
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

618

Model Driven Development: Research Issues and Opportunities

Mahua Banerjee
1
, Sushil Ranjan Roy

2
, Satya Narayan Singh

3

Abstract

Software engineering aims at techniques for

producing better software products with limited

resources. This encourages the reuse of the existing

resources which are mostly available in terms of

modules. Model Driven Development (MDD) is an

approach which facilitates the reuse of existing

models. Moreover, models are developed not only

with high level of abstraction but also with better

provision of reusability. This further motivates

software developers and engineers for software

automation. MDD has shown a significant role in

software automation which can be further improved

by incorporating the latest approach of software

development like Aspect-Oriented and Feature-

Oriented Programming.

Keywords

Aspect-Oriented Programming, Feature-Oriented

Programming, Model Driven Development, Program

families

1. Introduction

One of the primary goals of software engineering is

to assist developers in dealing with this dynamic

environment, where a large part of work is to change

existing code rather than to write new code. The way

in which this can be done is through better separation

of concerns. Programming languages provide

mechanisms for dividing programs into modules that

represent particular design decisions, features or

pieces of functionality which can be generally

referred to as concerns. Modularizing concerns help

during evolution because developers do not have to

deal with the entire program every time they want to

make a change. They can focus on just the modules

that relate to their task and ensures that the

implementation of the revised modules will not affect

the other modules by behaviour preservation of the

Manuscript received June 16, 2014.
Mahua Banerjee, Department of Information Technology,

Xavier Institute of Social Service, Ranchi, India.

Sushil Ranjan Roy, Department of Information Technology,

Xavier Institute of Social Service, Ranchi, India.
Satya Narayan Singh, Department of Information Technology,

Xavier Institute of Social Service, Ranchi, India.

entire software. Modules also provide a means of

encapsulating generic functionality so that code can

be reused across multiple projects [1].

However, not all concerns can be easily modularized.

When a designer chooses a decomposition of a

program into modules, he/she does so with the intent

of making the expected evolution task easier for

developers to perform. In practice, finding a

decomposition that supports all evolution tasks is

often impossible. In some cases this is due to new

requirements or due to environmental changes that

could not have been predicted and so were hence not

planned for. In other cases, the programming

language used to implement the software does not

provide adequate means to encapsulate the concerns

neatly. This leads to the existence of concerns whose

implementations are scattered across multiple

modules. This mismatch between the chosen

decomposition and the required programming tasks is

often referred to as the tyranny of the dominant

decomposition and is one of the main motivations for

aspect-oriented programming (AOP) [2].

2. Aspect-oriented programming

Aspect-oriented programming builds on top of

Object-Oriented Programming (OOP) by introducing

new forms of modularity. AOP languages provide

more flexibility in choosing decomposition through

the use of aspects which define both state and

behaviour that can be woven into the object-oriented

structure of a program [3]. AOP approaches make

easier to modularize concerns that were previously

scattered amongst object-oriented classes. At the

same time they tend to scatter the implementation of

classes across aspects. This makes some tasks easier

to perform at the expense of making others more

difficult.

Concerns and AOP Concepts

Object-Oriented Programming (OOP) is probably the

most commonly used programming paradigm today.

Functional, procedural and object-oriented

programming languages have a common way of

abstracting and separating out concerns in the sense

that they rely on explicitly calling subprograms

(subroutines, procedure, methods, etc.) that represent

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

619

functional units of the system. However, all concerns

cannot be encapsulated properly in a functional

decomposition. As a result, they must be coordinated

with other functional units and they usually involve

code scattered throughout several of these functional

units. Aspect-Oriented Programming aims at better

separation of concerns by providing the aspect as a

means to encapsulate such crosscutting concerns [4].

Aspects are capable of controlling the scattering and

tangling of codes. It is obtained by specifying places

in the program’s execution (known as joinpoints)

where certain codes (called advice) are executed.

