
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

532

Image Processing Algorithms – A Comprehensive Study

Mahesh Prasanna K
1
, Shantharama Rai C

2

Abstract

Digital image processing is an ever expanding and

dynamic area with applications reaching out into

our everyday life such as medicine, space

exploration, surveillance, authentication, automated

industry inspection and many more areas. These

applications involve different processes like image

enhancement and object detection [1].

Implementing such applications on a general

purpose computer can be easier, but not very time

efficient due to additional constraints on memory

and other peripheral devices. Application specific

hardware implementation offers much greater speed

than a software implementation. With advances in

the VLSI (Very Large Scale Integrated) technology

hardware implementation has become an attractive

alternative. Implementing complex computation

tasks on hardware and by exploiting parallelism and

pipelining in algorithms yield significant reduction

in execution times [2].

Keywords

Digital Image Processing, Application Specific Integrated

Circuits, Digital signal processors, Field Programmable

Gate Arrays, Hardware Design Language.

1. Introduction

This work is structured into two parts. The first part

gives a comprehensive study of image processing

algorithms. Given the importance of digital image

processing and the significance of their

implementations on hardware to achieve better

performance, this work addresses image processing

algorithms like median filter, morphological

processing, convolution operation and edge detection.

The second part covers topics concerning a range of

technologies used in the hardware implementation of

typical image processing systems, e.g. image sensors,

Manuscript received May 18, 2014.
Mahesh Prasanna K, Department of Information Science &

Engineering, Alva‟s Institute of Engineering & Technology,

Moodbidri, India.

Shantharama Rai C, Department of Electronics &
Communication Engineering, Canara Engineering College,

Benjanapadavu, India.

signal processing units, memory technologies and

displays. Comparisons are made in various

technologies regarding performance, area and power

consumption cost etc.

2. Image Processing Algorithms

This section discusses the most commonly used

image processing algorithms like, 1) Filtering, 2)

Morphological Operations, 3) Convolution, and 4)

Edge detection.

2.1 Filtering

The classification of image processing filters is

presented in Figure 2.1. In the following section one

of the filters (Median Filter) is explained in detail.

2.2 Median Filter

A median filter is a non-linear digital filter which is

able to preserve sharp signal changes and is very

effective in removing impulse noise (or salt and

pepper noise) [1]. An impulse noise has a gray level

with higher or lower value that is different from the

neighbourhood point. Linear filters have no ability to

remove this type of noise without affecting the

distinguishing characteristics of the signal. Median

filters have remarkable advantages over linear filters

for this particular type of noise. Therefore median

filter is very widely used in digital signal and

image/video processing applications. A standard

median operation is implemented by sliding a

window of odd size (e.g. 3x3 window) over an

image. At each window position the sampled values

of signal or image are sorted, and the median value of

the samples replaces the sample in the center of the

window as shown in Figure 2.2.

The main problem of the median filter is its high

computational cost; for sorting n pixels, the time

complexity is O(n log n), even with the most efficient

sorting algorithms. When the median filter is carried

out in real time, the software implementation in

general-purpose processors does not usually give

good results. The execution times can be reduced by

implementing median filters on FPGAs.

2.3 Morphological Operations

The word morphology commonly denotes a branch of

biology that deals with the form and structure of

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

533

animals and plants. A mathematical morphology is a

tool for extracting image components that are useful

in the representation and description of region space.

The term morphological image processing refers to a

class of algorithms that transforms the geometric

structure of an image. Morphology can be used on

binary and gray scale images, and is useful in many

areas of image processing, such as skeletonization,

edge detection, restoration and texture analysis.

A morphological operator uses a structuring element

to process an image. The structuring element is a

window scanning over an image, which is similar to

the pixel window used in the median filter. The

structuring element can be of any size, but 3x3 and

5x5 sizes are common. When the structuring element

scans over an element in the image, there may be

instances where the structuring element completely

fits inside the object or does not fit inside the object.

