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Abstract  
 

The primary focus of this study is implementation of 

Artificial Intelligence (AI) technique for developing 

an inverse kinematics solution for the Raven-II
TM

 

surgical research robot [1]. First, the kinematic 

model of the Raven-II
TM

 robot was analysed along 

with the proposed analytical solution [2] for inverse 

kinematics problem. Next, The Artificial Neural 

Network (ANN) techniques was implemented. The 

training data for the same was careful selected by 

keeping manipulability constraints in mind. Finally, 

the results were verified using elliptical trajectories. 

The originally proposed analytical solution was 

found to be computationally inefficient, gave 

multiple solutions and its existence necessitates the 

use of the Standard Raven-II
TM 

Tool [2]. The 

solution devised using ANN technique gave a single 

solution which was thirteen times faster than the 

original solution. Moreover, it is generic in nature 

and can be used for any type of tool. Thus, a novel 

solution for solving the inverse kinematics problem 

of the Raven-II surgical robot was formulated and 

confirmed. 
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1. Introduction 

 

In this ever evolving age of robotics, smarter and 

more innovative technology has made inroads into 

almost every field of modern human civilization.  
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Tele-surgery is one such technology where surgical 

operations can be performed precisely and remotely 

by medical practitioners. This technology is 

employed to conduct Minimally Invasive Surgical 

(MIS) procedures which involve making small 

incisions for surgery. Advantage of robotic surgery is 

that the surgical instruments located at the tip of the 

manipulator may provide a full range of motion and 

ability, allowing the instruments to rotate more than 

360° through tiny incisions with high level of 

dexterity and degree of freedom. Another important 

advantage is the maximizing of the movable range of 

the surgery tool.  

 

Most existing surgical robotic systems employ 

analytical techniques for tool tracking, which is more 

accurate as compared to other techniques like 

numerical solutions or artificial intelligence. But 

broadly there are two disadvantage of the analytical 

technique. First, validity of an analytical solution 

requires certain specific design constraints like 

intersection of at least three consecutive axes [3]. 

Second, the analytical technique gives multiple 

solutions and in most of the cases we have to use 

constraints like limitation of joint movements which 

is not desirable for the application like robotic 

surgery. Another disadvantage of analytical 

techniques is that it requires knowledge of multi-

body dynamic system concepts with which a lot of 

which medical professionals may not be comfortable 

with. The dynamics or mechanics of a manipulator is 

a Multi Input Multi Output (MIMO) system which is 

uncertain, tightly coupled, non-linear, singular and 

transcendental. The conventional methods are also 

not computationally efficient and not applicable to 

real time applications due to the presence of non-

linear parameters like coupling, flexibility, friction, 

backlash, etc. Accurate mathematical modelling of 

these is highly unlikely. Therefore, in this work, we 

will investigate and propose algorithm based on AI 

techniques or soft computing which can also be used 

by medical researchers in this domain as very little 

knowledge of system dynamics is required since it is 

based upon input–output data pairs only or on the 

rule based systems [4] [5] [6] [7]. The artificial 

intelligence technique can be automated by use of 

sensors so that a surgeon can easily make 
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modifications in the system. This would in turn assist 

the robotic surgeon to feel more comfortable with the 

system after having some background knowledge of 

the same. Moreover, concerted efforts have been 

made to devise an inverse kinematics solution using 

Artificial Neural Networks (ANN), which has 

considerable advantages over the traditional 

analytical or numerical solutions. One prominent 

advantage is that ANN provides a unique solution 

and this can be limited to areas where we train the 

network by selecting data points such that only a 

specific region of the workspace is covered. The 

network output will automatically lie in that specific 

region. Another important advantage is the speed of 

solution. An analytical solution involves calling of 

trigonometric functions which takes more 

computational time as compared to a neural network 

which uses simple additions, multiplications and 

exponential functions. In this study, the ANN 

solution developed was found to be thirteen times 

faster than analytical solution. This study utilizes 

MATLABTM as the medium of analysis along with 

compatible toolboxes like Peter Corke Robotics 

Toolbox [8] and Neural Networks Toolbox 

MATLABTM, which aided in the enhancement of 

research process. This would allow easy optimization 

of results which can then be implemented directly on 

the Robot Operating Software platform [9] which is 

currently being used for research on Raven-IITM 

robot. 