This is the main aim of Aspect-Oriented

Programming, where concerns which cut across each

other can be linked together, and yet be encapsulated

transparently as separate program entities. The

general style of programming that arises out of this

aim consists of program statements of the following

form:

“An action X is performed, whenever a potential

condition arises, in the programs”. This implies that

aspects are modular units which encode statements

and are executed on some pre-defined conditions. On

account of pre-defined conditions, the aspect is

implemented before, after or during a certain event,

in order to trace certain activities. This is similar to

database triggering facility which is required for the

security of a database. Aspect modules can be

triggered for security activities of any software. In

most AOP languages the concept of an aspect

extends the concept of a class. Aspects can contain

members similar to members of a class, i.e., aspects

can contain methods, fields, or inner classes and

interfaces [8]. Besides structural elements known

from OOP, (e.g., methods and fields), aspects may

contain also join points, pointcuts, advice and inter-

type declarations [5-7].

(a) Join point: A join point is a point in the

structure or in the execution of a program

where a concern crosscutting that part of the

program might intervene. The ability of an

AOP language to support crosscutting

concerns lies in join point. It consists of

body of a method called lexical join points,

call of particular method and run the code at

the required time [19]. The time the code to

be executed can be expressed as potential

conditions in programs. Join points can also

be seen as hooks in a program where other

program parts can be conditionally attached

and executed. The primary mechanism of

AOP is the extension of events occurring at

runtime, so-called join points. The static

representation of a runtime event is called

join point shadow. Join point shadows are

for example statements of method calls,

object creation, or member access.

(b) Pointcut: A pointcut is a subset of all

possible join points. The expression of a

pointcut is the pointcut descriptor (often, the

term “pointcut” is used in place of “pointcut

descriptor”). A pointcut descriptor defines

the potential condition in the above

formulation. This condition matches a subset

of join points which is the pointcut. In other

way a pointcut is a declarative specification

of the join points that an aspect will be

woven into, i.e., it is an expression

(quantification) that determines whether a

given join point matches or not.

(c) Advice: The piece of code A (say) that is to

be executed when the potential condition

arises (i.e. at a join point of the pointcut) is

called the advice. An advice is a method-like

element of an aspect that encapsulates the

instructions that are supposed to be executed

at a set of join points. Pieces of advice are

bound to pointcuts that define the set of join

points being advised.

(d) Aspect: The unit of code that defines the

pointcuts and the advice related to the same

concern is called the aspect. An aspect can

also be more generally defined as a unit that

encapsulates a crosscutting concern.

(e) Inter Type Declaration: Inter type

declarations (ITD) are methods or fields that

are inserted into OOP classes by an aspect

and thus become members of these classes.

Additionally, interfaces can be extended

with methods and fields. Inter-type

declarations are also known as introductions

as they inject new members into classes.

The aspect weaver software first integrates the source

code of non-crosscutting concerns and the source

code of crosscutting concerns into a single unit and

then the compiler converts them into object programs

and into executable form.

As suggested by Kiczales et al. [9] mechanisms for

aspect orientation rest on three pillars:

• a model of the behaviors that can be

recognized and exploited (the joinpoints),

• a means of characterizing a subset of these

possible behaviors (the ability to define

pointcuts),

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

620

• a means of implementing the behavior

defined in the aspects at the place and at the

time when the expected behavior defined in

the pointcuts happens (the weaving of the

advice).

These three pillars are the “three critical elements

that AO languages have”.

Relevance of AOP in Software Development

The knowledge of AOP concepts and the critical

elements of AO languages are not the only

requirements for implementing AOP in software

development. The software development process,

using AOP, needs to identify core functions and

crosscutting functions. Core functions deal with

designing of required software and crosscutting

functions deal with the code designing of scattered

and tangled codes. The approach of handling

software development using AOP is different from

traditional approaches. The major steps required for

software development using AOP are the following:

(a) The isolation of functional (non-

crosscutting) and non-functional

(crosscutting) concerns in the designing

phase.

