
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

524

Printed Text Character Analysis Version-I: Optical Character Recognition

with the new User Training Mechanism

Satyaki Roy
1
, Ayan Chatterjee

2
, Rituparna Pandit

3
, Kaushik Goswami

4

Abstract

The present system aspires to analyse snapshots of

written text and create fully customizable text files

using Optical Character Recognition (OCR)

technology. It is well known that the discrepancies

in typed optical language have led to the advent of

new technology for assessing the written text. Many

font sizes and styles are introduced everyday calling

for frequent updates in recognition technology and

associated systems. There are existent systems for

character recognition but they are limited in their

scope because of their inability to recognize the

latest writing styles, however the present system

gives the user complete liberty to effortlessly train

the system to handle new fonts using the character

dictionary and user training mechanism.

Keywords

User Training Mechanism, Independent Scaling of

Characters, Resizing Algorithm, Character Dictionary,

Character Recognition

1. Introduction

The greatest problem with any software system is its

limited lifecycle. The problem is manifold in case of

systems that process the text characters. Every day

new writing styles are effortlessly introduced.

However the software systems are only trained to

handle a limited range of writing styles. Therefore

such systems become outmoded very soon. In this

paper, we propose a system that would analyse

printed text and recognize characters from text

images like any other Optical Character Recognition

(OCR) system. The system is also equipped to cope

with newly emerging writing formats and font styles.

The system incorporates a User Training Mechanism

that would allow the user to train the system to

incorporate new character font styles. The User

Training Mechanism would therefore ensure that in

Manuscript received May 19, 2014.

Satyaki Roy, St. Xavier‟s College, Kolkata, India.
Ayan Chatterjee, St. Xavier‟s College, Kolkata, India.

Rituparna Pandit, St. Xavier‟s College, Kolkata, India.

Kaushik Goswami, St. Xavier‟s College, Kolkata, India.

the near future all occurrences of the trained font

would be recognized instantly by the system.

The ability of this system to adapt to new writing

styles would ensure that it would last over long

periods of time unlike the existing character

recognition devices. This system will have immense

potential in day to day life because currently people

are more comfortable clicking pictures of valuable

documents. This system would help them to convert

any text image into a customizable text file instantly.

It also includes the user requirement of introducing

new font styles thus broadening the range of its

utility. This paper covers the first stage of printed

text analysis and there is a good deal of

improvements that we shall incorporate in the

subsequent versions to make the process of character

recognition more accurate and effective.

2. Overview of System Components

This system has two distinctive modules:

- The User Training Module

As mentioned before, the User Training Module is

allows the user to train the system to recognize new

characters and font styles. The character information

gets stored in the Character Dictionary which may be

used for all future references of training.

- The Character Recognition Module

The Character Recognition module actually performs

the recognition of characters. It uses the character

dictionary (discussed later) as the database to

recognize the characters from a text image. The User

Training and Character Recognition modules use a

set of components which have been depicted in the

block diagram in figure 1.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

525

Figure 1: Overview of the Components of User Training and Character Recognition Modules

3. Details of System Implementation

This section provides a detailed insight into the

various components of this system.

A.Grayscale Conversion

The prime objective of this module is to reduce the

number of shades in the image. We know that

grayscale images only provide shades ranging from

black (generally denoted by 0) to white (generally

denoted by 255). This module would therefore assist

the system in detecting the difference between

character pixels and background pixels. Typically

character pixels have shades closer to black and

background pixels have shades closer to white. The

grayscale conversion algorithm works in the usual

way by extracting every pixel value 'px' and finds its

red, green and blue components and replaced the R,

G and B values of 'px' by the average of the red,

green and blue components denoted by 'avg'. In the

algorithm shown, px1 is the converted pixel (Let us

assume that the image is in Alpha-Red-Green-Blue

format. Here ‘>>’ represents right shift operation

and ‘&’ is bitwise AND operation.)

for every pixel 'px' in the text image „IMG‟,

alpha= (px>>24)& 0xff;

red = (px>>16)& 0xff

green = (px>>8)& 0xff

blue = px & 0xff

alpha = 255

avg = (red+green+blue)/3

px1 = (alpha<<24) + (avg<<16)+(avg<<8)+avg

B. Character Boundary Recognition

This is the most significant component in the system.

