
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

179

Faults Prediction for Component Based Software using Interrelated Feed

Forward Neural Networks

Deepak Shudhalwar
1
, P. K. Butey

2

Abstract

The software reliability generally depends upon the

rate of failures, or the number of faults occurred in

mean execution time and the numbers of faults are

expected to occur during the course of execution of

software. There are various models have been

proposed to predict the expected number of faults

for various types of software structure. In this paper

we are predicting the number of expected faults

occurred in each component of software as well as

for the whole software in the expected execution

time interval using component based neural

network architecture. The simulation design and

implementation results are suggesting there may be

more number of predicted faults in components

than the number of predicted faults in the complete

software.

Keywords

Feed forward neural networks, fault Predication,

Component based software architecture, Software

reliability.

1. Introduction

Software Reliability is defined as the probability of

failure-free software operation for a specified period

of time in a specified environment [1]. IEEE defines

the reliability as “The ability of a system or

component to perform its required functions under

stated conditions for a specified period of time [2].”

Software reliability is the probability of a software

system to perform its specified functions correctly

over a long period of time or for different input set

under the usage environments similar to that of its

target customer [3]. The Software reliability is

defined in terms of expected number of faults occurs

in mean execution time interval.

Manuscript received March 18, 2014.

Deepak Shudhalwar, Research Scholar, PGT Department of

Electronics and Computer Science, R. T. M. Nagpur University,
Nagpur.

P. K. Butey, Department of Computer Science, Kamla Nehru

College, R.T.M. Nagpur University, Nagpur, India.

The fault prediction to estimate the software

reliability is a challenging, interesting and important

exercise, because software reliability is becoming

more and more important in software industry.

Various techniques are required to discover the faults

in the development of software. However the

reliability of software is measured in terms of failure

and it is impossible to measure reliability before the

software is completely developed. Software

reliability is the most extensively studied quality

among all the quality attributes [1]. The prediction of

faults for estimating the software reliability is an

essential requirement to know the global behaviour of

the software and to ensure its proper working in

future.

The software reliability generally depends upon the

rate of failure in mean execution time or the number

of faults occurred in execution time interval. The

faults are likely to occur during the software design

process i.e. from the requirements to realization. The

number of faults increased as the size and complexity

of the software increases. It is understood that as the

more number of faults in the software, the rate of

failure of software increases and the reliability of the

software decreases. The faults that are introduced

during the implementation are also considered as

design faults. Generally it is not feasible to develop

complex fault-free software, and even then, it is

rarely feasible to guarantee that software is free of

faults. Some formal methods can prove the

correctness of software this means it matches to a

specification document. However, today’s formal

verification techniques are not designed for the

application to large software systems such as

consumer operation systems or word processors.

Furthermore, correctness does not ensure reliability

because the specification document can itself be

faulty. As it is not feasible to develop complex

software systems free of faults and the absence of

faults cannot be guaranteed, the reliability of

software needs to be evaluated in order to fulfil high

dependability requirements. Obviously, copies of

(normal) software will fail together, if executed with

the same parameters. This shows that the

independence assumption does not hold. More

precisely, the failure probabilities of software copies

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

180

are completely dependent. This makes many

hardware fault tolerance principles ineffective for

software. Instead of using redundant copies, software

reliability can be improved by using design diversity.

A common approach for this is the so called N-

version programming, introduced by Chen and

Avižienis [4, 5]. However, the research of Knight and

Leveson [6] indicates, that design diversity is likely

to be less effective for software than N-modular

redundancy in hardware reliability engineering. Some

studies have shown that for complex systems, the

majority of failures are typically caused by software

faults. Although software faults are design faults,

their behaviour in dependable systems is similar to

transient hardware faults. This is due to the stochastic

of their activation conditions [7].

It is quite natural that to maintain the correct

functionality of the software or fault free execution of

software, the number of faults likely to be occurred in

future execution time interval should be predicted

and resolved. This prediction becomes essential for

the component based software system, because the

number of faults in complete software execution may

or may not depend upon the number of faults in the

components during the same execution time interval.

Therefore for component based software model, the

prediction of faults from execution of complete

software must be observed with the prediction of

number of faults of each component in the same

execution time interval. This may suggest the number

of faults likely to be occurred in future execution

time interval may depend on the number of faults

likely to be occurred in each component. In spite of

different statistical approaches [8-10] for estimating

the software reliability, techniques of Artificial

Neural Network (ANN) are emerging as powerful

tool for predicting the faults in future execution time

interval for estimating the software reliability

[11,12,13]. It has proven to be a universal

approximates for any non-linear continuous function

with an arbitrary accuracy [14, 15, 16, 17]. It has

become an alternative method in software reliability

modelling, evolution and prediction. Karunanithi, et

al., [18] were the first to propose using neural

network approach in software reliability prediction.

Aljahdali, et. al., [19, 20], Adnan, et. al., [21], Park,

et al., [22] and Liang, et.al., [15, 16] have also made

contributions to software reliability predictions using

neural networks, and have gained better results as

compared to the traditional analytical models with

respect to predictive performance. Karunanithi et al.

[18] reports the use of neural networks for predicting

software reliability, including experiments with both

feed-forward and Jordan networks with a cascade

correlation learning algorithm. Wittig and Finnie [23]

describe their use of back propagation learning

algorithms on a multilayer perception in order to

predict development effort. An overall error rate

(MMRE) obtained which compares favourably with

other methods. Another study by Samson et al. [24]

uses an Albus multilayer perception to predict

software efforts on Boehm’s COCOMO dataset. The

work compares linear regression with a neural

networks approach using the COCOMO dataset. But,

both approaches seem to perform badly with MMRE

of 52.7% and 42.1%, respectively. Srinivasan and

Fisher [25] also report the use of a neural network

with a back propagation learning algorithm. They

found that the neural network outperformed other

techniques and gave results up to 70%. However, it is

not clear that how the dataset was divided for training

and validation purposes. Khoshgoftaar et al. [26]

presented a case study considering real time software

to predict the testability of each module from source

code static measures. They consider ANNs as

promising techniques to build predictive models,

because they are capable of modelling nonlinear

relationships. The new trends in software engineering

are for component based software design. Now it is

important to estimate the reliability of component

based software.

Component reliability can be derived using Software

Reliability Models (SRMs), Software Reliability

Growth Models (SRGM), or fault seeding models

[27]. First, components should be tested and/or

inspected separately before they are integrated with

other components. The faults can be detected and

tested in each component during component testing

and/or inspection. Thus, reducing the number of

faults must be managed during system testing. It is

possible to estimate component reliability after

predicting the number of faults for complete software

and testing each component. The calculation for the

prediction of number of faults for complete software

based on the prediction of faults for the components

does not produce an accurate prediction for the

number of faults likely to be occurred in the software

system. When components are integrated and interact

with one another, new faults are expected to be

triggered and the component reliabilities derived

during component testing will diminish. However,

the prediction for the number of faults of the software

as estimated after the prediction of number of faults

likely to be occurred in components provide an upper

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

181

limit for reliability for fault prediction. Since more

faults are expected to be detected once components

are integrated, the number of faults in the software

system is expected to be no better than that derived

from the component's faults prediction.

Most existing analytical methods to obtain reliability

measures for software systems are based on the

Markovian models [28, 29], and they rely on the

assumption on exponential failed components time

distribution. The Markovian models are subject to the

problem of intractably large state space. Methods

have been proposed to model reliability growths of

components, which can be accounted for by the

conventional analytical methods [30], but they are

also facing the state space explosion problem.

Discrete event simulation, on the other hand, offers

an attractive alternative to analytical methods as it

can capture a detailed system structure when

performing software reliability analysis. Some

simulation methods have been proposed, and a

detailed description of simulation techniques for

software reliability analysis and evaluation can be

found in [31]. However, for component based

software systems, it is difficult to analyse the

influence to reliability caused by dependency among

components. Based on the Shooman model [32, 33],

a new structure based software reliability model is

proposed. This model assumes that the software

components have a high reliability, the component

failures are independent, and the execution path

failures are independent.

