
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

396

Smart Test Case Quantifier Using MC/DC Coverage Criterion

S. Shanmuga Priya
1
, Sheba Kezia Malarchelvi

2

Abstract

Software testing, an important phase in Software

Development Life Cycle (SDLC) is a time

consuming process. Information shows that nearly

40 to 50% of software development time is spent in

testing. Manual testing is labour-intensive and

error-prone so there is a need for automatic testing

technique. Automation brings down the time and

cost involved in testing. When testing software,

there are often a massive amount of possible test-

cases even for quite simple systems. Running each

and every feasible test-case is certainly not a choice,

so designing test-cases becomes a significant part of

the testing process. NASA proposed Modified

Condition/Decision Coverage (MC/DC) testing

criterion in 1994, which is a white box testing

criterion. The objective of this paper is to automate

the generation of minimum number of test cases

required to test a system with maximum

coverage by removing the redundant test cases

using MC/DC criterion. The work also gives a

tool Smart Test Case Generator Tool (STCGT)

that automates the minimum number of test

cases required to test the source code. This will

give an idea about the test cases execution for the

beginners of the testing team, thereby, aids in a

quality on-time product.

Keywords

Test Case, MC/DC, White Box Testing, Automation.

1. Introduction

After developing any software application, testing

plays a significant role in finding the accuracy,

comprehensiveness and worth of the software that is

developed. Software testing process typically

consumes of about 50% of the total cost involved [1].

For safety critical software, this percentage might

even be higher [2].

S. Shanmuga Priya, Assistant Professor / CSE & J.J. College

of Engineering and Technology, Trichy, Tamilnadu.

Sheba Kezia Malarchelvi, Professor / CSE & J.J. College of

Engineering and Technology, Trichy, Tamilnadu.

One definition of testing is "the process of

questioning a product in order to evaluate it", where

the "questions" are things the tester tries to do with

the product and the product answers with its behavior

in reaction to the probing of the tester. Testing must

precisely uncover diverse classes of errors in a least

amount of time and with a least amount of effort. A

primary objective of testing is to ensure that the

software works as stated in the specifications, so the

customer could be satisfied. Even though there are

many software testing approaches, the software

market is still demanding for effective testing of the

complex product as the size of the software being

developed grows every day.

The software could be tested either manually or by

automation. In manual testing, the tester tests the

software manually for the defects. The tester must

play the role of an end user and almost all the

features of the application should be ensured for its

correct behaviour. The tester follows a systematic

approach by writing the test plan that leads them

through a set of important test cases [3]. The

difficulty with manual testing are its time consuming

and not reusable, does not have any scripting facility,

requires great effort and some errors could remain

uncovered [4]. The next most promising technique is

the automated testing, which covers the difficulties of

manual testing. Automation testing is carried out by

automating the steps of manual testing with the aid of

any automation tools [5]. Automation testing process

reduces both the testing cost and it also improves the

software quality. The automation testing increases the

test execution speed, considered to be more reliable,

repeatable, comprehensive, programmable and

reusable. So, it would be better to automate the

testing process rather than doing it manually which is

being needed for the emerging fields of Search based

software engineering, Search based software testing

etc.

The primary measurement for the adequacy of testing

is code coverage analysis, analysing that all source

code. The output of the coverage analysis process is

the percentage of code that is covered by the test

cases written. So the number of test cases written

also decides the quality of the testing. Hence it

should be generated carefully such that for each path

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

397

in the program there should be a test case in order to

ensure maximum coverage. Here an approach for

automatic generation of minimal number of test cases

to provide maximum coverage in the case structural

testing has been tried.

The paper is organized as follows. Section 2 gives

various code coverage and coverage metrics that are

used in practice, Section 3 gives the related works,

Section 4 gives the proposed work, Section 5 gives

the developed smart test case generator tool, Section

6 gives the salient features and limitations of the

proposed system and Section 7 gives the conclusion.