(b) Development of the base program in a

conventional programming language, which

comprises the non-crosscutting concerns.

(c) Designing aspects, in an aspect-oriented

programming language by encapsulating the

crosscutting concerns into it.

(d) Finally, aspects are woven into the base

program with aspect weaver.

The main advantage of using AOP is that it can be

integrated in some conventional languages like, C++,

Java etc. As a result, application software like

AspectC++, AspectJ etc. [20] have evolved. Though

the language level support is available but still AOP

approach is not yet popular for the following reasons:

(a) It is mainly used in large-scale application

software development.

(b) There is a lack of knowledge in

identification/selection of crosscutting

concerns.

(c) There is ignorance of the processes of

integration of crosscutting concerns and

non-crosscutting concerns.

(d) People are unaware of the benefits of using

separate modules for crosscutting and non-

crosscutting concerns.

In order to cope up with the above mentioned issues

it is aspired to promote AOP in software

development by introducing the following:

(a) Application of AOP in small-scale software

development.

(b) Identification/Selection of crosscutting

concerns.

(c) Integration of the crosscutting and non-

crosscutting concerns.

(d) Analysis of the benefits of using separate

modules for crosscutting and non-

crosscutting concerns.

Examples demonstrating the concepts of AOP

An AOP language comprises of the terms like aspect,

advice, pointcut, joinpoint etc. In order to have a

better understanding of the terms of AOP, the

following code fragments are considered.

Figure 1. An example of AOP

Figure 1: gives a code segment of AOP. The aspect

module name is Mymessageaspect. As stated in

section A, members like advice and joinpoint are

encapsulated in the aspect module to minimize the

scattering and tangling of the codes. The

encapsulated advice displays the message before any

call to Myclass:: Func. The two % used are the wild

cards. The first % implies any return type of the

function and the second % is to denote that advice

execution will be done for those classes, where the

name of the class ends with Myclass. The special

character (…) matches any number of parameters in

the function named Func.

The message will be triggered to each point of the

program where the class name ends with Myclass.

These points in the program code are known as

joinpoints. Set of such joinpoints (all the places

where the message is triggered) is pointcut.

The example illustrates before advice, in which the

message will be generated only when there is a call to

a function Func, with any number of parameters. In

before advice, message comes first followed by the

function call. This sequence can be reversed by using

aspect Mymessageaspect

{

 advice call(“% %Myclass::Func(...)”) : before()

 {

 cout << “I am calling Myclass::Func”<< JoinPoint

:: signature() endl;

 }

}

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

621

after advice. An around advice, will explicitly trigger

the joinpoint codes, during the execution of a

process.

The advice like before, after etc. can have parameters

which can be made available in the form of values in

codes of the advice. To demonstrate this, the

following example is considered:

Figure 2: An example of AOP with parametric

advice

The pointcut named spl_user is given a prototype

declaration with initialization to the call of login()

which includes a context variable name that is bound

to it. Hence for every joinpoint, referred by the

pointcut spl_user, a value of type const *char is

provided. This value of each joinpoint gets bind to

the code of the advice (i.e. substituted in the advice

code). The example demonstrates the accessibility of

the actual argument values of a function call, in the

advice codes.

3. Feature-oriented programming

Feature-Oriented Programming is a design

methodology and a tool for program synthesis. It not

only designs a target program declaratively by

providing the features it offers but also provides an

efficient implementation of features. Product lines are

developed by using FOP in widely varying domains

like compilers for extensible Java dialects, network

protocols, program verification tools etc.

The idea of program families has evolved in order to

overcome the software crisis. Instead of designing

individual single program a program family is

designed which consists of similar programs. The

advantage of it is that a developer creates a program

by choosing from a set of features. Usually many

combinations of features are allowed. This results in

a variety of programs. In order to implement product

lines, FOP is used. Object-oriented programming had

a great success in software development by

incorporating modularity through data abstraction

and through data hiding. The reusability and

flexibility were lacking in object-oriented technique

which are essentially the major requirements of

software development. Though classes, which are the

traditional units of organization of object-oriented

software, bring modularity, they fail to develop

software in an incremental way. Product lines on the

other hand do it. In order to overcome this, FOP can

be used to develop modular system product lines.