The reliability of a software product is usually

defined to be “the probability of execution without

failure for some specified interval of natural units or

time”. This is an operational measure that varies with

how the product is used. Reliability of a component

is measured in the context of how the component will

be used. That context is described in an operational

profile. Reliability of a piece of software may be

computed or measured. If the software has not been

built yet, its reliability can be computed from a

structural model and the reliabilities of the individual

parts that will be composed to form the software.

There is error associated with this technique due to

emergent behaviours, i.e. interaction effects, which

arise when the components must work together. If the

software is already assembled, the reliability can be

measured directly. The measurement is taken by

repeatedly executing the software over a range of

inputs, as guided by the operational profile. The test

results for the range of values are used to compute

the probability of successful execution for a specific

value. The error associated with this approach arises

from the degree to which the actual operation

deviates from the hypothesized operation assumed in

the operational profile. Roshanak [34] discussed the

uncertainty of the execution profile is modelled using

stochastic processes with unknown parameters, the

compositional approach to calculate overall reliability

of the system as a function of the reliability of its

constituent components and their (complex)

interactions and sensitivity analysis to identify

critical components and interactions will be provided.

Lance Fiondella and Swapna S. Gokhale [35]

considered the estimation of software reliability in

the presence of architectural uncertainties and

presented a methodology to estimate the confidence

levels in the architectural parameters using limited

testing or simulation data based on the theory of

confidence intervals of the multinomial distribution.

The sensitivity of the system reliability to uncertain

architectural parameters was then quantified by

varying the parameters within their confidence

intervals. C. Smidts [36] presented architecturally

based software reliability model and underlines its

benefits. The models based on architecture derived

from the requirements which captures both functional

and non-functional requirements and on a generic

classification of functions, attributes and failure

modes. The model focuses on evaluation of failure

mode probabilities and uses a Bayesian quantification

frame work. Leslie Cheung and Leana Golubchik

[37] discussed representative uncertainties which

have identified at the level of a system’s components,

and illustrate how to represent them in reliability

modelling framework.

In this paper, we are predicting the number of faults

likely to be occurred in each component of the

software as well as for the whole software for the

future execution time interval using Component

Based Neural Network Architecture (CBNNA). In

this, we consider three layers of Feed Forward Neural

Network Architecture (FFNNA) consisting of Input

layer, Hidden layer and Output layer. In this

architecture, the hidden layer consist with number of

units correspond to the number of components in the

software. Thus each unit of hidden layer itself is a

separate Multilayer Feed Forward Neural Network

Architecture (MFFNNA) consisting with three layers.

Neural network architecture for each component is

considered the execution time interval as an input

pattern to the input layer of components and trained

with generalized delta learning rule for the observed

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

182

number of faults in components. This process is

considered for each component of the software. The

output units of each component will provide the input

to the output layer which is also a MFFNNA. In this

neural network architecture, we have a input layer,

two hidden layer and a output layer. The input layer

considers the input pattern vector which is

constructed from the simulated output of each

component for the given execution time interval. This

neural network considers the number of faults

observed from the execution of complete software for

the given execution time interval as target or object

output pattern vector. This neural network is also

trained with generalized delta learning rule and it is

used to predict the expected number of faults in the

future execution time interval. In this process, for the

same execution time interval the CBNNA is trained

for the observed faults of the complete software.

Therefore on completion of training pattern from the

training set the future execution time interval is

presented as input pattern to the input layer for

CBNNA and it is expected that this trained network

will predict the number of faults likely to be

occurred. Thus, our proposed CBNNA is expected to

predict the number of faults for the complete

software with the dependency of predicted faults in

the each component of the component based

software. The prediction for the expected number of

faults in future execution time interval is also

observed from each component and the predicted

faults is presented as input pattern to the input layer

of CBNNA to predict the faults from complete

software for the same expected execution time

interval. Thus, the faults prediction for the complete

software depends upon the prediction of faults from

each component. The simulated results indicate that

the predicted faults for the whole software shows a

weak dependency upon the predicted faults of

components. Result also shows that the numbers of

predicated faults from the complete software are less

than total number of predicated faults of all

components.

2. Literature Review

In recent years, many papers have presented various

models for software reliability prediction [1]. In this

section, the work related to neural network modelling

for software reliability and prediction is presented.

Numerous factors like software development process,

organization, testing, software complexity, software

faults and possibility of occurrence affect the

software reliability. These factors represent non-

linear pattern. Neural network methods normally

approximate any non-linear continuous function. So,

now-a-days, more attention is given to neural

network based methods.

Karunanithi et al. [38, 14] first presented neural

network based software reliability model to predict

cumulative number of failures. They used execution

time as the input of the neural network. They used

different networks like feed forward neural networks,

Jordan neural network and Elman neural network in

their approach. They used two different training

regimes like prediction and generalization in their

study. They compared their results with statistical

models and found better prediction. Karunanithi et al.

[18] also used connectionist models for software

reliability prediction. They applied the Falman’s

cascade Correlation algorithm to find out the

architecture of the neural network. They considered

the minimum number of training points as three and

calculated the average error (AE) for both end point

and next-step prediction. Their results concluded that

the connectionist approach is better for end point

prediction.

Sitte [13] presented a neural network based method

for software reliability prediction. He compared the

approach with recalibration for parametric models

using some meaningful predictive measures with

same datasets. They concluded that neural network

approach is better predictors.

Cai et al. [39] proposed a neural network based

method for software reliability prediction by using

back propagation algorithm for training. They used

multiple recent 50 failure times as input to predict the

next-failure time as output and evaluated the

performance of approach by varying the number of

input nodes and hidden nodes. They concluded that

the effectiveness of the approach generally depends

upon the nature of the handled data sets.

Tian and Noore [15, 16] presented an evolutionary

neural network based method for software reliability

prediction by using multiple-delayed-input single

output architecture. They used genetic algorithm to

optimize the number of input nodes and hidden nodes

of neural network.

Viswanath [40] proposed two models such as neural

network based exponential encoding (NNEE) and

neural network based logarithmic encoding (NNLE)

for prediction of cumulative number of failures in

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

183

software. He encoded the input i.e. the execution time

using the above two encoding scheme. He applied the

approach on four datasets and compared the result of

the approach with statistical models and found better

results.

Hu et al. [41] proposed ANN model to improve the

early reliability prediction for current projects/

releases by reusing the failure data from past

projects/ releases. Su et al. [42] proposed a dynamic

weighted combinational model (DWCM) based on

neural network for software reliability prediction.

They used different activation functions in the hidden

layer depending upon the SRGM. They applied the

approach on two data sets and compared the result

with statistical models. The experimental result

shows that DWCM approach provides better result

than the traditional models.

Aljahdali et al. [43] investigated the performance of

four different paradigms for software reliability

prediction. They presented four paradigms like multi-

layer perceptron neural network, radial-basis

functions, Elman recurrent neural networks and a

neuro-fuzzy model. They concluded that the adopted

model has good predictive capability. All of the

above mentioned models only consider single neural

network for software reliability prediction. In [44], it

was presented that the performance of a neural

network system can be significantly improved by

combining a number of neural networks. Jheng [45]

presented neural network ensembles for software

reliability prediction. He applied the approach on two

software data sets and compared the results with

single neural network model and statistical models.

Experimental results show that neural network

ensembles have better predictive capability.

In [46, 63] feed forward neural network for software

reliability prediction is used. In this approach back

propagation algorithm is applied to predict software

reliability growth trend. The experimental result had

shown that the proposed system has better prediction

than some traditional software reliability growth

models.

3. Component Based Software

Prediction Models

Computer system plays a very important role in our

daily lives as computer system failures can lead to a

huge economic loss or even endanger human life.