 

2. RAVEN-II
TM

 Kinematic Model 
 

The Raven-II
TM

 system has two spherical positioning 

mechanisms with 3-DOF supporting interchangeable 

4-DOF instruments [1]. The two positioning 

mechanisms form the Gold (left) and the Green 

(right) arm. This study focuses on providing an 

inverse kinematics solution for the Green Arm. The 

DH parameters [9], i.e. the physical parameters, of 

the right arm are specified in Table 1. The Standard 

Raven-II
TM

 tool length has been taken into account to 

get the actual tool position of the tool in the inverse 

kinematics solution. 

 

Table 1: DH Parameters of Right Spherical 

Mechanism [1] 

 

i αi-1 ai-1 di θi 

1 180° 0 0 θ1 

2 75° 0 0 θ2 

3 52° 0 d3 -90° 

The task of defining the kinematic Model in 

MATLAB was done by utilizing the open source 

Peter Corke Robotics Toolbox [8]. Two properties 

have to be taken into consideration for accurate 

definition of the kinematic model. First, a tool 

transform of „0.47 along negative z-axis‟ was chosen 

to cater to the length of the Standard Raven-II
TM

 tool 

[2]. Secondly, the option of „modifiedDH‟ 

parameters has to be selected because the inverse 

kinematics solutions derived in [2] are based on 

forward kinematics transform as stated in [11]. But, 

the Peter Corke Toolbox uses a default transform 

which is opposite to this screw transform as in [8]. 

Theoretically a revolute joint is capable of rotating 

360 degrees and a prismatic joint can have as long a 

linear motion as desired. But physically, every joint 

has some restraint. Joint limits are provided to 

overcome the possibility of mechanical interactions 

between various parts of a robot. Another important 

use of joint limits is to narrow down the range of 

inverse kinematics solutions obtained from analytical 

analysis. Also, joint limits help in preventing 

singularity poses of the robotic manipulator. But at 

the same time, the joint limits should not hamper a 

robot‟s manoeuvring capabilities and its ability to 

perform the desired task. The joint limits are given in 

Table 2. 

 Table 2: Joint Limits 

 

JOINT LIMITS 

q1 0 – 90 degrees 

q3 45 – 135 degrees 

d3 0.24 – 0.46 mm 
 

A 3D CAD model of the Raven-II
TM

 robot was 

developed and then imported into MATLAB
TM

 with 

SimMechanics
TM

 Link toolbox that links a CAD 

assembly to MATLAB environment [8]. The model 

was then simulated using the AI techniques 

 

 
 

Figure 1: Raven-IITM 3D CAD model imported 

into SimMechanics 
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The 3D CAD model lead to a better understanding of 

the Raven-II
TM

 mechanisms, DH parameters [10], 

manoeuvrability and robot workspace. The CAD 

model was made incorporating the tool design to 

keep the considerations of the tool in mind while 

deciding the workspace.To be imported into 

MATLAB
TM

, the CAD model was converted into an 

Extensible Markup Language (XML) format through 

the SimMechanics Link utility in SimMechanics
TM

. 

Alongside the XML file, individual parts were 

converted into STL (STereoLithography) format for 

the purpose of actual visualization. The XML file 

was imported into SimMechanics environment using 

the 'mech_import' command. The imported assembly 

has been shown in figure 1. This is a kinematic model 

which fully complies with the DH parameters of the 

robot as defined in [1]. 

 

The SimMechanics Toolbox of MATLAB
TM

 used 

here provides various advantages. It can directly 

make a model corresponding to the mates applied in 

the CAD model assembly. But, the mates have to be 

carefully chosen such that it can identify the model 

using those mates. Another important factor to be  

considered is the initial pose. SimMechanics takes 

the pose in which the model is imported as the zero 

pose of the robot. Thus, the CAD assembly has to be 

imported in a state corresponding to its zero pose. A 

novel Simulink block, as depicted in figure 2, was 

developed to create a joint space trajectory with the 

customized ANN. The Base, Link 1, Link 2, Link 3 

blocks depict the different kinematic links as 

recognized by SimMechanics from the imported 

CAD assembly. These contain kinematic information 

including DH parameters. The q1, q2 and d3 blocks 

represent the joints as shown in figure 1, where B and 

F refer to base and follower respectively for a 

particular joint. For instance, for the joint q2 (figure 

1) represented by block q2 (figure 2), B refers to link 

1 and F refers to link 2. The third connection in each 

joint block us the Joint Actuator, which takes joint 

angle, velocity and acceleration as input and acts as 

an interface between ANN and the joint block. Here 

known parameters are different positions of tool‟s 

tips and joints angles were calculated using ANN 

block. 