The two principal morphological operations are

dilation and erosion. Dilation allows objects to

expand, thus potentially filling in small holes and

connecting disjoint objects. Erosion shrinks objects

by etching away (eroding) their boundaries. These

operations can be customized for an application by

the proper selection of the structuring element, which

determines exactly how the objects will be dilated or

eroded. The Figure 2.3 shows the example of dilation

and erosion.

2.3.1 The Dilation

The dilation process is performed by laying the

structuring element B on the image A and sliding it

across the image. The operation performed is

described in a sequence of steps:

1. If the origin of the structuring element coincides

with a „white‟ pixel in the image, there is no change;

move to the next pixel.

2. If the origin of the structuring element coincides

with a „black‟ in the image, make black all pixels

from the image covered by the structuring element.

With A and B as sets in Z
2
, the dilation of A by B is –

A B = {Z | ()Z ∩ A ≠ Ø} i.e., the dilation of A by

B is the set of all displacements, Z, such that B and A

overlap by at least one element.

The structuring element can have any shape. Typical

shapes are presented in Figure 2.4.

2.3.2 The Erosion

The erosion process is similar to dilation, but we turn

pixels to 'white', not 'black'. As before, slide the

structuring element across the image and then follow

these steps:

1. If the origin of the structuring element coincides

with a 'white' pixel in the image, there is no change;

move to the next pixel.

2. If the origin of the structuring element coincides

with a 'black' pixel in the image, and at least one of

the 'black' pixels in the structuring element falls over

a white pixel in the image, then change the 'black'

pixel in the image (corresponding to the position on

which the center of the structuring element falls)

from „black‟ to a 'white'.

With A and B as sets in Z
2
, the erosion of A by B is –

A B = {Z | (B)Z ∩ A
C
 = Ø} i.e., the erosion of A

by B is the set of points, z, such that B, translated by

Z, is contained in A.

2.3.3 Opening and Closing

The two basic operations, dilation and erosion, can be

combined into more complex sequences. The most

useful of these for morphological filtering are called

opening and closing. Opening consists of an erosion

followed by a dilation and can be used to eliminate

all pixels in regions that are too small to contain the

structuring element. In this case the structuring

element is often called a probe, because it is probing

the image looking for small objects to filter out of the

image. Closing consists of a dilation followed by

erosion and can be used to fill in holes and small

gaps.

Closing and opening will generate different results

even though both consist of erosion and dilation.

Opening generally smoothes the contour of an object,

breaks narrow isthmuses, and eliminates thin

protrusions. Closing also tends to smooth sections of

the contour but, as opposed to opening, it generally

fuses narrow breaks and long thin gulfs, eliminates

small holes, and fills gaps in the contour.

2.4 Convolution

Convolution is another commonly used algorithm. It

is from a class of algorithms called spatial filters.

Spatial filters use a wide variety of masks, also

known as kernels, to calculate different results,

depending on the function desired. For example,

certain masks yield smoothing, while others yield

low pass filtering or edge detection.

The convolution algorithm can be calculated in the

following manner. For each input pixel window, the

values in that window are multiplied by the

convolution mask. Next, those results are added

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

534

together and divided by the number of pixels in the

window. This value is the output for the origin pixel

of the output image for that position. Mathematically,

this is represented using the following equation.

where A is the input image and k is the convolution

kernel.

The input pixel window is always the same size as the

convolution mask. The output pixel is rounded to the

nearest integer. As an example, Figure 2.5 shows an

input pixel window, the convolution mask, and the

resulting output. This convolution mask in this

example is often used as a noise-cleaning filter. The

results for this algorithm carried over an entire input

image will result in an output image with reduced salt-

and-pepper noise. An important aspect of the

convolution algorithm is that it supports a virtually

infinite variety of masks, each with its own feature.

This flexibility allows for many powerful uses.

2.5 Edge Detection

Edges are places in the image with strong intensity

contrast. Edges often occur at image locations

representing object boundaries; edge detection is

extensively used in image segmentation when we

want to divide the image into areas corresponding to

different objects. Representing an image by its edges

has the further advantage that the amount of data is

reduced significantly while retaining most of the

image information. Edges can be detected by

applying a high pass frequency filter in the Fourier

domain or by convolving the image with an

appropriate kernel in the spatial domain. In practice,

edge detection is performed in the spatial domain,

because it is computationally less expensive and

often yields better results. Since edges correspond to

strong illumination gradients, the derivatives of the

image are used for calculating the edges.