Reliability is one of the most important quality

requirements of computer systems. A computer

system comprises of hardware and software. The

growing importance of software dictates that the

software reliability is the major stumbling block in

highly dependent computer system. Researchers have

focused on procedural and object oriented software

reliability. However, at present, there is a lack of

similar research effort for Component Based

Software (CBS). Furthermore, owing to certain

specific features of CBS, existing reliability

assessment frameworks for procedural or object

oriented software cannot be applied as such to CBS.

However, neither Black Box Statistical Software

Testing (BBSST) nor any other existing testing

models are capable of adequately support modern

CBS development techniques. To support these

techniques, testing models are needed to:

1. Explain the dependency of failure

probability for software on its components.

2. Exploit reused software components of

known reliability to estimate overall system

reliability.

The above two points requires statistical models to

describe the failure patterns for both individual

software components and compositions of those

components. The existing software reliability models

for legacy systems are inappropriate for CBS. There

is a need of such type of models which is based upon

the system architecture. Many reliability models

based upon the system architecture have been

proposed. These models are known as architecture

based reliability model, which may be used for the

following reasons:

 To develop a method that analyses the

application reliability built from the

commercial off-the-shelf components

(COTS) software components.

 To understand system reliability dependency

on individual component reliabilities and

their interconnection mechanism.

Swapna S. Gokhale [48] proposed some limitations

for architecture based analysis technique. She

classified the limitations into five categories namely

modelling, analysis, parameter estimation, validation

and optimization. Modelling limitations include

concurrent execution, non-Markov transfer of

control, non-exponential sojourn time, and interface

failures etc. Analysis limitation includes reliability

estimation, sensitivity and interface analysis,

uncertainty quantification etc. Standard software

engineering concept of a component is the basic

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

184

entity in the architecture based approach. A

component is conceived as a logically independent

entity of the system which performs a particular

function. Component can be independently designed,

implemented, and tested. User can define the

component which depends on the factors such that

probability of getting required data. Software

architecture is the way of defining the software

behaviour with respect to the manner in which

different software components interact with each

other. Beside this the failure behaviour is also

associated with software architecture. Component

failure behaviour can be expressed in terms of their

reliabilities or failure rates.

Component Based Software Reliability Prediction

Component Based Software Engineering (CBSE) is a

branch of software engineering which emphasizes the

separation of concerns in respect of the wide-ranging

functionality available throughout a given software

system. Software engineers regard components as

part of the starting platform for service-orientation.

Components play this role, for example, in Web

Services, and more recently, in Service-Oriented

Architecture (SOA) – whereby a component is

converted into a service and inherits further

characteristics beyond that of an ordinary component.

An individual component is a software package. To

make a component based system the required

components are put together, each component can

communicate to other component via their interface

characteristics.

Many of the researchers have proposed the various

models for the estimation for the prediction of

component based software reliability. The number of

techniques for estimating the reliability of CBS

system has been proposed. In order to estimate the

reliability of CBS system, it is required to measure

the reliability of each component of the system. The

reliability of the system is based on the reliabilities of

the individual components and the system

architecture. Jean Dolbec and Terry Shepard

proposed a model that estimates software system

reliability from the reliability of its components and

the usage ratio of each component. The Shooman’s

execution path model when transformed into a

component based model, defines the reliability of a

system as a function of the reliability of the

components and it’s usage ratios.

In [49] provide a survey of the research techniques

and performed an analytical study for the estimation

of system reliability based on component reliability

and architectures. In their approach they considered

the attribute of reliability component and credibility

value, i.e. the risk parameter associated with

reliability and computed the reliability as the product

of reliability of successful reading data with the

probability of correct execution of the actual function

provided by the component and the probability for

successful writing of the data. They could not

estimate the values of these components and the

credibility parameter and remain as the limitations of

their work for Modelling of component

dependencies.

In [50] proposes an approach to analysing the

reliability of the system based on the reliability of the

individual components and architecture of the

system. They assumed the failures of software

components are independent and the transfer of

control among software components follows a

Markov process. They predicated the reliability of the

system is the product of components reliability. They

utilized the Markov process to model the failure

behaviour of the applications. They have proposed

three methodologies for estimating the reliability of

software system. The limitations of their study were

that they have not explained anything about to assess

reliability of individual component and have not

studied effect of component failure on system failure.

No specific reason was given for the second

assumption which contradicts the study for the

dynamic systems.

In [51] a reliability assessment method is proposed

for incorporating the interaction among software

components based on Analytic Hierarchy Process

(AHP) to consider the effect of each software

component on the reliability of entire system under

distributed development environment and concluded

that, the logarithmic Poisson execution time model

fits better than the other SRGM’s for the actual data

set. They have also compared the inflection S-shaped

software reliability growth model and the other

models based on a Non-Homogeneous Poisson

Process (NHPP), applied to reliability assessment of

the entire system. They have not explained how AHP

works in this area whether it requires some expert to

use it, was the limitation here.

In [52] an integrated approach is proposed for

modelling and analysing of component based systems

with multiple levels of failures and faults recovery

both at the software as well as the hardware level.

Then they have used this approach to analyse overall

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

185

reliability. In their approach they encompass Markov

Chain and queuing network modelling for estimating

system reliability. They have extended the existing

Discrete Time Markov Chain (DTMC) based

reliability modelling techniques, modelling

component based system with restarts and retries.

Their assumptions of a failure at any software

component will cause overall failure is not realistic

and component retries is not true were turn on to the

limitations.

In [53] a method is proposed to calculate the

reliability of entire software system based on

Stochastic Petri Nets (SPN) that evaluates component

software reliability at the early stages of software

development by decomposing component software

into several subsystems and analysing the reliability

of every subsystem and then by applying

combinational analysis method. It can describe the

process of dynamic changes of software, and it also

considers the factors that affect software reliability by

analysing the characteristic of software architecture.

They depend on Markov process to calculate the

reliability. In [54] a new approach is proposed to

evaluate the reliability of CBS in open distributed

environment by analysing the reliabilities of the

components in different application domains, the

reliabilities of the connections to these components

and the architecture style of their composition. He

has done a detailed reliability analysis for

components, connections, architecture styles and

software system. He depends totally on the previous

models without any modification to calculate

component, connection and system reliability.

In [55] a framework is proposed for assessing

reliability of individual component, model analysis

for assessing reliability of software system and for

extension of reliability assessment model to complex

distributed software system. It came out with the

limitation that it is not easy to apply.

In [56] overruled the basic assumption that the

component failure does not necessarily cause a

system failure unless and until the failure of that

component propagate the error. They have associated

each component with error propagation probability,

propagation path probability; depending on that they

proposed probabilistic model of a component-based

system. It is difficult to assess the error propagation

probability.

In [57] a methodology is based on the execution

scenario analysis of the COTS component based

software application proposed to help the developer

and integrators to regain some control over their

COTS components by predicting the upper and lower

bound on the reliability of their application systems.

The maximum and minimum reliability values are

obtained from various execution scenarios. This

model requires lot of effort. The reliability of

component can be predicted only after its existence

with available failure data and not during its

development.

In [58] a reliability assessment method based on the

neural network in terms of estimating the effect of

each component on the entire system is proposed by

estimating the weight parameter for each component

from input-output rules of neural network. However

it is difficult to apply, and require more effort.

In [59] a framework for reliability prediction of

components at architecture level is proposed. They

overcome the lack of operational profile information

by utilizing a variety of other available information

sources. Also they proposed an approach to use

hidden Markov models. Their framework provides

meaningful reliability prediction in the context of

early stages of software development; but for

obtaining that, it requires more development time, so

that their framework is time consuming and requires

more effort.

In [60] a reliability model has developed and a

reliability analysis technique for architecture-based

reliability valuation and developed an approach to

improve the accuracy of model evaluation by

improving the accuracy of component reliability as

well as transition probability. But they have not

explained how to apply the proposed model to real

software application.