This section deals with the identification of the

character boundaries. This process is very crucial as

more effective the boundary recognition, better is the

quality of character extraction. The underlying

principle behind the recognition of character

boundary is the positioning and alignment of the

darker pixel values. This algorithm extracts four

character boundaries for every line of written text:

-the Vertical Top Line

-the Vertical Bottom Line

-Horizontal Left Character Line

-Horizontal Right Character Line

Each of these boundaries is depicted in the

illustration figure 2.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

526

Figure 2: Boundary Extraction Process

As mentioned before the character boundary

extraction is a key component in both the modules

i.e. user training and character recognition.

With the help of figure 2, let us see how this

component works. The first target here is to

determine the vertical top and bottom character

boundaries. These boundaries together demarcate a

line of printed text.

Vertical Top Boundary Line Extraction

Let x = 0 and y = starting row ‘st’ (initially)

for every y less than the height of image IMG do

 for every x less than the width of the image IMG do

 if IMG[x][y] < = thresh then

 return the value of y;

 end loop

end loop

If we have an image matrix 'IMG [x] [y]' where 'y' is

the row of the image matrix and 'x' is the column of

the matrix, we scan downwards from the start row

number 'st' (where st is initially set to 0 and otherwise

represents the previous vertical bottom character

line). As soon as it detects a pixel value which is less

than the threshold value 'thresh', it considers the row

to be the Vertical Top Character line and returns the

row 'y'. For the Vertical Bottom Boundary

extraction, the same process is repeated, only this

time, the downward scanning starts from top

boundary line. Therefore st = Vertical Top Boundary

Line.

Horizontal Left Boundary Line Extraction

C. Binary Pixel Pattern Generation

Once the character boundary has been recognized,

the system generates the binary pixel pattern which is

a binary string that stores the pixel values lying

within the window of the character boundaries.

As we have mentioned before, in the pixel pattern

„pix‟, character pixels are represented by 0 and

background pixels are represented by the value 1.

for every ‘i’ ranging from Vertical Top Boundary to

Bottom Boundary do

for every ‘j’ ranging from Horizontal Left to Right

Boundary do

if IMG [j][i] < = thresh then

 Append "0" to pix // to signify character

pixel

else

Append "1" to pix // to signify background pixel

 end inner loop

end outer loop

This binary pixel pattern is resized and stored in the

database called the character dictionary for character

matching process.

D. Resizing Algorithm

Ravina Mithe, Supriya Indalkar, Nilam Diveka has

specified in [6] that normalization techniques have to

be incorporated to make sure that uniform sizes are

maintained to enhance the process of character

recognition. In our system, after extraction and

generation of the binary pixel pattern „pix‟, the

extracted character is resized to a default value of 10

x 10. This ensures a few things:

-It helps the pixel-wise character matching process,

because every character is reduced to the same size.

-It reduces memory overhead because 100 character

values are stored for each character

-It speeds up the matching process because the time

taken to perform 100 comparisons is not very high.

The resizing algorithm works on the principle of

mapping. It simply scales down a matrix of certain

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

527

pixel size to a 10 x 10 matrix. We would like to point

out here that the size of 10 X 10 is not fixed.

We have experimentally determined that we are

obtaining an optimum performance and quality with

the 10 X 10 binary strings. If the window size is

increased then the time to perform character

recognition will also be quite high.

In the resizing algorithm below:

The values „h1‟, „w1‟ are the height and width of the

original binary pixel matrix, whereas both „h2‟ and

„w2‟ are set to 10 (which is the size of the reduced or

resized pixel matrix).

The resized character matrix is stored in 1-D array

„temp‟.

 w1=original character width

 h1=original character height

 h2=10

 w2=10

 ‘a’ is the one dimensional array that stores the

original binary pixel string

 ‘temp’ is the one dimensional array of size (h2*w2)

that stores the resized binary pixel string

 x_ratio = w1/w2

 y_ratio = h1/h2

 Let px and py be the x and y components of the

resized pixel value.

 for every 'i' ranging fro 0 to h2 do,

 for every 'j' ranging from 0 to w2 do,

 px = j*x_ratio

 py = i*y_ratio

 temp[(i*w2)+j] = a[(int)((py*w1)+px)]

 end inner loop

end outer loop

Figure 3: Original Character after extraction

(top) and resized character (bottom)

E. Independent Character Scaling

There is another small task which remains to be done

after the extraction of characters. When there are two

characters adjacent to each other that have varying

heights, then the character which is shorter tends to

have a white space on top as evidenced by figure 4

shown below.