2. Code Coverage and Coverage

Metrics

Glass box testing or white box testing is a structural

testing technique that compares test program

behavior against the apparent intention of the source

code. This kind of testing examines the working of a

program and also takes the possible pitfalls in the

structure and logic. In contrast the functional testing

which is also known as black-box testing compares

the test program behaviour against the requirement

specification without taking the program’s internal

working into account.

Code coverage analysis is process that indirectly

measures the quality by finding the areas of a

program that are not exercised by the set of chosen

test cases. This might demand to produce additional

test cases to increase the coverage of code; however

redundant test cases do not increase code coverage. A

code coverage analyser automates this process.

Coverage analysis is used to guarantee quality of the

set of tests, not the actual product’s quality. Coverage

analysis requires access to test program source code

and often requires recompiling [6].

The U.S. Department of Transportation Federal

Aviation Administration (FAA) has formal

requirements for structural coverage in the

certification of safety-critical airborne systems [DO-

178B]. Small count of other organizations has such

requirements, so the FAA is significant in the

definitions of these metrics. To measure how well the

program is exercised by a test suite, coverage criteria

are used. There is a number of coverage criteria, the

main ones being are [7]:

Function coverage - Assures that each function in the

program has been called or not.

Statement Coverage – Find out whether each node in

the program been executed or not.

Decision Coverage – Find out whether every edge in

the program been executed.

Condition Coverage – Checks for both true and false

for each Boolean sub-expression.

Condition/Decision Coverage - Both decision and

condition coverage should be satisfied.

Parameter Value Coverage - In a method taking

parameters, verifies that all the common values for

such parameter has been considered.

Modified Condition/Decision Coverage - For safety-

critical applications (e.g., for avionics software,

medical expert system) it is often required that

modified condition/decision coverage (MC/DC) must

be satisfied. This criterion extends condition/decision

criteria with requirements that each condition should

affect the decision outcome independently.

JJ-Path Coverage – Checks that all jump to jump

paths [8] are executed.

Path Coverage – Checks that every possible route

through a given part of the code has been executed.

Entry/Exit Coverage – Identifies whether all the

possible call and return of the function has been

executed.

Loop Coverage – Checks for the execution of every

possible loop zero times, once, and more than once?

Parameter Value Coverage - For each parameter in a

method, checks whether the most common possible

parameter values has been tested.

Safety-critical applications are often required to

demonstrate that testing achieves 100% of some form

of code coverage [9].

3. Related Works

In 2011, Swathi et al. [10] proposed a tool that

automates the generation of test cases using control

structure methods. The developed tool aimed to for

100% coverage for the given C language structural

code which includes statement coverage, decision

coverage, path coverage and branch coverage

analysis. In 2012, Manish et al. [11] proposed an

automated test case generator for C source code. The

approach converted the C source code to Control

Flow Graph and found all possible feasible paths to

generate the test cases. In [12] Zalan Szugyi and

Zoltan Porkolab analyzed several projects written in

Ada programming language. They estimated the

difference of the required test cases of Decision

Coverage and Modified Condition / Decision

Coverage. In 2010, Sangeeta Tanwer and

Dharmender Kumar [13], has proposed an automatic

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

398

test case generation of C language program using

CFG. The tool automates the unit testing of the

software. The existing system does not address the

issues like unreachable blocks during execution

which could produce an unreachable code. If the exit

block is unreachable from the entry block, it could

lead to an infinite loop. Moreover, the redundant test

cases were never eliminated.

4. Proposed Work

This work aim to reduce the test case size by

automating the number of test cases required to test

the system, while preserving the maximum code

coverage which helps in reducing time and cost. It

eliminates the redundant test cases. This paper

proposes an automated test case generator for a C

language. The smart quantifier is designed to produce

the minimum number of test cases based on the test

path with maximum coverage based on Modified

Condition/Decision Coverage criterion.

The approach followed is done by generating the

control flow graph, a data structure that is used to

identify the independent paths for an application to

be tested. From the generated control flow graph, the

number of independent paths can be found by

calculating the Cyclomatic complexity. The number

of test cases needed is equal to the value of the

Cyclomatic complexity.