FOP decomposes software into features which are

increments in program functionality as they are

applied to a program in an incremental fashion. This

potentiality improves modularity along with the

reusability and flexibility of product lines [10, 11].

Feature modules

Feature modules are distinct code units. Features are

not implemented through one single class but are

implemented through different classes. To add a

feature subsequently means to introduction of code

into existing classes. Codes of different classes

associated to one feature are merged into one feature

module. Feature modules refine other feature

modules in a stepwise manner by superimposing the

feature modules already assembled.

The specification, modularization and composition of

features are provided by some feature-oriented

programming languages and tools like AHEAD,

Caesar, Feature House, Feature C++ etc. All

languages and tools implement feature by feature

module. New structures such as classes and methods

are introduced when feature modules are added to a

base program. This refines the existing ones such as

extending methods.

Implementation of features and feature modules

Feature-Oriented Software Development is the

process of developing software systems in terms of

features. It deals with the study of feature modularity,

tools and design techniques that support feature based

program synthesis. There are several approaches like

GenVoca [12], mixin layers [13], AHEAD [14] etc.

which concentrate on encapsulating features as

increments over an existing base program, together

with a mechanism for combining different features on

demand.

(a) GenVoca [12]: GenVoca is a meld of the names

Genesis and Avoca. This is a compositional paradigm

for defining programs of a product line. It is a tool for

defining code constructs in a higher level than in a

pointcut spl_user(const char *name) =

 execution(“void login(...)”) &&

args(name);

advice spl_user(name) : before(const char *name)

{

 cout<< “User ”<< name << “is logging in”<<

endl;

}

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

622

program code. In GenVoca, a module is specified by

declaring the set of layers that make it up, where each

layer defines the aspect of the module. When a layer

is added, it adds methods and/or arguments to

existing methods. Layers can be mixed and matched

in very flexible way. GenVoca creates C++ code.

(b)Mixin Layers [13]: Mixin layer is another

approach of implementing features in a layered object

oriented fashion and is often known as collaboration

based design. Features are implemented by

collaborations. Collaborations are collection of roles

(classes). A mixin layer is a module that encapsulates

fragments of several different classes (roles) so that

all fragments are composed consistently. In order to

encapsulate fragments of several different classes,

mixin-based inheritances are used. Mixins are used

for expressing and refining collaborations of classes.

(c) AHEAD [14]: Algebraic Hierarchical Equations

for Application Design (AHEAD) supports a

hierarchical structure in which a class is a set of

methods. A set of methods makes a module and a set

of modules makes a software system. The idea of

AHEAD model is to decompose programs into

separate modular units (features) and to compose

stacks of features to derive a concrete program.

AHEAD proposes compositional programming. It

generalizes the concept for features and feature

refinements. The programming in AHEAD style is

supported by a set of tools provided by the AHEAD

Tool Suite. But the AHEAD Tool Suite is not popular

because most of the functionality is provided by

command line tools. Hence IDE support for program

families was suggested by Lich et al. [15].

All approaches like GenVoca, mixin layers and

AHEAD is related to one another. GenVoca features

were originally implemented using C preprocessor

techniques. Mixin layers, show the connection of

features to object-oriented collaboration-based

designs. So, we can say that mixin layers are a more

advanced version of GenVoca. GenVoca is also

related to AHEAD. AHEAD has generalized

GenVoca in two ways. Firstly, the internal structure

of GenVoca values is presented as tuples. Each

program has multiple representations in terms of

source, documentation, bytecode etc. A GenVoca

value is a tuple of program representations. Each

program representation may have sub-

representations. A sub-representation may have

subordinate sub-representation and so on recursively.

