FPGA Implementation of High Throughput Digital QPSK Modulator using Verilog HDL

K.Anitha¹, Umesharaddy², B.K.Sujatha³

Abstract

This paper proposes a Quadrature Phase Shift Keying (QPSK) using two different methods. QPSK is one of the forms of Phase Shift Keying (PSK) modulation scheme. Generally a conventional QPSK modulator with Direct Digital Synthesizer (DDS) and arithmetic multiplier separates base band signal into I and Q phase which consumes low throughput with complexity in hardware implementation. Hence to generate high throughput QPSK modulator, the first proposal uses an up and down accumulator for carrier generator instead of DDS and arithmetic multiplier is modified as BOOTH multiplier. The second proposed method will produce the QPSK signal which is based on stored QPSK phase data in ROM which eliminates completely the DDS and multiplier blocks of the modulator.

Keywords

QPSK Modulation, Booth Algorithm, Verilog, FPGA.

1. Introduction

Modulation is very important technique in communication system to transfer the data, without loss through the channel and to reduce size of antenna in case of wireless communication. Wireless communication is one of the most vibrant areas in communication field today. This is due to the increase in communication connectivity driven mainly in cellular telephony and wireless data applications[10]. Wireless communication systems require high data rate for efficient transmission of information [8]. Modulation techniques are introduced to increase the efficiency in data transmitting and receiving rate within the same bandwidth. The most common modulation method used in communication system is Quadrature Phase Shift Keying (QPSK), which is one of the form of Phase Shift Keying (PSK) modulation scheme. The digital methodology was chosen because the advantages of digital solution are apparent. The main advantages of the digital solution are repeatability, cost and the simpler reconfiguration compared to analog solutions. In PSK modulation, the phase changes according to the baseband data while the frequency and amplitude remains unchanged [7]. In QPSK modulation, the carrier phase acquires four discrete states that are used to represent a group of two input data bits as shown in Table 1. Each group takes one form of QPSK states i.e. ±45º and ±135º.

Table 1: QPSK phase with different states

<table>
<thead>
<tr>
<th>Input</th>
<th>QPSK Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>225º</td>
</tr>
<tr>
<td>01</td>
<td>315º</td>
</tr>
<tr>
<td>10</td>
<td>135º</td>
</tr>
<tr>
<td>11</td>
<td>45º</td>
</tr>
</tbody>
</table>

Where the first bit represents In-phase(I) and the second bit represent the Quadrature-phase(Q). QPSK modulation is a pair of binary PSK [BPSK], but the data transmission in QPSK is twice when compared to BPSK. The Bit Error Rate (BER) over Signal-to-Noise ratio (SNR) for both the modulation schemes is same[8]. The two BPSK waves are added to produce the desired QPSK wave. Since two bit information is transmitted in an interval T, the symbol period for QPSK is two times the bit period i.e. T=2Tb, while for BPSK the symbol period is same as bit period T=Tb[7][8]. The QPSK signal requires half the bandwidth of the corresponding BPSK wave which consumes low throughput with complexity in hardware implementation. Hence to generate high throughput QPSK modulator and to verify above statement, hardware implementation is needed[2][3]. The organization of the paper is as follows. In section2 general QPSK modulation is discussed. Section3 briefs about the proposed methodology with two different approaches along with BOOTH multiplier. First method is used to replace existing DDS & multiplier. The second method is used to

Manuscript received March 21, 2014.

K.Anitha, Dept. of Telecommunication Engineering, M.S.Ramaiah Institute of Technology, Bangalore-54, India.

Umesharaddy, Dept. of Telecommunication Engineering, M.S.Ramaiah Institute of Technology, Bangalore-54, India.

B.K.Sujatha, Dept. of Telecommunication Engineering, M.S.Ramaiah Institute of Technology, Bangalore-54, India.
completely eliminate DDS and multiplier blocks of the modulation system[4]. Section 4 discusses about the simulation using ModelSim. Section 5 on results using FPGA Spartan3E and conclusions are provided in section 6[6][11].

2. QPSK Modulation

The implementation of QPSK is more general than that of BPSK. This includes the two bandwidth conserving modulation schemes for the transmission of binary data. The quadrature-carrier multiplexing system, which produces a modulated wave is described as follows:[1]

\[S(t) = S_i(t) \cos(2\pi f_c t) - S_q(t) \sin(2\pi f_c t) \quad (1) \]

Where \(S_i(t) \) is the in-phase component, \(S_q(t) \) is the quadrature phase component of the modulated wave. \(S_i(t) \) and \(S_q(t) \) is in recognition of the associated cosine or sine versions of the carrier wave, which are in phase-quadrature with each other. Both of these are related to the input data stream in a way that is characteristic of the type of modulation used[5].