 

 

 

 

 

     Figure 2: SimMechanics Simulink Block 
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3. Inverse Kinematics 
 

The inverse kinematics problem is used to determine 

the actual joint angle required to attain a specific pose 

or trajectory of the robot end-effector [12]. Various 

methods are used for solving the inverse kinematics 

problem. These include the analytical solution, 

numerical solution and Artificial Intelligence. 

 

An analytical solution for inverse kinematics problem 

has been derived in [2]. But, it offers eight solutions 

for each end-effecter position. In practice, limiting 

joint angles is a method used to reduce the number of 

solutions. But, it is not a concrete method as it does 

not guarantee single solution. Also, an analytical 

solution has been derived only for the Standard 

Raven-IITM tool which assumes the link length of 

the third link (a3) as zero. But, for a different tool the 

analytical solution may not exist and then we will 

have to resort to alternative forms of solution as 

proposed later. Additionally, the analytical solution 

does not consider the quality of the solution in terms 

of robot manipulability [11], which is an important 

parameter that should be considered while deciding 

the appropriate solution. On further analysis, the 

analytical solution was found to have another 

drawback. The function involves calling 

trigonometric functions which is high on 

computational requirements and thus is difficult to 

implement on real time systems. 

 

Another method for determining inverse kinematics 

is the numerical solution wherein the solution for 

joint angles is determined iteratively. The error in the 

pose from desired pose is updated iteratively till the 

desired error is achieved. One advantage that this 

method harbours is that it is high on accuracy. But it 

has various disadvantages. First, it requires an initial 

estimate of the solution. Second, the computational 

time required is very high as compared to AI and 

analytical method. 

 

Artificial Neural Network is an efficient AI tool used 

for identifying highly non-linear systems. One 

important application of the same is solving inverse 

kinematics problem in robotics. It is both accurate 

and gives a unique solution and thus is best suited to 

solve the problem. The Levenberg-Marquardt 

backpropagation algorithm [14] was customized for 

the same. Developing an ANN involves deciding an 

appropriate network architecture and then training the 

network with some training data. A custom neural 

network was made having architecture as shown. 

 
Figure 3: Neural Network Architecture 

 

This is a 2-Layer  Neural Network with the 3 inputs 

as the end effecter pose, 1 hidden layer consisting of 

160 neurons with „tangent sigmoid‟ activation 

function (f1) and 1 output layer consisting of 3 

outputs as the inverse kinematics solution in terms of 

joint variables with „linear‟ activation function (f2). 

The block diagram satisfies the notations used in 

[14]. Here, „P‟ is the input vector, „W‟ denotes the 

weight vector matrix, „b‟ denotes the bias vector, „n‟ 

is the net input to the neuron activation function and 

„a‟ is the final neuron output. Other important 

parameters used in the custom network are enlisted 

below: 

 

Table 3: Neural Network Parameters as per 

MATLAB Neural Networks Toolbox 

 

Property Value 

inputs{1}.processFcn mapminmax 

layers{1}.processFcn tansig 

layers{2}.processFcn purelin 

outputs{1}.processFcn mapminmax 

divideFcn dividetrain 

trainFcn trainlm 

trainParam.mu 0.013 

trainParam.mu_inc 3 

trainParam.mu_dec 0.075 

 

Another important aspect in creating the neural 

network is selection of appropriate training data 

which should cover the entire workspace and at the 

same time should be concise to allow fast training of 

the neural network. Also, our training data selection 

algorithm is designed so as to select only the high 

manipulability data. Here, manipulability refers to the 

ability of the robotic manipulator to achieve a 

specific point in the workspace. The manipulability 

measure [11], [13] is given as. Lower the value of w, 

poorer is the manipulability or in other words, nearer 

is the robot to the condition of singularity. 