In general, a GenVoca value is a tuple of nested

tuples that define a hierarchy of representations for a

particular program. Secondly, AHEAD expresses

features as nested tuples of unary functions called

deltas. Deltas can be program refinements (semantics

– preserving transformations), extensions (semantics

– extending transformations) or interactions

(semantics – altering transformations).

Role of fop in modular software development

AHEAD, GenVoca and mixin layers not only deal

with the implementation of features and feature

modules but also they are all based on model-driven

architecture. A model-driven architecture is required

for promotion of software automation. The present

software automation deals mostly on template

metaprogramming. Due to the complexity of template

programming, it has not yet been widely accepted for

software automation. This motivates, for a better

approach of software automation. As a result, higher

level of abstractions of programs evolved of which

metaprogramming is one of them. The main idea of

metaprogramming is that, programs are values and

functions transform the values which finally results

into the required software.

These metaprogramming techniques can be used to

formulate metaexpressions. These metaexpressions

can further be treated to develop the software. The

present FOP approaches do not directly implement

the metaprogramming techniques. However,

generations of metaexpressions are similar to

GenVoca and AHEAD approach. The former designs

the layers in modules and the later designs the layers

in algebraic equations. On the other hand, both deal

in FOP approach with variations in designing the

feature modules. The major issues of any FOP are the

following:

(a) Designing the feature modules at the phase

of requirement analysis.

(b) More elaborate designing of feature

modules, in terms of structure and behaviour

of features and their interactions.

(c) Implementing feature modules through

language and tools.

To cope up with the above mentioned issues, the

following things are required:

(a) The traditional, requirement analysis must

be replaced with the first stage of designing

of the features. This will make the

requirement analysis more logical as the

feature modules will reflect the requirements

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

623

more distinctly. Different feature designing

also becomes easy because the first stage of

feature designing is done here.

(b) The feature interactions facilitate feature

compositions. This demands appropriate

combinations of features.

(c) User friendly tools and language support is

required for implementation of the modules.

(d) Technical improvements in FOP are

required for software automation.

The above requirements impose the following

challenges:

(a) The existing FOP approaches like GenVoca,

AHEAD (algebraic model) etc. has not yet

been successful in automated software

development. It is a step closer to

automation of software [21].

(b) Adequate language and tool support is not

available. FeatureC++. Feature House etc.

provide some of the mechanisms of FOP.

In order to meet the above mentioned challenges, the

Model Driven Development techniques are needed to

be explored which can be refined further for software

automation.

4. Model Driven Development

Model Driven Development (MDD) [16] is a

promising area of software development in near

future. MDD shifts software development from a

code-centric activity to model-centric activity. In

order to accomplish this shift, modelling concepts are

required at different level of abstractions. Finally the

abstract models are transformed to code generic

model. MDD supports the use of Domain Specific

Languages (DSL). Automation and data exchange

methods can be further improved by Model Driven

Development. It is a way to define a software

solution’s architecture. MDD gives the architect an

ability to define and communicate a solution which

finally becomes a part of the overall solution.

The following tasks are facilitated by a good MDD

tool:

(i) It communicates the solution to

stakeholders who are not in the development

team.

(ii) It helps to interact and facilitate the team

that is developing the solution.

(iii) It aids in tracking the history of the

decisions behind the solution’s design.

MDD technologies

There are many MDD technologies. OMG’s Model

Driven Architecture (MDA) is one of the popular

technologies. In MDA, models are defined in terms

of Unified Modeling Language (UML) and are

manipulated by graph transformations [17]. The main

aim of MDA is to increase productivity and to reuse

models through separation of concern and

abstraction. In software development process, MDA

helps in efficient use of system models and also

supports reusing models when creating families of

system. According to the definition of Object

Management Group (OMG), MDA is a way to

organize and manage enterprise architectures that are

supported by automated tools and services for both

defining models and for facilitating transformations

between different model types.

OMG has also formulated the following four

principles of MDA:

(a) Models expressed in a well-defined notation

are a cornerstone to understanding systems

for enterprise-scale solutions.