The figure 1 shows the flow diagram of the proposed

system. The C code to be tested is fed as input to the

smart quantifier, whose job is to produce the output

as the minimum number of test cases need to test the

given application. The quantity of test cases is

derived in such a fashion, that for each independent

path that exists, a separate test case should be

considered. The test cases are executed against the

framework and the test coverage is measured.

Figure 1 : Flow diagram of the proposed system

Figure 2 shows the block diagram of smart test case

quantifier. The functions of the blocks are as

follows:

Figure 2 Block diagram of smart test case

quantifier

A. User Interface

The user interface gets the path of the file which

contains the source code of the product which is to be

tested. The user can have all the modules related to a

particular project in a same path which can be taken

by the parser in a recursive manner.

B. File Parser

The algorithm used in file parser module is recursive

descent parser algorithm, which is a top-down parser.

The parser builds the parse tree from the top, that is,

from the start symbol to the leaf. The parser modules

traverse the file from starting to end and identify all

the conditional statements and write them in a list and

send to the control flow generation module. Perhaps

the tough part of a recursive descent parser is the

scanning, that is, repeatedly fetching the next token

from the scanner.

C. Control Flow Graph (CFG) Generator

A graph could prop up the testers in analysing and

understanding the behavior of a program that is

subjected to testing. A Control Flow Graph is one

such and is generated by the Control Flow Graph

Generator, in order to capture the flow of control

within a program to be tested. There are two possible

options to construct CFG. It can be constructed

either manually or could be done with the help of

tools. For relatively small programs, CFG can be

constructed manually without much difficulty.

However, it is difficult to construct CFG as the size

of the program grows, and there arises a need for any

tool that could automate the generation. Such

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

399

automated generation of CFG is yielded by the

Control Flow Graph Generator. The input to the

control flow graph generator is the output of the file

parser, that is, the list containing all the conditional

statements present in the code to be tested. From the

list received, the file parser generates the CFG. The

conditional operators are kept as nodes and the flow

between statements is indicated by means of edges.

D. Metric Calculation

To generate the number of test cases the generated

control flow graph is given as input to the metric

calculation. The essential parameters for calculating

Cyclomatic Complexity are number of nodes and

edges. From the CFG, calculate the number of edges

and nodes. Check whether number of nodes is lesser

than number of edges. This block is to identify the

number of nodes and edges from the control flow

graph and generates the number of test cases for full

coverage. The steps followed to generate the

minimum number of test cases are:
Step 1: The generated control flow graph is given as

input.

Step 2: Calculate the number of edges and nodes.

Step 3: Check whether number of nodes is lesser then

number of edges.

Step 4: Calculate the Cyclomatic complexity using

the formula M = E − N + 2, where, where E is the

number of edges of the graph and N is the number of

nodes of the graph.

Step 5: Display the number of test cases needed.

5. Developing Smart Test Case

Generator Tool

The Smart Test Case Generator Tool (STCGT) has

been implemented using Microsoft Visual C++. The

figure 3 shows the browser screen which takes the

input, the C source code which is to be tested.

Figure 3: Browser window

The figure 4 shows the Selection window. The code

that is to be tested can be chosen by clicking on the

browse button, by specifying the path where the code

is located.

Figure 4: Selection window

 Figure 5 shows the path of the selected file

which contains the code to be tested. The several

modules to be tested must be in the same folder.

Figure 5: Displaying path of the file containing

the code to be tested

Figure 6 shows the minimum number of test cases

generated for the selected source code. The

displayed test cases must be the minimum

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

400

requirement that a tester should take in to

consideration when testing the code.

Figure 6: Smart test case generator showing

minimum number of test cases required for

testing the given code

6. Salient Features and Limitations

of the Proposed System

The various salient features of Smart Test Case

Quantifier are:

a) It uses MC/DC Coverage metrics.

b) It automates structural testing.

c) Quantifies the number of test cases needed.

d) Provides maximum coverage with minimum

number of test cases.

e) Minimizes the number of iterations for

getting complete code coverage and

f) Can be used for products to a higher level

safety critical system.