In [61] reliability prediction model of component-

based software architectures depends on reliabilities

of components and operational profiles of use case

packages is proposed. Component Based Software

Reliability Model (CBSRM) based on the reliabilities

of resources and component: while a resource can fail

at any time independent of its usages, so that, the

reliability of a resource is a function of time, CBSRM

based on operational profiles: by using the Markov

model as basic to give prediction of reliability, they

have developed a way to build operational profile

which accounts for the influence of the input data and

user behaviour.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

186

4. Artificial Neural Network

The SRM are widely used to assess the software

reliability. Selecting an appropriate model based on

the characteristics of the software projects is

challenging because most of the SRM possesses

certain restrictions or assumptions. Basically two

approaches both require users to manually opt for

candidates are adapted to locate the suitable model.

The first one is to design a guideline, which could

suggest fitting models for software projects. The

other is to select the one with the highest confidence

after various assessments. The decision-making

processes would be a huge overhead while the

software projects are huge and complicated.

In order to reduce such overhead, researchers

proposed an alternative approach that can adapt the

characteristics of failure processes from the actual

data set by using neural networks. For example,

Karunaithi et al. [38] applied neural network

architecture to estimate the software reliability and

used the execution time as input, cumulative the

number of detected faults as desired output, and

encoded the input and output into the binary bit

string. The results showed that the neural network

approach was good at identifying defect-prone

modules software failures. Khoshgoftaar et al. [47]

ever used the neural network as a tool for predicting

the number of faults in programs. They introduced an

approach for static reliability modelling and

concluded that the neural networks produce models

with better quality of fit and predictive quality. In

addition, Cai et al. [39] examined the effectiveness of

the neural network approach in handling dynamic

software reliability data overall and present several

new findings. They found that the neural network

approach is more appropriate for handling datasets

with smooth trends than for handling datasets with

large fluctuations and the training results are much

better than the prediction results in general.

It is well known that the neural networks are learning

mechanisms that can approximate any non-linear

continuous functions based on the given data. In

general, neural networks consist of three components

mainly neuron, network architecture and learning

algorithm. Each neuron can receive signal, process

the signals and finally produce an output signal.

Figure 1 depicts a neuron, where f is the activation

function that processes the input signals and produces

an output of the neuron, x are the outputs of the

neurons in the previous layer, and w are the weights

connected to the neurons of the previous layer.

Figure 1: Artificial neuron.

The most common type of neural network

architecture is called feed-forward network as shown

in Figure 2. This architecture is composed of three

distinct layers, i.e. an input layer, a hidden layer, and

an output layer. In this figure the circles are

represented as neurons and the connection of neurons

across layers is called connecting weight. The back-

propagation learning algorithm or the generalized

delta learning rule describes the process to adjust the

weights of neural network. During the learning

processes, the weights of network are adjusted to

reduce the errors of the network outputs as compared

to the objective answers. In back-propagation

algorithm, the weights of the network are iteratively

trained with the errors propagated back from the

output layer.

Subsequently, we describe the learning algorithm of

the neural network in a mathematical form. The

objective of the neural networks is to approximate an

non-linear function that can receive the vector

Figure 2: Neural Network Architecture for a Feed

Forward Network.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

187

Figure 3: Design of proposed component based

Neural Network Architecture (CBNNA).

(x1,x2,...,xn) in R
N
 and output the vector (y1, y2,…,ym)

in R
M

. Thus, the network can be denoted as:

y = F (x), (1)

Here x = (x1 ,x2,...,xn) and y = (y1, y2,…,ym). The

values of yk are given as:

 (2)

Where
0

jkw is the output “weight” from hidden layer

node j to output layer node k, bk is the bias of the

node k, hj is the output of the hidden layer, and g is an

activation function in output layers. The values of the

hidden layer is given by

 (3)

Where wij is the input “weight” from input layer node

i to hidden layer node j, bj is the bias of the node in

the hidden layer, xi is the value at input node i, and f

is the activation function in hidden layer. The

approximated function of the neural networks can be

considered as some compound functions, which can

be rewritten as nested functions, such as f(g(x)).

Because of this feature, the neural network can be

applied to software reliability modelling since

software reliability modelling is likely to build a

model to explain the software failure behaviour.

5. Implementation & Simulation

Design

The reliability prediction in software engineering for

any type of software whether simple software,

modular software and CBS, mostly depends upon

failure intensity. The failure intensity is itself

depends upon so many factors. The prominent factor

is on which failure intensity directly proportional to

the number of faults likely to be occurred in mean

execution time interval. For any software if the

numbers of faults are observed in given execution

time interval then the failure intensity of software can

be easily determined. The major issue for estimating

the generalized failure intensity from the predicted

number of faults in future execution time interval is

an important phenomenon in software reliability.

There are several methods in the literature has been

proposed as we have discussed in previous section.

The new trends for predicting the failure rate or faults

with the help of ANN are also applied in various

manners. The major contribution to use ANN for

predicting the number of faults is mainly for the

simple software structure. Here our concern is to

apply ANN paradigms for predicting the number of

faults likely to be occurred in future execution time

interval for CBS. It is quite natural to understand that

for any CBS the number of faults in the software

depends upon the number of faults occurring in each

component. It is also obvious that in a particular

execution time interval if components are presenting

more number of faults then in the same time interval

the whole software will also exhibit more number of

faults. Thus, we can say that the number of faults in

entire software is directly depending upon the

number of faults occurs in the components of the

software.

Now it is very important to select a particular model

and technique for software reliability assessment. But

sometimes software projects cannot fit the

assumption of a unique model. Therefore to

overcome from this problem, Lyu and Allen [62]

have proposed a solution by combining the results of

different software reliability models. This approach

inspired us to use the NN based approach to combine

the fault prediction assessment for each component of

the software for predicting the number of faults

assessment for complete software. Now we present

our proposed approach to accomplish the task of

predicting the numbers of faults occur in any CBS.

In our proposed method we consider a Component

Based Feed Forward Neural Network Architecture

(CBFFNNA) which consists with three layers as

shown in figure 3. The first layer is an Input layer

which is presented with input pattern in the form of

execution time interval as (Δt1, Δt2,......,Δtn) and

corresponding output patterns are in the terms of

number of faults observed from the execution of

complete software in the respected execution time

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

188

interval Δt. i.e. (F1, F2,......,Fn) . Thus the training set

for the complete software consist with input-output

pattern pairs. Now we present the input pattern vector

to the second layer of our model. The second layer

consists with the number of components in the

software. In this layer each component is a feed-

forward neural network. Thus if we have n number of

components in the software, then we have n neural

network architectures as NC1, NC2, NC3,......,NCi.

Each neural network architecture corresponding to

component say NCi for the i
th

component consist with

three layers i.e. Input layer, hidden layer and output

layer. Thus we can represent the neural network

architecture for the i
th

 component as NC(xi,hi,yi).

Therefore, the output for the i
th

component of neural

network architecture can be shown as:

()i i i iNC x t  (4)

1

()
H

i i h hi i

h

NC h f w t


 
  

 
 (5)

1

() ()
J

i i j jh i i h

j

NC y f w NC h


 
  

 
 (6)

Let the number of faults observed from the i
th

component are (Cf1, Cf2 ,...Cfn). It is considered as

the target output for the i
th

 component i.e. NCi to train

this neural network with back propagation learning

rule. Here we consider back propagated error in the

terms of least-mean-square as:

2

1

1
(())

2i

J

NC j i i j

j

E Cf NC y


  (7)

The generalized data learning rule is used to update

weight vector for the i
th

 component neural network

architecture. The weight update can be presented as

ih

i
jh

w

ENC
W




  (8) And,

hi

i
hi

w

ENC
W




  (9)

Hence every component provides the simulated

output after the training for each execution time

interval of training set. Let for execution time interval

Δt1 ...Δtn each component say i
th

 provides the

simulated output as:
1 2(, ,.....,)n

i i iSNC SNC SNC (10)

Now we consider input pattern vector to train the

neural network for complete software i.e.