(b) The building of systems can be organized

around a set of modules by imposing a series

of transformations between models,

organized into an architectural framework of

layers and transformations.

(c) A formal underpinning for describing

models in a set of meta-models facilitates

meaningful integration and transformation

among models, and is the basis for

automation through tools.

(d) Acceptance and broad adoption of this

model-based approach requires industry

standards to provide openness to consumers,

and foster competition among vendors.

Based on the above principles, OMG identifies four

types of models:

(a) Conceptual Independent Model (CIM)

(b) Platform Independent Model (PIM)

(c) Platform Specific Model (PSM)

(d) Implementation Specific Model (ISM)

The transformations from one model to another

model can be performed by several MDA Tools,

namely, IBM Rational Rose Technical Developer or

IBM Rational XDE. The former, transforms a model

from UML to executable code in a single step

whereas the later transforms an initial analysis model

to executable codes in several steps.

IBM has taken a leading role in support for

modelling, model driven development and in Model

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

624

driven architecture. UML has been defined by IBM

which made it (UML) acceptable for the architecting

of large-scale software systems. The popularity of

MDA is due to the strong support of IBM for OMG.

Hence, it is necessary to make an analysis of the

present MDD technologies.

Overview of present MDD Techniques

As modelling has become an essential part of

software development, knowledge of present MDD

techniques are required. MDD approaches provide a

better understanding of the system because a system

can be analysed through different perspectives like

requirement perspectives, analysis perspectives etc.

Hence software can be elucidated in multiple views

through different models. Also, UML is also not an

exception in context of depicting the software in

multiple views. This popular graphical modelling

language helps in developing, understanding and

analysing the different views through models.

UML is primarily used in modern object-oriented

modelling. Use case modelling, static modelling,

state machine modelling and object interaction

modelling are used for the following [22]:

Use Cases: Functional requirements

Static Modelling: Structural view of the system

State Machine Modelling: Behavioural view of the

system

Object Interaction Modelling: How objects

communicate to each other to realize the use case.

In order to provide the above mentioned facilities in

UML for real-time, concurrent and distributed

software design methods, the existing techniques are

explored. The observations are given in Table 1.

Table1: Analysis of existing MDD Tools

System

Type

MDD Tool Purpose/Ful

l Form

Specification

Real-Time

system

CODART

S

Concurrent

Design

Approach for

Real Time

Systems

Refinement

on existing

concurrent

design, real-

time design

and OO

design by

emphasizing

information

hiding,

module

structuring

and

concurrent

task

structuring.

Real-Time

system

Octopus Refinement

of

CODARTS

Based on use

cases, static

modeling and

state charts.

Real-Time

system

ROOM Real-time

Object

Oriented

Modeling

Active

objects are

modeled

using a

variation on

state charts

called

ROOMcharts

. ROOM

model are

used as an

early

prototype of

the system.

Large-scale

Systems

Use case

map

Dynamic

modeling of

large-scale

system

Based on use

case concept

Concurrent

, real-time

and

distributed

application

COMET

(Earlier

version)

Collaborative

Object

Modelling

and Design

Method

Based on

UML 1.3

Large-scale

Systems

COMET

(Later

version)

Collaborative

Object

Modelling

and Design

Method

Based on

UML 2.

Emphasis is

on software

architecture

applications

like Object

oriented,

client/server

architecture,

component

based

architecture,

service

oriented

architecture,

concurrent

and real-time

architecture

and software

product-line

architecture

On analysing the above table it can be said that the

following areas are using model driven techniques for

large-scale software development:

(a) Real-time system (b) Object-oriented

system (c) Concurrent system

(d) Distributed system (e) Product-line

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

625

In order to make model driven development popular,

it requires the following:

a) It must be applied for small-scale software

development.

b) Latest approaches like AOP and FOP must

be incorporated in modular software

development.