In QPSK, the phase of the carrier takes on one of four equally spaced values, such as \(\frac{\pi}{4} \), \(\frac{3\pi}{4} \), \(\frac{5\pi}{4} \), and \(\frac{7\pi}{4} \). For this set of values, we may define the transmitted signal as

\[S_i(t) = \begin{cases} \sqrt{\frac{E}{T}} \cos \left[\frac{2\pi}{4} \left(\frac{2i-1}{4} \right) t \right] ; & 0 \leq t \leq T \\ 0 ; & \text{elsewhere} \end{cases} \]

\[(2) \]

Where \(i = 1, 2, 3, 4 \) and \(E \) is the transmitted signal energy per symbol, \(T \) is the symbol duration, and the carrier frequency \(f_c \). Each possible value of the phase corresponds to a unique pair of bit stream viz., 00, 01, 10, 11. Then (2) is rewritten in equivalent form as:

\[S_i(t) = \begin{cases} \sqrt{\frac{E}{T}} \cos \left[\frac{2\pi}{4} \left(\frac{2i-1}{4} \right) \right] \cos(2\pi f_c t) \quad ; & 0 \leq t \leq T \\ 0 ; & \text{elsewhere} \end{cases} \]

\[(3) \]

Where \(i = 1, 2, 3, 4 \). Based on this representation we can make the following observations:

- There are only two orthonormal basis functions \(S_i(t) \) and \(S_q(t) \), contained in the expansion of \(S(t) \) i.e.,

\[S_i(t) = \sqrt{\frac{E}{T}} \cos(2\pi f_c t) ; \quad 0 \leq t \leq T \quad (4) \]

and

\[S_q(t) = \sqrt{\frac{E}{T}} \sin(2\pi f_c t) ; \quad 0 \leq t \leq T \quad (5) \]

There are four messages points, and the associated signal vectors are defined by

\[S(t) = \left(\sqrt{\frac{E}{T}} \cos \left[\frac{2\pi}{4} \left(\frac{2i-1}{4} \right) \right] , \sqrt{\frac{E}{T}} \sin \left[\frac{2\pi}{4} \left(\frac{2i-1}{4} \right) \right] \right) ; i=1,2,3,4 \quad (6) \]

The digital QPSK modulator is as shown in Fig 1. The input binary data sequence is divided into two other sequences i.e., odd and even numbered bits of the input sequence. These two sequences are in unipolar then changed into bipolar by using Non Return to Zero (NRZ) encoding technique. The coded data will be mixed with carrier which is generated from Direct Digital Synthesizer [DDS] as in Fig 1. The DDS produces the sine and cosine as separate carrier signal with same frequency. After multiplying the carrier with bipolar data, the obtained odd data will be known as I-phase and the even data as Q-phase. These two phases will be added together to produce a single QPSK signal which is similar to the result obtained from (2).

![Fig. 1: Digital QPSK Modulator block diagram.](image)

3. Proposed Methodology

Two new methods are proposed in QPSK modulators, first method uses BOOTH multiplication instead of arithmetic multiplication, up and down-accumulator for generating carrier wave instead of DDS. Second method uses ROM as main data storage to produce same QPSK signal as conventional modulator.

Proposed QPSK Modulator Method 1

The first proposed QPSK modulator is designed by using signed Booth multiplication. The input bipolar
odd and even data is multiplied with the carrier waves of sine and cosine, generated from the local oscillator. The design and implementation of the signed BOOTH multiplier is discussed in the following section.

BOOTH Multiplier Design

The input signal is multiplied with the carrier sine and cosine wave generated using the local oscillator. A signed multiplier is designed using BOOTH multiplier algorithm [9].

The BOOTH algorithm used to implement the signed multiplier is as follows:

Step 1: The multiplicand X and multiplier Y is loaded into a register. Bit adjustment is made with X and Y so that bits length of X and Y are equal. Bit ‘0’ is padded in order to achieve it.

Step 2: An accumulator is used to store the result. The length of the accumulator should be twice the length of multiplicand or multiplier. A = 2X or 2Y.

Step 3: The multiplicand X is loaded into the accumulator from LSB.

Step 4: A dummy bit of 0 is appended with the accumulator A at the LSB.

Step 5: During the multiplication operation, the pair of LSB of the accumulator and the dummy bit is considered to follow further arithmetic operations.