The Canny edge detection algorithm is considered a

“standard method” and is used by many researchers,

because it provides very sharp and thin edges. The

Canny operator works in a multi-stage process.

Canny edge detection uses linear filtering with a

Gaussian kernel to smooth noise and then computes

the edge strength and direction for each pixel in the

smoothed image. This is done by differentiating the

image in two orthogonal directions and computing

the gradient magnitude as the root sum of squares of

the derivatives. The gradient direction is computed

using the arctangent of the ratio of the derivatives.

Candidate edge pixels are identified as the pixels that

survive a thinning process called non-maximal

suppression. In this process, the edge strength of each

candidate edge pixel is set to zero if its edge strength

is not larger than the edge strength of the two

adjacent pixels in the gradient direction.

Thresholding is then done on the thinned edge

magnitude image using hysteresis. In hysteresis, two

edge strength thresholds are used. All candidate edge

pixel values below the lower threshold are labelled as

non-edges, and the pixels values above the high

threshold are considered as definite edges. All pixels

above low threshold that can be connected to any

pixel above the high threshold through a chain are

labelled as edge pixels. The schematic of the canny

edge detection is shown in Figure 2.6.

2.5.1 Smoothing

In the first stage, a Gaussian convolution mask is

used for smoothing. The effect of Gaussian

convolution is to blur an image. The degree of

smoothing is determined by the standard deviation of

the Gaussian.

2.5.2 Gradient Calculation
After smoothing the image and eliminating the noise,

the next step is to find the edge strength by taking the

gradient of the image. Most edge detection methods

work on the assumption that an edge occurs where

there is a discontinuity in the intensity function or a

very steep intensity gradient in the image. Most edge-

detecting operators can be thought of as gradient-

calculators. Since the gradient is a continuous-

function concept and images are discrete functions,

we have to approximate it. Since derivatives are

linear and shift-invariant, gradient calculation is most

often done using convolution. Numerous kernels

have been proposed for finding edges, some of the

kernels are: Roberts Kernel, Kirsch Compass Kernel,

Prewitt Kernel, Sobel Kernel, and many others.

The Prewitt kernels are based on the simple idea of

the central difference between rows for horizontal

gradient and difference between columns for vertical

gradient.

The convolution masks of Figure 2.7 are derived

from these equations. These convolutions are used

for calculating the horizontal and vertical gradients.

file:///C:/Documents%20and%20Settings/ACCENTS0/My%20Documents/Downloads/Image%20Processing%20Algorithms%20–%20A%20Comprehensive%20Study.docx%23
file:///C:/Documents%20and%20Settings/ACCENTS0/My%20Documents/Downloads/Image%20Processing%20Algorithms%20–%20A%20Comprehensive%20Study.docx%23
file:///C:/Documents%20and%20Settings/ACCENTS0/My%20Documents/Downloads/Image%20Processing%20Algorithms%20–%20A%20Comprehensive%20Study.docx%23_Hlk388968504
file:///C:/Documents%20and%20Settings/ACCENTS0/My%20Documents/Downloads/Image%20Processing%20Algorithms%20–%20A%20Comprehensive%20Study.docx%23_Hlk388968504
file:///C:/Documents%20and%20Settings/ACCENTS0/My%20Documents/Downloads/Image%20Processing%20Algorithms%20–%20A%20Comprehensive%20Study.docx%23_Hlk388968551
file:///C:/Documents%20and%20Settings/ACCENTS0/My%20Documents/Downloads/Image%20Processing%20Algorithms%20–%20A%20Comprehensive%20Study.docx%23_Hlk388968551

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

535

2.5.3 Magnitude and Phase
Convolution of the image with horizontal and vertical

gradients produces horizontal gradient (dx) and

vertical gradient (dy) respectively. The absolute

gradient magnitude (|G|) is calculated by the mean

square root of the horizontal (dx) and vertical (dy)

gradients. That is, |G| = . To reduce the

computational cost of magnitude, it is often

approximated with absolute sum of the horizontal and

vertical gradients (| G |=| dx | + | dy |).