As the existing tools and techniques do not cater to

the above mentioned areas, hence one can

incorporate AOP and FOP in modular software

development, particularly in a small-scale software

development. This will help to reap the benefits of

the latest programming approaches and can also be

used by any category of users. Moreover, MDD can

become more popular when programs are

automatically generated from the existing models.

This motivated many researchers to find some

efficient mechanisms for both software modelling

and automatic code generation with limited success,

mostly in highly specialized domains [23].

MDD can reach to a new height only when it can be

used by common people for any level of software

development. Don Batory’s proposal of model driven

development as an architectural metaprogramming

technique can make MDD usable for common

programming level [18]. According to him, MDD is

an architectural meta-programming in which models

are values and transformations map models to

models. This innovative idea can be used for

enhancing the capabilities of MDD which can give a

new dimension to MDD techniques.

5. Conclusion

Models, modelling and model transformations are the

major requirements for developing evolutionary

software. Complexity of the software can be reduced

by structuring the software through models. Feature-

oriented, aspect-oriented programming and model

driven development are different types of modular

approach. It can be said that the above mentioned

areas are common as they all are architectural meta-

programming technologies where meta-expressions

can be generated. Hence, there is a need to explore

the relationship among AOP, FOP and MDD in

context of architectural meta-programming. In future,

architectural meta-programming can be used for

software design and maintenance more efficiently by

applying them in sophisticated Integrated

Development Environment (IDE) tools.

References

[1] Y. Baldwin and K. B. Clark, "Modularity in the

Design of Complex Engineered Systems", In

Complex Engineered Systems: Science Meets

Technology, Springer-Verlag, pp. 175-205, 2006.

[2] T. Elrad, R. E. Filman and A. Bader, “Aspect-

Oriented Programming: Introduction”,

Communications of the ACM (CACM), vol. 44,

no. 10, pp. 29–32, 2001.

[3] S. Herrmann, “Object Teams: Improving

Modularity for Crosscutting Collaborations”, In

Proceedings of International Conference on

Objects, Components, Architectures, Services,

and Applications for a Networked World

(NetObjectDays), vol. 2591, pp. 248-264, 2002.

[4] S. Apel, T. Leich and G. Saake, “Aspect

Refinement and Bounded Quantification in

Incremental Designs”, In Proceedings of Asia-

Pacific Software Engineering Conference

(APSEC), pp. 796- 804, IEEE Computer Society,

2005.

[5] J. Aldrich, “Open modules: Modular reasoning

about advice”, In Proceedings of the 18th

European Conference on Object-Oriented

Programming (ECOOP’05), vol. 3586 of LNCS,

pp. 144–168, 2005.

[6] G. Kiczales, “Radical Research in Modularity:

Aspect-Oriented Programming and Other Ideas”,

In Keynote of the International Software Product

Line Conference (SPLC), IEEE Computer

Society, 2006.

[7] D. S. Dantas and D.Walker, “Harmless Advice”,

In Proceedings of the International Symposium

on Principles of Programming Languages

(POPL), pp. 383–396, ACM Press, 2006.

[8] S. Apel, C. K¨astner, T. Leich and G. Saake,

“Aspect Refinement”, Technical Report 10,

Department of Computer Science, University of

Magdeburg, Germany, 2006.

[9] G. Kiczales and M. Mezini, “Aspect-oriented

programming and modular reasoning”, In

Proceedings of the 27th International Conference

on Software Engineering, New York, USA, ACM

Press , pp. 49–58, 2005.

[10] S. Apel, T. Leich and G. Saake, “Aspectual

Mixin Layers: Aspects and Features in Concert”,

In Proceedings of the 28th International

Conference on Software Engineering (ICSE),

New York, USA, pp. 122-131, 2006.

[11] S. Apel, D. Batory, “When to Use Features and

Aspects? A Case Study”, In: Proceedings of the

International Conference on Generative

Programming and Component Engineering

(GPCE), pp. 59 – 68, 2006.