Figure 4: The white space on top of character ‘a’

that exists because ‘b’ has a greater height

The independent character scaling algorithm simply

removes the white space on any character after

extraction. This is very important for accurate

character recognition.

F. Storage into Character Dictionary

The system must be able to record the patterns for

new character as discussed by Sukhpreet Singh in [7].

It makes sure that all future references of a known

character are successfully recognized. The database

called character dictionary does that by being the

mainstay of the User Training Mechanism. Once the

binary pixel pattern has been generated for a certain

character, the pixel pattern is transferred to the

character dictionary. In our algorithm we have used a

MS Access database but any other data storage can

be utilized. The dictionary has the following fields:

- Character name

- Binary Pixel Pattern String

- Aspect Ratio (to be used for optimization

purposes in the next version of our

algorithm)

We must understand that the character dictionary

does not function as specified in [8] which detect

misspellings. This dictionary is for character

recognition alone.

Table 1: Character Dictionary Sample for

character ‘a’

Character

Name

Binary Pixel String

100 pixel values

Aspect Ratio

A 11111000111… 1.1818

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

528

It must be remembered that the system already has a

character dictionary in place. The advantage here is

that the user may add new characters to the dictionary

with the user training module and introduce new

writing styles at his will.

G. Comparison and Matching Algorithm

This technique of character recognition/ matching

works with the pixel matching method where the

corresponding 10 X 10 values of the extracted pixel

pattern is resized and matched against the pixel

pattern of the character dictionary. If the number of

matched pixels exceeds a threshold value (generally

set to 85 out of 100 pixels) we can call it successful

character recognition. The simplistic matching

algorithm is described here,

For every character entry in the character

dictionary, do

Define counter = 0

For i = 0 to (10 X10 or) 100 do,

‘pix_a’ is the ith pixel value of extracted and resized

character

‘pix_b’ is the ith pixel value of the given entry of the

dictionary

If pix_a is equal to pix_b

Increment counter

End loop

If „counter‟ exceeds a threshold value (generally 85

pixels out of 100), then the match is deemed

successful.

End loop

H. Newline and Space Detection

We must understand that merely recognizing

characters is not enough. The system must be able to

detect end of character lines and spaces in between

characters as well. Therefore we have a separate

mechanism to recognise newlines and spaces.

- Newline Detection: Previously we have

spoken about the recognition of the

Horizontal Right Character Boundary and

the Vertical Bottom Character Boundary.

The algorithm works as follows:

If the right boundary returns -1, it indicates end of

line. If bottom boundary returns -1, it indicates end of

the page.

-Space Detection: If the algorithm detects a gap of

atleast 10 pixel columns between adjacent characters,

it considers the gap to be a space. The value of 10

pixel columns has been determined experimentally.

4. Overall System Algorithm

We have just discussed the independent components

of the system. Now let us discuss the overall

algorithm we have implemented in the system.

System algorithm for Insertion Module –

Step I: Read image- IMG of graphical symbol or

character to be trained to the system

Step II: Convert IMG to its grayscale equivalent

with shades ranging from 0 (black) to 255 (white).

Step III:Extract the boundary of the character to be

trained.

Step IV: Calculate the aspect ratio = width/height for

the character.

Step V: Create the binary pixel pattern generation.

Step VI: Resize the extracted character and store the

information in the character dictionary.

Step VIII:End

System algorithm for Character Recognition

Module –

Step I: Read image- IMG of graphical symbol or

character to be recognised.

Step II: Convert IMG to its grayscale equivalent

with shades ranging from 0 (black) to 255 (white).

Step III: Extract boundary for every character that is

encountered.

Step IV: Calculate aspect ratio = width/height for the

character.

Step V: Create the binary pixel pattern generation

and resize the character

Step VI: Perform top and bottom

independent scaling of character

Step VII: Apply the comparison and matching

algorithm to recognise the character

Step VIII: If match is found print character and

space (if necessary).