CBFFNNA. The input pattern vector for the neural

network of complete software is of order j×1; so that

now we select the maximum value of component

output among the components simulated output for

execution time interval
it as:

1

1 2max(, ,.....,)n

i i i i tP SNC SNC SNC  (11)

Therefore, in this way we construct the input pattern

vector to the input layer of neural network

architecture of complete software as:

]........[)1()1(2)1(1

T

toNi

T

toN

T

toN PPPP  (12)

Hence, the input pattern vector P is applied to the

input layer of the neural network for the complete

software. This neural network is constructed with two

hidden layers and one output layer. The target output

pattern vector to accomplish the training is the

number of faults observed from the execution of

software for the given execution time interval i.e. (F1,

F2,,Fn). The output from each hidden layer and

output layer for this neural network architecture can

be represented as:


1

1

1
][1

H

h

iihh PwfCSW (13)





2

2

21

1

12][
H

h

hhh hwfCSW (14)





n

o

hoho CSWwfCSW
1

][
22

 (15)

Again we consider the generalized the delta learning

rule to train this neural network. The weights are

modified according to gradient descent approach to

minimize the mean square error as:

 
2

1

1

2

n
F

o o

o

E F csw


 
  

 


 (16)

2

2

oh

k

oh
W

E
W




  (17)

21

21

hh

k

hh
W

E
W




  (18)

ih

k

ih
W

E
W

2

1 


  (19)

In our experiment, we consider a component based

software system which consists with 5 components

say C1, C2, C3, C4, C5. Now, we observed the

execution of software for the execution time from t0

to t99. We also observed the number of faults during

the execution from time t0 to t49 as represented in

table 1.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

189

Table 1: Training set in the form of Input-Output

Pattern pairs for complete software

Execution

time

interval

Execution

time

Input to first layer

(complete software)

Observed

faults in

Dec.& Bin.

t0 – t4 Δt1 000100 5 00101

t5 – t9 Δt2 000101 12 01100

t10 – t14 Δt3 001110 7 00111

t15 – t19 Δt4 001111 17 10001

t20 – t24 Δt5 011000 11 01011

t25 – t29 Δt6 011001 9 01001

t30 – t34 Δt7 100010 6 00110

t35 – t39 Δt8 100011 18 10010

t40 – t44 Δt9 101100 14 01110

t45 – t49 Δt10 101101 10 01001

In this table 1, we obtained the execution time

interval by considering the Exclusive OR (XOR)

operation for the time step of 5. The execution time

interval is in gray code. The observed faults are

obtained in decimal numbers and converted them in

binary code. Thus, our training set represents the

input-output pattern pairs in which the inputs is of 6

bit gray code representing the execution time interval

and the output pattern is of 5 bit representing the

observed fault. In a same manner, we consider the

training set for the neural network architectures of

components as in table 2.

Table 2: Training set in the form of Input-Output

Pattern pairs for Components

Execu

tion

time

interv

al

Observed faults in components

FC1 FC2 FC3 FC4 FC5

Dec Bin Dec Bin Dec Bin Dec Bin Dec Bin

Δt1 2 010 0 000 1 001 0 000 2 010

Δt2 4 100 2 010 1 001 7 111 2 010

Δt3 0 000 3 011 2 010 2 010 0 000

Δt4 5 101 3 011 2 010 6 110 1 001

Δt5 2 010 6 110 0 000 2 010 1 001

Δt6 3 011 4 100 2 010 0 000 0 000

Δt7 1 001 2 010 1 001 0 000 2 010

Δt8 6 110 4 100 3 011 2 010 3 011

Δt9 0 000 5 101 3 011 6 110 0 000

Δt10 1 001 2 010 3 011 2 010 1 001

In this table 2, the input pattern is considered as

execution time interval and the observed faults for

each component in binary code. Now the input-

pattern from Δt1 to Δt10 is presented to the input layer

of our model as shown in figure 3. The neural

network architectures for the components are started

for training with their respected observed faults i.e.

FC1 to FC5. The rest of the execution time interval

from t11 to t20 are considered as test pattern set for

predicting the expected number of faults likely to be

occurred from each component as well as from

complete software.

6. Results and Discussion

In our experiment, the component based software

with 5 components and Δt1 ….Δt10 execution time

interval is considered to train the neural networks to

each component. The number of observed faults from

each component i.e. FC1 to FC5 are used as target

output pattern for components. Thus for each

execution time interval, each component has its own

observed faults. Hence all the 5 neural network

architecture corresponding to all components are

trained with trainlm training function of neural

network available in matlab. The performance for

each component is shown in figures 4, 5, 6,7, and 8.

Figure 4: Training performance for First

Component (FC1).

Figure 5: Training performance for Second

Component (FC2) .

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

190

Figure 6: Training performance for Third

Component (FC3).

Figure 7: Training performance for Fourth

Component (FC4).

Figure 8: Training performance for Fifth

Component (FC5).

The training performances are found satisfactory for

first component (C1), fourth component (C4) and fifth

component (C5), whereas for the other components

the performances are found near to convergence.

After the training, the execution time interval Δt1 to

Δt10 is presented as input to verify the performance of

these trained neural networks. The simulated output

is presented in table 3 as:

Table 3: Simulated Output from Components on

given execution time interval

input FC1 FC2 FC3 FC4 FC5

Δt1 2 0 1 0 2

Δt2 4 2 1 7 2

Δt3 0 3 2 2 0

Δt4 5 3 2 6 1

Δt5 2 6 0 2 1

Δt6 1 2 1 0 0

Δt7 1 2 1 0 2

Δt8 6 4 3 2 3

Δt9 0 5 3 6 0

Δt10 1 2 3 2 1

The difference between simulated faults and actual

observed faults for the execution time interval from

Δt0 to Δt10 or each component can be seen in figures

9, 10,11,12,13 respectively.

Figure 9: Performance evaluation for Component

FC1.

Figure 10: Performance evaluation for

Component FC2.

fc1

actfc1

fc2

actfc2

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

191

Figure 11: Performance evaluation for

Component FC3.

Figure 12: Performance evaluation for

Component FC4.

Figure 13: Performance evaluation for

Component FC5.

Now these simulated faults are used as input pattern

for the third layer of our model as shown in figure 3.

The neural network architecture for our third layer

consists with input layer of 5 neurons, 2 hidden

layers with 20 and 10 neurons respectively. The

output layer consists with 5 neurons, because our

target output pattern in terms of observed faults for

whole software is of 5 bits. This neural network is

also trained with training algorithm trainlm of feed-

forward neural network in matlab. The performance

of training is depicted in figure 14.

Figure 14: Training performance for complete

software.

Figure 15: Performance evaluation for complete

software.

fc3

actfc3

fc4

actfc4

fc5

actfc5

sim

actual

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

192

It is found that the neural network could not be

completely converged for the given training set but

the performance is near to satisfactory. After this we

present the execution time interval from time Δt1 to

Δt10 as input to verify the performance of this trained

neural network. The comparison between the

simulated output and actual output are shown in table

4 and in figure 15 as:

Table 4: Simulated Output from Complete

Software for given execution time interval

Input Simulated Output

Actual

Output

Δt1 5 5

Δt2 0 12

Δt3 7 7

Δt4 0 17

Δt5 11 11

Δt6 9 9

Δt7 0 6

Δt8 0 18

Δt9 7 14

Δt10 0 10

The combine and comparative performance

evaluation of neural networks for components and the

neural network for complete software is represented

in table 5 and table 6. The table 5 is presenting the

variance in between simulated output and actual

output for the components and whole software

whereas the table 6 is representing the standard

deviation in between simulated output and actual

output for the components and whole software. The

same performance can also be observed from figure

16 for variance and figure 17 for standard deviation.

Figure 16: Variance in between Performance

evaluation of Components and complete software

for training set.

Figure 17: Standard Deviation in between

Performance evaluation of Components and

complete software for training set.

Figure 18: Total number of Predicated faults in

components and Complete Software.