[12] D. Batory and S. O’Malley, “The design and

implementation of hierarchical software systems

with reusable components”, ACM Transactions

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

626

on Software Engineering and Methodology, vol.

1, no. 4, pp. 355–398, 1992.

[13] Y. Smaragdakis and D. Batory, “Implementing

layered designs with mixin-layers”, In the

Proceedings of ECOOP ’98, vol. 1445 of LNCS,

pp. 550–570, 1998.

[14] D. Batory, J. N. Sarvela and A. Rauschmayer,

“Scaling Step-Wise Refinement”, IEEE

Transactions on Software Engineering (TSE),

vol. 30, no.6, pp. 355-371, 2004.

[15] T.Leich, S.Apel, L.Martinz and G.Saake, “Tool

Support for Feature-Oriented Software

Development FeatureIDE: An Eclipse Based

Approach”, In Proceedings of OOPSLA Eclipse

Technology eXchange (ETX) Workshop, pp. 55–

59, 2005.

[16] D .C. Schmidt, “Model-Driven Engineering”,

IEEE Computer, vol. 39, no. 2, pp. 25-31, 2006.

[17] A. Kleppe, J. Warmer, and W. Bast, “MDA

Explained: The Model-Driven Architecture --

Practice and Promise”, Addison-Wesley, 2003.

[18] D. Batory, “Program Refactoring, Program

Synthesis, and Model-Driven Development”, In

ETPAS Compiler Construction Conference, vol.

4420 of LNCS, pp. 156-171, Springer, 2007.

[19] H. Masuhara, G. Kiczales and C. Dutchyn, “A

Compilation and Optimization Model for Aspect-

Oriented Programs”, In Proceedings of

International Conference on Compiler

Construction (CC), pp. 46–60, 2003.

[20] R. Laddad, “AspectJ in Action - Practical Aspect-

Oriented Programming”, Manning Publications

Co., 2003.

[21] G. Georg, I. Ray and R.France, “Using Aspects

to Design a Secure System”, In Proceedings of

the Eighth IEEE International Conference on

Engineering of Complex Computer Systems

(ICECCS’02), pp. 117-126, 2002.

[22] H. Gomaa, “Software Modeling and Design”,

Cambridge University Press, 2011.

[23] B. Sellic, “The Pragmatics of Model-Driven

Development”, IEEE Software, vol.20, no. 5, pp.

19-25, 2003.

Mahua Banerjee pursued her B.Sc.

(Physics Hons.) from Calcutta

University, PG Diploma in Computer

Application and Masters in Computer

Application in the year 1984, 1990 and

2004 respectively. She received her

Ph.D. degree in Computer Science from

Indian School of Mines, Dhanbad, India

in 2014. She is teaching since 1990 and currently she is an

Asst. Professor in Dept. of Information Technology in

Xavier Institute of Social Service, Ranchi. Her current

research interests include Software Engineering, Modular

Programming and e-Commerce.

Sushil Ranjan Roy was awarded the

B.Sc. Chemistry honours degree from

Ranchi University, Ranchi in the year

1982. He was awarded the ICAR

fellowship in 1992. He worked as a

lecturer in Chemistry from 1984 to

1987. In 1987 he joined Xavier Institute

of Social Service, Ranchi as a lecturer

in Computer Science, where he is now working in the

capacity of Associate Professor. He has been teaching at

the Post Graduate level for the last twenty seven years. In

the year 1990 he was awarded the prestigious ECPR

scholarship, which funded his stay and course fee at the

Summer School at Essex University, England. His research

interests are in the field of Software Engineering, ICT for

development and Mathematical Computing.

Satya Narayan Singh received B.Sc.

and M.Sc. degree in Mathematics from

Ranchi University in the year 1987 and

1993 respectively. He received the

Ph.D. degree from Ranchi University in

the year 2010. He is currently Professor

and Head, Department of Information

Technology of Xavier Institute of

Social Service, Ranchi. His current research interests are in

Hadamard matrices, e-Governance and Software

Engineering.

Author’s Photo