Step IX: GOTO step III for the extraction and

recognition of the next character.

Step X: End

5. Test Results

The system we are proposing is already in working

condition and we would like to illustrate the ways in

which the two main modules, namely the User

Training Module and the Character Recognition

Module function. The working of both the modules

have been briefly illustrated in the following sections

A and B, by applying them on a character images-

A. Working for the User training module

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

529

We have shown the steps involved in the training

module using the character „b‟.

Step 1: The user may use the User Interface to

upload an image of the character he wishes to

introduce into the character dictionary. The character

image is converted into the corresponding grayscale.

Figure 5: Character to be trained

Step 2: The boundary is recognized and character is

extracted (Figure 6).

Figure 6: Character after boundary recognition

and extraction.

Step 3: The character is resized and independently

scaled (Figure 7).

Figure 7: The character is resized.

Step 4: The user training process is complete.

B. Working for the Character Recognition

Module

Step 1: The image is uploaded for character

recognition (Figure 8).

Figure 8: The image for recognition

Step 2: The individual characters are identified. In

this case the characters „a‟ and „b‟ are recognized and

resized.

Figure 9: The binary matrix for the extracted

character where 1 represents background and 0

represents character pixels.

Step 3: As depicted in Figure 10, for every character

whose boundary is recognized, we perform a match

with a database entry. (In figure 10, after extraction

we find a 95 percent match with a database entry of

„a‟ even though the percentage match may be as low

as 80 percent.

Figure 10: The final character recognition stage is

depicted in which the extracted character is

yielding a 95 percent match with a database entry

of ‘a’. This is an example of a successful match.

In the diagram Figure 10, shown above, the value of

variable b is the resized binary string and „cnt‟

represents the counter representing the number of

matched pixel values. The percentage match is

seldom 100 percent because the character shape

undergoes some change after resizing.

Step 4: The process of character recognition

continues until all the characters are recognized. In

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

530

figure 11, we have a printed text with only two

characters.

Figure 11: Final Printed text ‘ab’

6. Comparison with existing systems

Like we mentioned in the introduction, the existing

systems of optical character recognition become less

effective because they are hardcoded. They are

unable to incorporate unconventional characters or

graphical symbols as required by specific users.

Consider the image in figure 12 –

.

Figure 12: The image with unconventional

graphic symbols

In figure 12, you shall see that the characters „Đ‟, „ø‟,

„©‟, „Ę‟ are unconventional graphic symbols. They

are seldom used in text documents and hence the

existing OCRs struggle to recognise them because

they are rarely trained for such characters.

Figure 13: The character training/insertion

module being used to train character ‘Đ’ which is

going to be recognized on all future occurrences.

Printed text characters provide the user the liberty of

training the system to recognise any unusual graphic

symbol as shown above. Once such characters are

trained the process of recognition of unconventional

graphic symbols becomes lot simpler. The user can

thus customize the system as per his needs.

Figure 14: The characters in the image in figure

are easily recognized by the system because

unconventional graphic symbols have been

trained.

As we consider related work, let us understand that

our present system has implemented the concept of

Pixel Grabber class in java to read the text images, as

specified in [1] and [3]. The entire concept of

brighter pixels for the image background and darker

pixels for the characters has been conceived from [2].

It must be understood that the system we are

proposing in this paper is fundamentally different

from the existing literature on optical character

recognition. Mori and Suen, in literature [4], have

discussed the concept of neural networks and

template analysis whereas our system is based on the

concept of pixel matching algorithm (described

before). Many surveys, as described in [5], show that

a system should have the pre-processing and

recognition techniques in place that would cope with

online and offline character recognition techniques.

Our test results clearly show how our system can be

utilized to recognize conventional and

unconventional characters without any difficulty.

However we have seen examples of cursive font

handling where the system requires incorporating

shape recognition and slant-angles to handle cursive

fonts. The system will look to incorporate cursive

fonts in its future versions as discussed in the

conclusion section.

7. Conclusion and Future Scope

While working on this system, we came up with a

few interesting insights into the future improvements

on this system. We have been working extensively on

the given system and tried out multiple font sizes,

writing styles and formats. The results have been

rather promising. In the conclusive section of the

paper, we shall discuss the few aspects which are

imperative to address in our subsequent versions.