 

The algorithm for determining the training data can 

be described stepwise as follows: 
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• The joint angles were varied in small steps 

(one degree for joint 1 and 2 and one mm for 

joint 3) and the forward kinematics 

transforms were found. These small steps 

ensured that we cover the entire workspace 

of operation. 

• The result gave more than 1.8 million values 

containing the robot pose (position of end 

effecter with respect to Remote Motion 

Centre [2]) and corresponding joint angles. 

Now, this data needs to be narrowed down 

such that we can cover the entire workspace 

in least possible values. For this, the 

resultant poses were rounded off to the 

nearest centimetre. This resulted in a high 

repetition in the end effecter poses.  

• Then a sorting algorithm was developed 

using which all the repeating sets of poses 

were identified and separated. This resulted 

in just 8491 unique sets. 

• Now, a selection of the best value among the 

recurring values was done using the concept 

of manipulability. The joint angles 

corresponding to the highest manipulability 

among the repeated end effecter poses was 

chosen. 

• Finally, a set of 8491 values was collected 

from original 1.8 million values. These were 

then restored to the original values, i.e. the 

ones before rounding off, and then used for 

training. 

 

 
 

Figure 4: Training Data Points 

 

4. Solution Testing 
 

The neural network parameters were optimized 

through testing. Testing was done using two sets of 

data points. First, the 1.8 million values calculated 

using the entire joint angle range. But physically, the 

robot operates in a smaller region that covered by the 

entire joint range. Thus, a smaller joint range was 

chosen which covers the region of normal operation 

of robot. These two test data spaces are chosen to 

give a clear idea of validity of the solution formed. 

The results obtained from the network testing on the 

selected workspace are illustrated in Table 4. The 

corresponding errors separately in the X, Y, and Z 

dimensions are shown in figure 7, figure 8 and figure 

9 respectively. For robotic surgery, this error range is 

quite satisfactory. 

 

Table 4: Neural Network Output Analysis 

 

 X-axes Y-axes Z-axes 

RMS error 

(meters) 

4.92 e-

05 

3.59 e-

05 
3.61 e-05 

MAX error 

(meters) 

6.41 e-

04 

3.22 e-

04 
4.51 e-04 

MIN error 

(meters) 

4.06 e-

11 

3.52 e-

11 
9.44 e-12 

 

 
 

Figure 5: Error along X-Axis 

 

 
 

Figure 6: Error along Y-Axis 
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Figure 7: Error along Z-Axis 

 

As evident from figures, a vast majority of points lie 

within very small error range. Also, when tested with 

the entire workspace, the error values are almost 

same with slight variations due to poor performance 

at the near singularity points. These points will be 

rarely required in actual practice and can be ignored 

for testing. We can increase the number of layers in 

the network and hence improve the performance at 

these points also. But, this would result in higher 

computation requirements for solution and also much 

higher training time. 

 

The solution obtained was also tested on elliptical 

end effector trajectories on planes parallel to the XY, 

XZ and YZ planes as shown in figures 8, figure 9 and 

figure 10. The figures contains actual points marked 

as „+‟ in red color and solution obtained by 

application of ANN overlaps them and marked as „o‟ 

in blue color. The high accuracy reflected in these 

figures corroborate the validity of AI solution. 

 

 
 

Figure 8: Trajectory Testing on XY Plane 

 

The artificial neural network solution shows a 

significant improvement in computational time over 

analytical solution. Both the solution codes were 

tested for the testing data set as mentioned above 

constituting of 1445679 values. The results obtained 

are shown in table 5.  

 

 
 

Figure 9: Trajectory Testing on YZ Plane 

 

 
 

Figure 10: Trajectory Testing on YZ Plane 

Comparison of Computation Times 

 

Table 5: Comparison of Computational Time 

 

 
No of Test 

Inputs 
Total Time 

taken (sec) 
Time for one 

solution (µs) 

1. 
1445679 65.063 45 

2. 
1445679 4.693 3.25 

 

This clearly portrays the superiority of inverse 

kinematic solution based on neural networks as it is 

almost 13 times faster than the analytical solution. 

The neural network solution will thus improve the 

dynamic response of the robot. Additionally, both the 

solutions were executed on same platform. Thus, the 

enhancement in computational efficiency is not 

platform dependent. 
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