Figure 19: Standard Deviation and Variance in

between predicated faults from components and

complete software.

y = 0.0121x + 0.1333
R² = 0.0034

y = 0.0121x + 0.1333
R² = 0.0034

y = 0.003x + 0.0333
R² = 0.0034

y = 0
R² = #N/A

y = 0
R² = #N/A

y = 3.3212x + 28.833
R² = 0.0271 va

ri
e

n
ce

Execution Time

Standard Deviation

SDfc1

SDfc2

SDfc3

SDfc4

SDfc5

SDSW

P
re

d
ic

at
e

d
 f

au
lt

s

Total faults
from
componen
ts

predicated
faults (SW)

y = -0.06x + 1.7442
R² = 0.099

y = -0.1939x + 3.3667
R² = 0.1261

p
re

d
ic

at
e

d
 f

au
lt

s

execution time

Standard
Deviation

Varience

Linear
(Standard
Deviation)

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

193

Table 5: performance evaluation of Components and complete software for training set.

Simulated output Actual output Variance

input fc1 fc2 fc3 fc4 fc5 simcsw actfc1 actfc2 actfc3 actfc4 actfc5 actswf varfc1 varfc2 varfc3 varfc4 varfc5 varSw

Δt1 2 0 1 0 2 5 2 0 1 0 2 5 0 0 0 0 0 0

Δt2 4 2 1 7 2 0 4 2 1 7 2 12 0 0 0 0 0 72

Δt3 0 3 2 2 0 7 0 3 2 2 0 7 0 0 0 0 0 0

Δt4 5 3 2 6 1 0 5 3 2 6 1 17 0 0 0 0 0 144.5

Δt5 2 6 0 2 1 11 2 6 0 2 1 11 0 0 0 0 0 0

Δt6 1 2 1 0 0 9 3 4 2 0 0 9 2 2 0.5 0 0 0

Δt7 1 2 1 0 2 0 1 2 1 0 2 6 0 0 0 0 0 18

Δt8 6 4 3 2 3 0 6 4 3 2 3 18 0 0 0 0 0 162

Δt9 0 5 3 6 0 7 0 5 3 6 0 14 0 0 0 0 0 24.5

Δt10 1 2 3 2 1 0 1 2 3 2 1 10 0 0 0 0 0 50

Table 6: Standard Deviation for performance evaluation of components and complete software for training.

set

Simulated output Actual output Standard Deviation

time fc1 fc2 fc3 fc4 fc5 simcsw actfc1 actfc2 actfc3 actfc4 actfc5 actswf SDfc1 SDfc2 SDfc3 SDfc4 SDfc5 SDSW

Δt1 2 0 1 0 2 5 2 0 1 0 2 5 0 0 0 0 0 0

Δt2 4 2 1 7 2 0 4 2 1 7 2 12 0 0 0 0 0 8.485281

Δt3 0 3 2 2 0 7 0 3 2 2 0 7 0 0 0 0 0 0

Δt4 5 3 2 6 1 0 5 3 2 6 1 17 0 0 0 0 0 12.02082

Δt5 2 6 0 2 1 11 2 6 0 2 1 11 0 0 0 0 0 0

Δt6 1 2 1 0 0 9 3 4 2 0 0 9 1.4142 1.414214 0.707107 0 0 0

Δt7 1 2 1 0 2 0 1 2 1 0 2 6 0 0 0 0 0 4.242641

Δt8 6 4 3 2 3 0 6 4 3 2 3 18 0 0 0 0 0 12.72792

Δt9 0 5 3 6 0 7 0 5 3 6 0 14 0 0 0 0 0 4.949747

Δt10 1 2 3 2 1 0 1 2 3 2 1 10 0 0 0 0 0 7.071068

Table 7: Predication of faults for Components and complete software for expected execution time interval.

Time

interval

Predicted faults from components Predicted faults

from s/w

Standard

Deviation

Variance

fc1 fc2 fc3 fc4 fc5 total

Δt11 2 2 2 0 0 6 5 0.707106781 0.5

Δt12 2 0 2 4 4 12 9 2.121320344 4.5

Δt13 0 2 2 0 4 8 5 2.121320344 4.5

Δt14 2 0 2 4 0 8 6 1.414213562 2

Δt15 2 2 2 0 4 10 8 1.414213562 2

Δt16 0 0 2 4 4 10 7 2.121320344 4.5

Δt17 2 2 2 0 0 6 5 0.707106781 0.5

Δt18 2 0 2 4 4 12 10 1.414213562 2

Δt19 0 2 2 0 4 8 6 1.414213562 2

Δt20 2 0 2 4 0 8 7 0.707106781 0.5

Now, we consider our test pattern set from execution

time interval Δt11 to Δt20 and predict the number of

faults from each component. The predicted faults

from each component for the execution time interval

from t11 to t20 are now considered as test input pattern

for the whole software to predict the number of faults

from the software. The prediction of faults from each

component and from the whole software is presented

in table 7. This Table considers the predicted faults

from each component, total faults around components

and predicted faults from software. The number of

predicted faults from each component for every

execution time interval are added and presented in

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

194

the column of this table as total faults from

components. It is compared with predicted faults

from complete software.

It is observed that the total faults from components

are approximately seen as predicted faults from

whole software with small deviation. The standard

deviation and variance in between total predicted

faults from components and predicted faults from

software are presented in last two columns of the

table. The performance in between total predicted

faults from components and predicted faults from

whole software can be seen in figure 18. The figure

19 is representing standard deviation and variance in

between total predicted faults from components and

predicted faults from whole software. Thus the

observed simulated results are showing that the total

predicted faults from the complete software are

approximately less than the total predicted faults

from the components.

7. Conclusion

In our experiment for component based software with

5 components and Δt1 ….Δt10 execution time

interval is considered to train the neural networks for

each component. The number of observed faults from

each component i.e. FC1, to FC5 are used as target

output pattern for components. Thus for each

execution time interval, each component has its own

observed faults. Hence all the 5 neural network

architecture corresponding to all components are

trained with trainlm training function of neural

network available in matlab. The performance for

each component is depicting from figure 4,5,6,7, and

8. The estimation of software reliability for any type

of software, whether the modular software, object

oriented software, depends upon man factors. The

factor which influences the estimation is determined

from the number of faults occurs in the software

during its course of execution. Thus, to maintain the

correct functionality of software or fault free

execution of software, the number of expected faults

in expected execution time interval should be

predicted correctly and efficiently. This prediction of

faults becomes more essential for the component

based system because the number of faults in

software execution directly depends upon the number

of faults in the components of software. Therefore to

understand the necessity for predicting the faults

during the execution of software, we considered in

this paper a model for predicting the expected

number of faults for future execution time interval for

each component of software and also for the

complete software. Hence in our approach, we

consider a CBNNA which consists with three layers.

The first layer i.e. input layer considers the input

pattern vector in terms of the execution time interval

Δt. The second layer i.e. hidden layer consider the

number of units same as the number of components

in the software. Thus each unit represents separate

neural network architecture of three layers. Hence

each neural network architecture corresponds to each

component considers the input pattern as execution

time interval and the output pattern as the observed

fault in that component. Each neural network trained

and after the training produces the simulated output

as simulated faults. These simulated faults are used as

input pattern for the third layer of our proposed

CBNNA. The third layer is another a feed forward

neural network of 4 layers i.e. input layer, 2 hidden

layers and output layer. The input layer considers the

simulated faults from the previous hidden layer as

input pattern. The observed fault during the course of

software execution is considered as target or object

output pattern for these inputs. The last layer neural

network architecture is also trained with generalized

delta learning rule and after the training it produces

the simulated output in terms of the faults. The

execution time interval from Δt11 to Δt20 is used as

future execution time interval and presented as input

to the CBNNA. Each component of the software

predicts the expected faults and as well as for the

whole software. We conducted the experiment on

software which consist with large 5 components and

obtained the simulated results. The following

observations are being made during the simulation

design and implementation.

1. The simulated behavior of each component

for the given execution time interval is

found approximately same with their actual

observed faults. The simulated faults from

the component 4 and 5 are found exactly

same with the actual observed faults without

any deviation.