 The developed system has the following

limitations:

a) It can work for C codes only.

b) The system is able to generate the test cases

for all the modules of the project at the same

time, provided all modules must be in the

same path.

7. Conclusion

The proposed work is based on MC/DC criterion

which generates the minimum number of test cases

that is required to test the C source code. The

proposed tool STCGT, has a limitation that it works

only for C source code. In future, works need to be

proposed to make this as a generic tool by using

various other coverage metrics.

References

[1] Rudolf Ramler, Klaus Wolfmaier, “Economic

Perspectives in Test Automation: Balancing

Automated and Manual Testing with Opportunity

Cost”, Proceedings of the international workshop

on Automation of Software Test, pp.15-23, 2006.

[2] Michael Grottke, Kishor S. Trivedi, “Fighting

Bugs: Remove, Retry, Replicate, and

Rejuvenate”, IEEE Computer, Vol.40, No.2, pp.

107-109, 2007.

[3] J. Chilenski and S. Miller., “Applicability of

Modified Condition / Decision Coverage to

Software Testing”, Software Engineering Journal,

pages 193–200, September 1994.

[4] Mark Fewster and Dorothy Graham, “Software

Test Automation: Effective Use of Test

Execution Tools”, ACM Press/Addison-Wesley

Publishing Co., New York, NY, USA, 1999.

[5] Steve Cornett Code Coverage Analysis, July 29

2004 http://www.bullseye.com/coverage.html.

[6] http://idtus.com/img/UsefulAutomatedTestingMe

trics.pdf.

[7] http://www.math.unipd.it/~tullio/IS-

1/Dispense_2003/Software_Testing_Metrics.htm.

[8] http://covtool.sourceforge.net/#Intrumenting.

[9] http://www.lexjansen.com/pharmasug/2004/fdaco

mpliance/fc06.pdf.

[10] Swathi.J.N, Sumaiya Thaseen.I and Sangeetha.S,

“Minimal Test Case Generation for Effective

Program Test using Control Structure Methods

and Test Effectiveness Ratio”, International

Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011.

[11] Manish Mishra, Shashi Mishra and Rabins

Porwal, “Basic Principle for Test Case

Generation Automatically”, VSRD International

Journal of Computer Science & Information

Technology, Vol. 2 (9), 2012, 772-781.

[12] Zalan Szugyi and Zoltan Porkolab, “Necessary

Test Cases for Decision Coverage and Modified

Condition / Decision Coverage”, Electrical

Engineering 52, no. 3-4 (2010): 187-195.

[13] Sangeeta Tanwer and Dharmender Kumar,

“Automatic Test Case Generation of C Program

Using CFG”, IJCSI International Journal of

Computer Science Issues, Vol. 7, Issue 4, No 8,

July 2010.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

401

S. Shanmuga Priya is currently

obtained her M.E. in Computer Science

and Engineering from Anna University,

Chennai, Tamil Nadu, India. She

received her B.E. in Computer Science

and Engineering in 2003 from

Bharathidasan University, Tamilnadu,

India. She has around 10 years of experience in teaching.

Presently she is serving as Assistant Professor in the

Department of Computer Science and Engineering at J.J.

College of Engineering and Technology, Tiruchirappalli,

Tamil Nadu, India. Her research interests include Software

Engineering and Software Testing.

P. D. Sheba Kezia Malarchelvi

received B.E. in Computer Engineering

in 1991 from Madurai Kamaraj

University, Tamil Nadu, India. She

completed M.E. in Computer Science

in 1995 from the Regional Engineering

College, Tiruchirappalli, Tamil Nadu,

India. She received Ph.D. in Computer

Science and Engineering in the year

2010 from Bharathidasan Institute of Technology,

Bharathidasan University, Tamil Nadu, India. She has

around 22 years of experience in teaching. Presently she is

serving as Professor and Head of the Department of

Computer Science and Engineering at J.J. College of

Engineering and Technology, Tiruchirappalli, Tamil Nadu,

India. Her research interests include Security, Grid

Computing and Cloud Computing.