-Firstly, the printed text analyzer must be capable of

processing long text images in little time. Therefore

the character recognition process must be enhanced.

We are working on a series of optimization

mechanisms which will be based on the intrinsic

characteristics of the written text. For example, we

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

531

have come up with ideas of working on the aspect

ratio, and pixel rows and columns to make the

process of character recognition quicker and more

effective.

-Secondly we are working on a module of character

recognition technology which will be capable of

recognizing the background and foregrounds of the

text image automatically. Therefore the system will

be able to detect character pixels instantly and this

would ensure greater accuracy of the printed text

analyser. This module will be a part of the pre-

processing stage of the current algorithm.

-Thirdly and most importantly we have theorized a

module will would work for cursive and irregular

fonts as well. The module will be able to define

character boundaries even when the writing is joined.

This module offers multiple challenges of

inconsistency during the training and recognition

process. We have performed a few preliminary tests

on existing cursive fonts and we have seen some

early success.

-Finally, we are designing a separate noise removal

module which will be able to detect and remove

existing noise from poor quality images. This is very

important because we do not have the luxury of a

high quality image to work with, every time. We are

currently trying to work with various algorithms of

median filter and looking for the best possible

algorithm for our system. We are optimistic that with

the following additions in the subsequent versions,

we are going to design a system which would serve

the purpose of recognizing most text images. As

mentioned before, it has a marked advantage over

other existing systems because it allows the user to

interact with the system and introduce fonts and

writing styles as and when he wants to do so.

Acknowledgment

We are grateful to the Department of Computer

Science, St. Xavier‟s College, Kolkata, India for

giving us the unique opportunity of working on this

project. We wholeheartedly thank the 2012-14 batch

of M.Sc. Computer Science for their encouragement

and continued support.

References

[1] Nick Efford, “Digital Image Processing a

Practical Introduction using Java”- Pearson

Education.

[2] Herbert Schildt, “Java- The Complete Reference,

8th Edition”, McGraw-Hill Companies.

[3] Gonzalez, Woods and Eddins, “Digital Image

Processing Using Matlab”, Gatesmark Publishing

[4] Mori S, Suen C Y and Yamamoto K,"Historical

review of OCR research and development",

Proceedings of IEEE 80,1029–1058,1992.

[5] J. Mantas,"An overview of character recognition

methodologies",Pattern Recognition,Volume 19,

Issue 6, Pages 425–430,1986.

[6] Ravina Mithe, Supriya Indalkar, Nilam Divekar,

“Optical Character Recognition” International

Journal of Recent Technology and Engineering

(IJRTE) Volume 2 Issue 1.

[7] Sukhpreet Singh, “Optical Character Recognition

Techniques: A Survey” Journal of Emerging

Trends in Computing and Information Sciences,

Vol. 4, No. 6 June 2013.

[8] Youssef Bassil, Mohammad Alwani, “OCR Post-

Processing Error Correction Algorithm Using

Google's Online Spelling Suggestion”, Journal of

Emerging Trends in Computing and Information

Sciences, Vol. 3 No.1.

Satyaki Roy is a student of M.Sc. final

year at St. Xavier's College Kolkata,

India. He has a number of publications

in bit and byte-level symmetric key

cryptographic algorithms including one

single authorship publication. His work

Ultra Encryption Standard (UES)

Version-I has been cited on several occasions. His research

interests include networking, image processing, machine

learning and genetic algorithms.

Ayan Chatterjee is currently his

Master's degree from St. Xavier's

College, Kolkata, India. During his

bachelor's studies, he has worked in

fields of Graphics Design and AI. His

research interests include Image

Processing, Network Security and Networking.

Rituparna Pandit is a post-graduation

student at St. Xavier‟s College, Kolkata.

In the past she has been involved in

projects of web design, image

processing etc. Her research interest

includes Network Security and

Microprocessors.

Kaushik Goswami is a Professor in

Computer Science at St. Xavier‟s

College, Kolkata, India. He has

extensive knowledge in the fields of

SQL and scripting languages. His

research interests include Image

Processing and Network Security. He

has a number of publications in data encryption,

randomization algorithms and green software engineering.