2. The simulated faults from the complete

software are not found approximately to the

actual observed faults in the given execution

time interval, but the deviation is not higher.

It is also observed that the simulated faults

from whole software are found less than the

actual number of faults observed in the

software. The reason of this behavior is

being that the numbers of faults in

components are not increasing the number

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

195

of faults for the complete software

execution, because particular fault behavior

of the component could not participate in the

execution of complete software.

3. The expected number of faults during the

future execution time interval from Δt11 to

Δt20 is estimated from each component as

well for the complete software. It is being

observed that after summation of these

predicted faults of the components is found

more than the number of predicted faults for

the complete software. Again the same

reason which has been stated earlier is

verified that the number of faults in the

component may be more than the number of

faults found during the course of execution

of software. There is more investigation and

analysis is required to justify our

observations on complex software that

consists with large number of components.

Acknowledgment

We wish to acknowledge the guidance and support

from Dr. P. K. Butey, Dr. Manu Pratap Singh and

Head, PGT Department of Electronics and Computer

Science, R. T. M. Nagpur University, Nagpur.

References

[1] Michael R. Lyu , Handbook of Software

Reliability Engineering, McGraw-Hill

publishing, 1995, ISBN 0-07-039400-

8, http://portal.research.belllabs.com/orgs/ssr/boo

k/ reliability/introduction.html.

[2] "IEEE Std 610.12-1990", IEEE Standard

Glossary of Software Engineering

Terminology, 1990.

[3] J. Tian, “Software Quality Engineering”, John

Wiley and Sons Inc. 2005.

[4] A. AVIZIENIS, “On the Implementation of N-

Version Programming: A Fault-Tolerance

Approach during Execution,” COMPSAC 77,

Chicago, IL, 1977, pp. 149-155.

[5] L. CHEN, and A. AVIZIENIS, “N-Version

Programming: A Fault-Tolerance Approach to

Reliability of Software Operation,” Proceedings

of FTCS-8, Toulouse, France, 1978, pp. 3–9.

[6] I. Eusgeld, F. Fraikin, M. Rohr, F. Salfner and U.

Wappler, “Software Reliability”, Dependability

Metrics, LNCS-4909, Springer-verlag Berlin

Heidelberg, pp. 104-125, 2008.

[7] N. D. Singpurwalla and S.P. Wilson. Statistical

Methods in Software Engineering. Springer

Series in Statistics. Springer-Verlag, New York,

1999.

[8] Jonh D. Musa, A. Lanino and K. Okumoto,

Software Reliability Measurement, Prediction

and Application, McGraw-Hill, 1987.

[9] William H. Farr and Oliver D. Smith, Statistical

Modeling and Estimation of Reliability Functions

for Software (SMERFS) Users Guide, NAVSWC

TR-84-373, Revision3, Naval Software Weapons

Center, Revised September 1993.

[10] Aljahdali, S., Sheta, A., and Rine, D., “Prediction

of Software Reliability: A Comparison between

regression and neural network non-parametric

Models” Proceeding of the IEEE/ACS

Conference, pp. 470-471, 2000.

[11] Hu Q., Xie M., and Ng S., Software Reliability

Predictions using Artificial Neural Networks,

Computational Intelligence in Reliability

Engineering (SCI) 40, 197-222, 2007.

[12] K. Y. Cai, L. Cai, W. D. Wang, Z. Y. Yu, and D.

Zhang, “On the Neural Network Approach in

Software Reliability Modeling”, The Journal of

Systems and Software, 2001, pp. 47-62.

[13] R. Sitte, “Comparison of software–reliability-

growth predictions: neural networks vs

parametric recalibration”, IEEE Transactions on

Reliability, vol. 48, no. 3, pp. 285- 291, 1999.

[14] N. Karunanithi, D. Whitley, Y.K. Malaiya,

“Using neural networks in reliability prediction”,

IEEE Software, vol. 9, no. 4, pp.53–59, 1992.

[15] L. Tian, A. Noore, “Evolutionary neural network

modeling for software cumulative failure time

prediction, Reliability Engineering and System

Safety”, vol. 87, no. 1, pp. 45–51, 2005.

[16] L. Tian, A. Noore, “On-line prediction of

software reliability using an evolutionary

connectionist model”, The Journal of Systems

and Software, vol.77, no. 2, pp. 173–180, 2005.

[17] F. H. F. Leung, H. K. Lam, S.H. Ling and P.K.S.

Tam, “Tuning of the structure and parameters of

a neural network using an improved genetic

algorithm”, vol. 14, no.1, pp. 79–88, 2003.

[18] N. Karunanithi, D. Whitley, Y.K. Malaiya,

“Prediction of software reliability using

connectionist models”, IEEE Trans Software

Engg., vol. 18, no. 7, pp. 563-573, 1992.

[19] S.H. Aljahdali, D.Rineand A.Sheta, “Prediction

of software reliability: A comparison between

regression and neural network non-parametric

models”, Computer Systems and Applications,

ACS/IEEE International Conference on, 0:0470,

2001.

[20] K. A. Buraggaand, S. Aljahdali, “Evolutionary

neural network prediction for software reliability

modeling”, In The 16th International Conference

on Software Engineering and Data Engineering

(SEDE-2007), 2007.

[21] W. A. Adnan and M. H. Yaacob, “An integrated

neural-fuzzy system of software reliability

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

196

prediction”, In Proc. Conf. First Int Software

Testing, Reliability and Quality Assurance,

pp.154–158, 1994.

[22] J.-H. Park J.-Y. Park and S.-U. Lee, “Neural

network modeling for software reliability

prediction from failure time data” Journal of

Electrical Engineering and information Science,

vol. 4, no.4, pp. 533–538, 1999.

[23] G. Witting, and G. Finnie, “Using Artificial

Neural Networks and Function Points to Estimate

4GL Software Development Effort”, J.

Information Systems, vol. 1, no. 2, pp. 87-94,

1994.

[24] B. Samson, D. Ellison, and P. Dugard, “Software

Cost Estimation Using Albus Perceptron

(CMAC),” Information and Software

Technology, 1997, vol.39, pp. 55-60. 1997.

[25] K. Srinivazan, and D. Fisher, “Machine Learning

Approaches to Estimating Software Development

Effort”, IEEE Transactions on Software

Engineering, February, vol.21, no.2, pp.126-137,

1995.

[26] T. M. Khoshgoftaar, E.B. Allen, and Z. Xu,

“Predicting testability of program modules using

a neural network,” Proc. 3Rd IEEE Symposium

on Application-Specific Systems and Software

Engg. Technology, pp. 57-62, 2000.

[27] J. Dolbec, "A Structure Based Software

Reliability Model", M. E. dissertation, RMC,

May 1995.

[28] R. C. Cheung. “A User-Oriented Software

Reliability Model”. IEEE Trans. on Software

Engineering, SE-6(2):118–125, March 1980.

[29] J. C. Laprie and K. Kanoun. Handbook of

Software Reliability Engineering, M. R. Lyu,

Editor, chapter Software Reliability and System

Reliability, pages 27–69. McGraw-Hill, New

York, NY, 1996.

[30] S. Gokhale and K. S. Trivedi. “Structure-Based

Software Reliability Prediction”. In Proc. of Fifth

Intl. Conference on Advanced Computing,

Chennai, India, December 1997.

[31] Musa, J. D., and Okumoto, K., "A Logarithmic

Poisson Execution Time Model for Software

Reliability Measurement," Proceedings seventh

International Conference on Software

Engineering, Orlando, Florida, pp. 230-238,

1984.

[32] M. L. Shooman, "Software Engineering: Design,

Reliability and Management", McGraw Hill,

ISBN 0-07-057021-3, 1983.

[33] M.L. Shooman, "A Micro Software Reliability

Model for Prediction and Test Apportionment",

Proceedings 1991 International Symposium on

Software Engineering (Austin, Texas), pp. 52-59,

May 1991.