The direction of the gradient (Ɵ) is calculated by

arctangent of the vertical gradient to the horizontal

gradient: Ɵ = arctan(dy / dx)

Since arctangent is a very complex function and also

requires floating point numbers, it is very difficult to

implement such functions on FPGA. Instead, the

value and sign of the components of the gradient is

analyzed to calculate the direction of the gradient.

2.5.4 Non-Maximum Suppression
Once the direction of the gradient is known, the

values of the pixels found in the neighbourhood of

the pixel under analysis are interpolated. The pixel

that has no local maximum gradient magnitude is

eliminated. The comparison is made between the

actual pixel and its neighbours, along the direction of

the gradient. For example, if the approximate

direction of the gradient is between 00 and 450, the

magnitude of the gradient at Px, y is compared with

the magnitude of the gradient at adjacent points.

2.5.5 Threshold
The output image of non-maximum suppression stage

may consist of broken edge contours, single edge

points which contribute to noise. This can be

eliminated by thresholding with hysteresis. Two

thresholds are considered for hysteresis, one high

threshold other low threshold. If any edge response is

above a high threshold, those pixels constitute

definite edge output of the detector for a particular

scale. Individual weak responses usually correspond

to noise, but if these points are connected to any of

the pixels with high threshold, they are more likely to

be actual edges in the image. Such connected pixels

are treated as edge pixels if their response is above a

low threshold.

To get thin edges two thresholds (high threshold (TH)

and low threshold (TL) are used. If the gradient of the

edge pixel is above the TH, it is considered as an edge

pixel. If the gradient of the edge pixel is below TL

then it is unconditionally set to zero. If the gradient is

between these two, then it is set to zero unless there is

a path from this pixel to a pixel with a gradient above

TH; the path must be entirely through pixels with

gradients of at least TL.

3. Procedures for Hardware

Implementation

There are two types of technologies available for

hardware design. Full custom hardware design also

called as Application Specific Integrated Circuits

(ASIC) and semi-custom hardware device, which are

programmable devices like Digital signal processors

(DSPs) and Field Programmable Gate Arrays

(FPGA‟s). Full custom ASIC design offers highest

performance, but the complexity and the cost

associated with the design is very high. The ASIC

design cannot be changed and the design time is also

very high. ASIC designs are used in high volume

commercial applications. In addition, during design

fabrication the presence of a single error renders the

chip useless. DSPs are a class of hardware devices

that fall somewhere between an ASIC and a PC in

terms of the performance and the design complexity.

DSPs are specialized microprocessors, typically

programmed in C, or with assembly code for

improved performance. It is well suited to extremely

complex math intensive tasks such as image

processing. Field Programmable Gate Arrays are

reconfigurable devices. Hardware design techniques

such as parallelism and pipelining techniques can be

developed on a FPGA, which is not possible in

dedicated DSP designs. Implementing image

processing algorithms on reconfigurable hardware

minimizes the time-to-market cost, enables rapid

prototyping of complex algorithms and simplifies

debugging and verification. Therefore, FPGAs are an

ideal choice for implementation of real time image

processing algorithms [3]. A comparison is made for

the areas where each of these technologies prevails

[4]. This is shown in Table 1 and 2.

No perfect technology exists that is competent in all

areas. For a balanced embedded system design, a

combination of some of the alternative technologies

is a necessity. FPGAs have traditionally been

configured by hardware engineers using a Hardware

Design Language (HDL). The two principal

languages used are Verilog HDL (Verilog) and Very

High Speed Integrated Circuits (VHSIC) HDL

(VHDL), which allows designers to design at various

levels of abstraction. Verilog and VHDL are

specialized design techniques that are not

file:///C:/Documents%20and%20Settings/ACCENTS0/My%20Documents/Downloads/Image%20Processing%20Algorithms%20–%20A%20Comprehensive%20Study.docx%23_Hlk388968621

