CBNNA. The third layer is another a feed forward 

neural network of 4 layers i.e. input layer, 2 hidden 

layers and output layer. The input layer considers the 

simulated faults from the previous hidden layer as 

input pattern. The observed fault during the course of 

software execution is considered as target or object 

output pattern for these inputs. The last layer neural 

network architecture is also trained with generalized 

delta learning rule and after the training it produces 

the simulated output in terms of the faults. The 

execution time interval from Δt11 to Δt20 is used as 

future execution time interval and presented as input 

to the CBNNA. Each component of the software 

predicts the expected faults and as well as for the 

whole software. We conducted the experiment on 

software which consist with large 5 components and 

obtained the simulated results. The following 

observations are being made during the simulation 

design and implementation.  

 

1. The simulated behavior of each component 

for the given execution time interval is 

found approximately same with their actual 

observed faults. The simulated faults from 

the component 4 and 5 are found exactly 

same with the actual observed faults without 

any deviation.  

2. The simulated faults from the complete 

software are not found approximately to the 

actual observed faults in the given execution 

time interval, but the deviation is not higher. 

It is also observed that the simulated faults 

from whole software are found less than the 

actual number of faults observed in the 

software. The reason of this behavior is 

being that the numbers of faults in 

components are not increasing the number 
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of faults for the complete software 

execution, because particular fault behavior 

of the component could not participate in the 

execution of complete software. 

3. The expected number of faults during the 

future execution time interval from Δt11 to 

Δt20 is estimated from each component as 

well for the complete software. It is being 

observed that after summation of these 

predicted faults of the components is found 

more than the number of predicted faults for 

the complete software. Again the same 

reason which has been stated earlier is 

verified that the number of faults in the 

component may be more than the number of 

faults found during the course of execution 

of software. There is more investigation and 

analysis is required to justify our 

observations on complex software that 

consists with large number of components. 
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