[34] Roshanak Roshandel, “Calculating Architectural

Reliability via Modeling and Analysis.”, A

Dissertation Presented to the Faculty of the

Graduate School University of Southern

California, Los Angeles, CA 90089-0781 U.S.A.,

December 2006.

[35] Derek Doran, Matthew Tran, Lance Fiondella,

and Swapna S. Gokhale, “Architecture-based

Reliability Analysis with Uncertain

Parameters." SEKE. 2011.

[36] Smidts, C., and D. Sova. "An architectural model

for software reliability quantification: sources of

data." Reliability Engineering & System

Safety 64.2 (1999): 279-290.

[37] Cheung, Leslie, Leana Golubchik, Nenad

Medvidovic, and Gaurav Sukhatme. "Identifying

and addressing uncertainty in architecture-level

software reliability modeling." In Parallel and

Distributed Processing Symposium, 2007. IPDPS

2007. IEEE International, pp. 1-6. IEEE, 2007.

[38] N. Karunanithi, Y.K. Malaiya, D. Whitley,

“Prediction of software reliability using neural

networks”, Proceedings of the Second IEEE

International Symposium on Software Reliability

Engineering, pp. 124–130, 1991.

[39] K.Y. Cai , L. Cai , W.D. Wang , Z.Y. Yu , D.

Zhang, “On the neural network approach in

software reliability modeling”, The Journal of

Systems and Software, vol. 58, no. 1, pp. 47-62,

2001.

[40] Bisi, Manjubala, and Goyal Neeraj Kumar.

"Software Reliability Prediction using Neural

Network with Encoded Input." International

Journal of Computer Applications 47 (2012).

[41] Q.P. Hu, Y.S. Dai, M. Xie, S.H. Ng, “Early

software reliability prediction with extended

ANN model”, Proceedings of the 30th Annual

International Computer Software and

Applications Conference, pp. 234-239, 2006.

[42] Y.S. Su, C.Y. Huang, “Neural-Networks based

approaches for software reliability estimation

using dynamic weighted combinational models”,

The Journal of Systems and Software, vol. 80, no.

4, pp. 606-615, 2007.

[43] S.H. Aljahdali, K.A. Buragga, “Employing four

ANNs paradigm for Software Reliability

Prediction: an Analytical study”, ICGST

International Journal on Artificial Intelligence

and Machine Learning, vol. 8, no. 2, pp. 1-8,

2008.

[44] P.M. Granotto, P.F. Verdes, H.A. Caccatto,

“Neural network ensembles: Evaluation of

aggregation algorithms, Artificial Intelligence”,

vol. 163, no.2, pp. 139-162, 2005.

[45] J. Zheng, “Predicting Software reliability with

neural network ensembles, Expert systems with

applications”, vol. 36, no. 2, pp. 2116-2122,

2009.

[46] Y. Singh, P. Kumar, “Application of feed-

forward networks for software reliability

prediction”, ACM SIGSOFT Software

Engineering Notes, vol. 35, no. 5, pp. 1-6, 2010.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

197

[47] T. M. Khoshgoftaar, R. M. Szabo, and P. J.

Guasti, “Exploring the Behavior of Neural-

network Software Quality Models,” Software

Eng. J., Vol. 10, no. 3, pp. 89–96, May 1995.

[48] [48] S. Gokhale et al., “Architecture Based

Software Reliability Analysis: Overview and

Limitations”, IEEE Transactions on Dependable

and Secure Computing. pp 32-40, 2007.

[49] Aleksandar Dimov and Sasikumar Punnekkat,

“On the Estimation of Software Reliability of

Component Based Dependable Distributed

systems”, In R.Reussner et al, eds. QoSA-

SOQUA. A Bibliographic Sourcebook, pp. 171-

187. Berlin: Springer Verlage, 2005.

[50] Jung-Hua Lo, Chin-Yu Hung, Ing-Yi Chen, Sy-

Yen Kuoand Michael R.Lyu, “Reliability

assessment and sensitivity analysis of software

reliability growth modeling based on software

module structure,” the journal of systems and

software., Vol. 76, pp. 3-13, 2005.

[51] Yoshinobu Tamura and Shigeru Yamada,

“Comparison of Software reliability Assessment

methods for Open Source Software and

Reliability Assessment Tool”, Journal of

Computer Science, Vol. 2, No. 6, pp. 489-495,

2006.

[52] Vibhu Saujanya Sharma and Kishor S.Trivedi,

“Reliability and Performance of Component

Based Software Systems with Restarts, Retries,

Reboots and Repairs.” 17th International

Symposium on Software Reliability Engineering

(ISSRE’06), 2006.

[53] Lianzhang Zhu and Yanchen Li, “Reliability

Analysis of Component Software Based on

Stochastic Petri Nets,” in Proc. 6th IEEE/ACIS

International Conference on Computer and

Information Science, 2007.

[54] Haiyang Hu, “Reliability Analysis for

Component- based Software System in Open

Distributed Environments,” IJCSNS International

Journal of Computer Science and Network

Security., Vol. 7, No. 5, pp. 193- 202, May 2007.

[55] R. Amuthakkannan, S.M. Kannan, K.

Vijayalakshmi and V. Jayabalan, “Managing

change and reliability of distributed software

system,” International Journal of Information

Systems and Change Management, Vol. 2, No. 1,

pp. 30-49, 2007.

[56] Vittorio Cortellessa and Vincenzo Grassi, “A

Modeling Approach to Analyze the Impact of

Error Propagation on Reliability of Component-

Based Systems”, CBSE 2007, July, 2007.

[57] Tirthankar Gayen and R.B Misra, “Reliability

Bounds Prediction of COTS Component Based

Software Application.” IJCSNS International

Journal of Computer Science and Network

Security, Vol. 8, No. 12, pp. 219-228, December

2008.

[58] Yoshinobu Tamura and Shigeru Yamada,

“Component-Oriented Reliability Analysis and

Optimal Version-upgrade Problems for Open

Source Software”, Journal of Software, Vol. 3,

No. 6, pp. 1-8, June 2008.

[59] Leslie Cheung, Roshanak Roshandel, Nenad

Medvidovic and Leana Golubchik, “Early

Prediction of Software Component Reliability,”

in Proc. ICSE 2008, May 2008.

[60] Fan Zhang, Xingshe Zhou, Junwen Chen and

Yunwei Dong, “A Novel Model for Component-

based Software Reliability Analysis,” in Proc.

11th IEEE High Assurance Systems Engineering

Symposium., pp. 303- 309, 2008.

[61] Pham Thanh Trung and Huynh Quyet Thang,

“International Journal of Information

Technology.” Vol. 5, No. 1, pp. 18-25, 2009.

[62] M. R. Lyu and A. Nikora, “Using Software

Reliability Models more effectively,” IEEE

Software, pp. 43-52, 1992.

[63] Nidhi Gupta and Manu Pratap Singh, “Estimation

of Software Reliability with Execution time

model using Pattern mapping Technique of

Artificial Neural Network”, Computer and

Operation Research, ELESVIER, vol. 32, pp.

187-199, 2005.

Deepak Shudhalwar, M. Sc., M. Phil.

in Computer Science, is a Research

Scolar, persuing Ph.D. in Computer

Science, in the Department of

Elecronics and Computer Science,

R.T.M. Nagpur University, Nagpur,

India. Presently, he is working as a

Assistant Professor in CSE, Department

of Engineering & Technology, PSSCIVE, NCERT, Bhopal,

India. His research area includes software reiability,

artificial neural network and soft computing.

Dr. P. K. Butey, M. Sc., Ph. D. in

Computer Science is a Research Guide

in Computer Science, Department of

Elecronics and Computer Science,

R.T.M. Nagpur University, Nagpur,

India. Presently, he is working as a

Head, Department of Computer

Science, Kamla Nehru College,

Nagpur, India. His research area includes software

reiability, artificial neural network, fuzzy logic and soft

computing.