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

536

immediately accessible to software engineers, who

have often been trained using imperative

programming languages. Consequently, over the last

few years there have been several attempts at

translating algorithmic oriented programming

languages directly into hardware descriptions. C-

based hardware descriptive languages have been

proposed and developed since the late 1980s. Some

of the C-based hardware descriptive languages

include Cones [5], HardwareC [6], Transmogrifier C

[7], SystemC [8], OCAPI [9], C2Verilog [10], Cyber

[11], SpecC [12], Nach C [13], CASH [14]. A new C

like hardware description language called Handel-C

introduced by Celoxica [2, 15], allows the designer to

focus more on the specification of an algorithm rather

than adopting a structural approach to coding.

Application Specific Integrated Circuits (ASICs)

represent a technology in which engineers create a

fixed hardware design using a variety of tools. Once

a design has been programmed onto an ASIC, it

cannot be changed. Since these chips represent true,

custom hardware, highly optimized, parallel

algorithms are possible. However, except in high-

volume commercial applications, ASICs are often

considered too costly for many designs. In addition,

if an error exists in the hardware design and is not

discovered before product shipment, it cannot be

corrected without a very costly product recall. Digital

Signal Processors (DSPs) are a class of hardware

devices that fall somewhere between an ASIC and a

PC in terms of performance and design complexity.

They can be programmed with either assembly code

or the C programming language, which is one of the

platform‟s distinct advantages. Hardware design

knowledge is still required, but the learning curve is

significantly lower than some other design choices,

since many engineers have knowledge of C prior to

exposure to DSP systems. However, algorithms

designed for a DSP cannot be highly parallel without

using multiple DSPs. Algorithm performance is

certainly higher than on a PC, but in some cases,

ASIC or FPGA systems are the only choice for a

design. Still, DSPs are a very common and efficient

method of processing real-time data. Field

Programmable Gate Arrays (FPGAs) represent

reconfigurable computing technology, which is in

some ways ideally suited for video processing.

Reconfigurable computers are processors which can

be programmed with a design, and then

reprogrammed (or reconfigured) with virtually

limitless designs as the designer‟s needs change.

FPGAs generally consist of a system of logic blocks

(usually look up tables and flip-flops) and some

amount of Random Access Memory (RAM), all

wired together using a vast array of interconnects. All

of the logic in an FPGA can be rewired, or

reconfigured, with a different design as often as the

designer likes. This type of architecture allows a

large variety of logic designs dependent on the

processor‟s resources, which can be interchanged for

a new design as soon as the device can be

reprogrammed.

4. Conclusions and Future Work

The most feasible solution for improving the

performance of image processing systems is by

implementing the image processing algorithms in

hardware. The introduction of reconfigurable devices

and system level hardware programming languages

has further accelerated the design of image

processing in hardware. Most of the system level

hardware programming languages introduced and

commonly used in the industry are highly hardware

specific and requires intermediate to advance

hardware knowledge to design and implement the

system. In order to overcome this bottleneck various

C-based hardware descriptive languages have been

proposed over the past decade. These languages have

greatly simplified the task of designing and verifying

hardware implementation of the system. However,

the synthesis process of the system to hardware was

not completely addressed and was conducted using

manual methods resulting in duplication of the

implementation process. Handel-C is a new C-based

language proposed that provides direct

implementation of hardware from the C-based

language description of the system. Handel-C

language and the IDE tool introduced by Celoxica

Ltd. provide both simulation and synthesis

capabilities.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

537

Figure 2.1: Classification of Image Processing Filters

Figure 2.2: Median Filter.

Figure 2.3: Example of dilation and erosion.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

538

Figure 2.4: Typical shapes of structuring elements (B)

Figure 2.5: Convolution Algorithm Example.

Figure 2.6: Schematic of Canny Edge Detection.

Figure 2.7: Gradient of Image.

Table 1: Comparisons of different types of signal processing technologies.

Technology Performance Power Flexibility Price

ASIC Excellent Good Poor Excellent

DSP Excellent Excellent Excellent Excellent

FPGA Excellent Fair Excellent Poor

Table 2: Comparisons between ASICs and FPGAs.