Step 6: Depending on the bit pair obtained in the previous step, following operations is performed:

- “00” – Arithmetic shift right of the Accumulator.
- “01” – Add multiplier Y to the Accumulator A (from MSB of A) and Arithmetic shift right of Accumulator.
- “10” – Subtract multiplier Y from the Accumulator A (from MSB of A) and Arithmetic shift right of Accumulator.
- “11” – Arithmetic shift right of the Accumulator. Shift operations are performed along with dummy bit.

The above operations are continued till MSB of multiplicand X is shifted off from the accumulator A. In this section, 8-bit x 2-bit signed BOOTH multiplier is designed and implemented. These two phases will be added together to produce a single QPSK signal same as(2).

Proposed QPSK Modulator Method 2

For the second QPSK modulator architecture, the above proposed QPSK modulator 1 architecture will be constructed just to collect four different combinational input data for different phases of QPSK. Once the data is collected, the first proposed QPSK modulator architecture will not be used for future method. In this method, data for each QPSK is collected and stored in four different ROM blocks. Each ROM will store data for one QPSK phase. Since all the four possible phases for a QPSK is stored in four different ROM’s, the digital QPSK modulator is no longer required to produce a QPSK phase from I and Q phase as in first method QPSK modulator. For the simulation purposes, a serial input sequence will be considered as input to the 1:2 demultiplexer. The 1:2 demultiplexer will separate the input sequence into odd and even bits. These odd and even bits will be the input for the 4:1 multiplexer which will select one ROM for different combination of odd and even bits as shown in Fig.2.

![Proposed QPSK Modulator Method 2](image)

4. Simulation

Proposed design and two method of conventional QPSK modulator is modeled with Verilog HDL and simulated on Xilinx ISE 9.1i platform. The crucial aspect for simulating the conventional QPSK modulator is to compare with the proposed QPSK modulator in term of high throughput i.e., timing, area and power utilization in FPGA. Each of the design Verilog HDL code is synthesized and tested with a ModelSimXE II 5.7g. The synthesizable code is translated into RTL (Register Transfer level) schematic diagrams while the Xilinx ModelSim simulator is used to run the top level code to obtain timing diagram. The simulator is used to produce the binary or decimal data and also analog signal to plot the waveforms.

Conventional QPSK modulator

Fig.3 shows the RTL obtained by synthesizing Verilog HDL code for conventional QPSK modulator. Fig.4 shows the simulator timing diagram, where odd and even data change from 00 to 01 and 11 to 10. Then the data obtained is multiplied with carrier wave generator to produce I and Q phases and then added to both phases to generate QPSK signal. Here DDS is
used and design 16 phases to generate sine and cosine wave.

Fig.3: Top level RTL for conventional QPSK modulator

Fig.4: Simulation result of conventional QPSK modulator

Proposed QPSK modulator 1

Fig.5 Shows the RTL schematic diagram and Fig.6 shows the timing diagram for proposed QPSK modulator method 1. In this method, the BOOTH multiplication is used and one phase needs 0.02µsec. Generating one cycle of sine wave requires 1µsec and this generates 50 samples by using up and down accumulator. The proposed QPSK modulator 1 does not require the Look up Table (LUT).

Fig.5: Top level RTL for proposed QPSK modulator 1

Fig.6: Simulation result of proposed QPSK Modulator 1

Proposed QPSK modulator 2

Fig.7 shows the RTL schematic diagram and Fig.8 shows the simulator timing diagram. Since the data for each QPSK phase is collected and stored in four different Read Only Memory (ROM) blocks. Once the four phases QPSK modulator data is collected from proposed QPSK modulator 1, conventional QPSK modulator is no longer required. A group of 2 bits is used to represent a phase in QPSK waveform. A total number of 50 data is stored in each ROM to represent a phase in QPSK wave. Fig.8 shows the baseband data transition form 00, 01, 11 and 10.

Fig.7: Top level RTL for proposed QPSK modulator 2

Fig.8: Simulation result of proposed QPSK modulator 2

5. Results

The modulator was coded in Verilog HDL and was implemented on Spartan-3E FPGA kit with all the three above designs. The Xilinx synthesis tool which generates synthesis report mentioning the parameters
used by the entire implementation is described in Table 2, Table 3, Table 4 and Table 5. The performance and area constraints have been improved in proposed method 2 compared to conventional QPSK modulator which is shown in Table 3 and Table 4.

Table 2: Conventional QPSK Modulator

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Total Usage</th>
<th>Total available on FPGA</th>
<th>% Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of slices</td>
<td>30</td>
<td>3,584</td>
<td>1%</td>
</tr>
<tr>
<td>No. of 4 input LUTs</td>
<td>46</td>
<td>7,168</td>
<td>1%</td>
</tr>
<tr>
<td>No. of slice Flip Flops</td>
<td>28</td>
<td>7,168</td>
<td>1%</td>
</tr>
</tbody>
</table>

Table 3: Proposed QPSK Modulator 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Total Usage</th>
<th>Total available on FPGA</th>
<th>% Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of slices</td>
<td>50</td>
<td>3,584</td>
<td>1%</td>
</tr>
<tr>
<td>No. of 4 input LUTs</td>
<td>90</td>
<td>7,168</td>
<td>1%</td>
</tr>
<tr>
<td>No. of slice Flip Flops</td>
<td>39</td>
<td>7,168</td>
<td>1%</td>
</tr>
</tbody>
</table>

Table 4: Proposed QPSK Modulator 2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Total Usage</th>
<th>Total available on FPGA</th>
<th>% Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of slices</td>
<td>120</td>
<td>3,584</td>
<td>3%</td>
</tr>
<tr>
<td>No. of 4 input LUTs</td>
<td>174</td>
<td>7,168</td>
<td>2%</td>
</tr>
<tr>
<td>No. of slice Flip Flops</td>
<td>55</td>
<td>7,168</td>
<td>1%</td>
</tr>
</tbody>
</table>

Table 5: Comparison of three methods of QPSK modulator

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Convention al QPSK Modulator</th>
<th>Proposed QPSK Modulator 1</th>
<th>Proposed QPSK Modulator 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROMs</td>
<td>16x8-bit ROM :2</td>
<td>4x4-bit ROM :1</td>
<td>50x9-bit ROM :4</td>
</tr>
<tr>
<td></td>
<td>4x4-bit ROM :1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>8x2-bit Registered multiplier :2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mux</td>
<td>9-bit adder :1</td>
<td>2-bit adder :30</td>
<td>8-bit adder :1</td>
</tr>
<tr>
<td></td>
<td>9-bit 4-to-1 mux :1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timing Summary:

- Speed: 5.272ns (Maximum Frequency: 189.672MHz)
- Minimum period: 9.591ns (Maximum Frequency: 104.268MHz)
- Minimum period: 5.067ns (Maximum Frequency: 197.361MHz)
6. Conclusion

Table 5 shows that the conventional QPSK modulator design utilizes multiplier, adder, subtractor, counter and flip-flops and also DDS is used. In this area, timing and power is less utilized but output phases are not good compared to proposed method. In proposed QPSK modulator 1 multiplier, counter and LUT are not used for carrier generator, it is designed by using up and down accumulator. Instead of multiplier, BOOTH algorithm is used. In this only adder and shifter is used for multiplication but QPSK modulator output signal is better compared to first method. The proposed method will take four phases of data from the method 1. The collected 50 data from each phases are stored in ROM and in this method it eliminates the DDS and multiplier. The proposed QPSK modulator 2 does not use multiplier, adder, subtractor and DDS, hence high throughput is achieved. Successfully simulated on Xilinx ISE 9.1i software and implemented in FPGA Spartan-3E board. The power consumption, timing and area utilization achieved in the proposed QPSK modulator 2 also gives a high throughput as shown in Table 5.

References

K.Anitha received the Bachelor Degree in Electronics and Communication Engineering from Institute of Engineer,AMIE in 2011 and currently pursuing M.Tech degree in Digital Communication Engineering, M.S.Ramaiah Institute of Technology, Bangalore, Karnataka, India.

Umesharaddy received the Bachelor Degree in Electronics and Communication Engineering from Visvesvaraya Technological University, Belgaum, Karnataka, India, in 2003 and M.Tech degree in VLSI Design and Embedded Systems from Visvesvaraya Technological University, Belgaum, Karnataka, India, in 2006. He is currently working as Assistant Professor in the Department of Telecommunication Engineering, M.S.Ramaiah Institute of Technology, Bangalore, Karnataka, India. His area of interest is VLSI Design with Communication.

Dr. B.K.Sujatha received the Bachelor Degree in Electronics and Communication Engineering from Mysore University, Karnataka, India, in 1987, M.E. Degree in Electronics Engineering from Bangalore University, Bangalore in 1993 and Ph.D Degree in Electronics and Communication Engineering from Visvesvaraya Technological University, Belgaum, Karnataka, India, in 2006. She is currently working as Professor in the Department of Telecommunication Engineering, M.S.Ramaiah Institute of Technology, Bangalore, Karnataka, India. She has served as teaching faculty at SJCIT, Bangalore for 16 year till 2004. Her research areas include Speech and Audio Signal Processing, Statistical Signal Processing and Modeling, Digital Communication and Wavelet Transform.