Performance Metric ASICs FPGAs

Power Low High

Flexibility Low High

Clock Speed High Low

Logic Integration High Low

Integrated Features Low High

Back-end Design Effort High Low

Unit Cost with Volume Production Low High

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

539

References

[1] John C. Ross. Image Processing Hand book, CRC

Press. 1994.

[2] Peter Mc Curry, Fearghal Morgan, Liam

Kilmartin. Xilinx FPGA implementation of a

pixel processor for object detection applications.

In the Proc. Irish Signals and Systems

Conference, Volume 3, Page(s):346 – 349, Oct.

2001.

[3] Stephen D.Brown, R.J. Francis, J.Rose,

Z.G.Vranesic. Field Programmable Gate Arrays,

1992.

[4] L. Adams. (2002, November) Choosing the right

architecture for real-time signal processing

designs. [Online]. Available:

http://focus.ti.com/lit/an/spra879/spra879.pdf

[5] E. Stroud, R. R. Munoz, and D. A. Pierce.

Behavioral model synthesis with cones. Design &

Test of Computers, 5(3):22–30, July 1988.

[6] D. C. Ku and G. De Micheli. HardwareC: A

language for hardware design. T.R. CSTL-TR-

90-419, Stanford University, CA, Aug. 1990.

[7] D. Galloway. The Transmogrifier C hardware

description language and compiler for FPGAs. In

Proc. FCCM, pp. 136–144, Napa, CA, 1995.

[8] T. Grotker, S. Liao, G. Martin, and S. Swan.

System Design with SystemC. ISBN 1-4020-.

7072-1, Mar 4, 6. Design space exploration, Mar

11, 13. Spring Break. 9. Kluwer, 2002.

[9] P. Schaumont et al. A programming environment

for the design of complex high speed ASICs. In

Proc. DAC, pp. 315–320, 1998.

[10] D. Soderman and Y. Panchul. Implementing C

algorithms in reconfigurable hardware using

C2Verilog. In Proc. FCCM, pp. 339–342, 1998.

[11] K.Wakabayashi. C-based synthesis experiences

with a behavior synthesizer, “Cyber”. In Proc.

DATE, pp. 390–393, 1999.

[12] D. D. Gajski, J. Zhu, R. D¨omer, A. Gerstlauer,

and S. Zhao. SpecC: Specification Language and

Methodology. Kluwer Academic Publishers,

2000 [11] P.

[13] T. Kambe et al. A C-based synthesis system,

Bach, and its application. In Proc. ASP-DAC, pp.

151–155, Yokohama, Japan, 2001.

[14] M. Budiu and S. C. Goldstein. Compiling

application-specific hardware. In Proc. FPL,

LNCS 2438, pp. 853–863, Montpellier, France,

2002.

[15] Celoxica, http://www.celoxica.com. Handel-C

Language Reference Manual, 2003. RM-1003-

4.0.

Mr. Mahesh Prasanna K., working

as Associate Professor & HOD,

Department of Information Science &

Engineering, Alva‟s Institute of

Engineering & Technology,

Moiodbidri. He received his BE in

Electronics & Communications

Engineering from Mangalore

University; M.Tech. in Computer

Science & Engineering from VTU, Belgaum. Currently he

is doing his research work in the field of Image Processing.

He fields of interest are Artificial Intelligence, Control

Systems, Embedded Systems, Fuzzy Logic, Image

Processing, etc. His published several papers on National

and International Journals.

Dr. Shantharama Rai C., working as

Professor & Head, Department of

Electronics & Communications

Engineering, Canara Engineering

College, Benjanapadavu. He received his

BE in Electrical & Electronics

Engineering from Mangalore University;

M.Tech. from NITK, Surathkal, and

Ph.D. from VTU, Belgaum. His fields of

interest are Artificial Intelligence, Control Systems,

Embedded Systems, Fuzzy Logic, Image Processing, etc.

He is the member of several professional organizations. He

published several papers on National and International

Journals.

