
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

733

Detecting Cross-Site Scripting Vulnerability and performance comparison

using C-Time and E-Time

Urmi Chhajed
1
, Ajay Kumar

2

Abstract

Several works are in progress in the direction of

web communication. The major threats are content

sniffing, Cross-Site Scripting (XSS) and SQL

Injection attacks. In content sniffing data is altered

from any unauthorized script. XSS is a variant of

this where malicious programs/scripts are executed

from the client node for fake presence and steals the

data. In SQL injection malicious SQL statements

are inserted to monitor the database from the

outside environment. The main aim of this paper is

to detect the XSS attack and prevent the data from

the final alteration. For this we are considering two

types of time evaluation. First time is time to

translating JSP script to java programs for data

sending which is called C-Time and second time is

for identification of vulnerable outputs that is called

E-Time. Based on the timing comparison we will

prove that our methodology has better detection in

comparison to the traditional system.

Keywords

Content sniffing, XSS, SQL Injection, C-Time, E-Time

1. Introduction

For setting a real time server client environment, we

generally prefer TOMCAT server with JSP (Java

Script) environment. The JavaScript language [1] is

widely used to enhance the client-side display of web

pages. It was developed by Netscape as a light-

weight scripting language with object-oriented

capabilities and was later standardized by ECMA [2].

Any server side script first passes the command to the

server and then it will be displayed by any HTML

browser on-the-fly by an embedded interpreter.

Manuscript received June 10, 2014.

Urmi Chhajed, Department of Computer Science and

Engineering, JECRC University, Jaipur, India.
Ajay Kumar, Department of Computer Science and

Engineering, JECRC University, Jaipur, India.

For the get advance manifold of the interest often

performs a sandboxing workings, position the java

present to programs nub do some guarded

applications desolate. As we know the JavaScript

programs are not provide trusted communication with

the limited admissions of the browser. It can be

misacted by downloading the code and retransferring

it, so securing in the side is the greater demand in this

era. This can be confusing the users to know about

the changes. Pacify notwithstanding how JavaScript

interpreters had a number of flaws in the aged, in the

present climate nicest web site take advantage of

JavaScript functionality. The topic with the true

JavaScript moor mechanisms is mosey scripts may be

directed by the sand-boxing mechanisms and agree to

the same-origin policy, but windless violate the

security of a system. This can be achieved forthwith a

operator is lured into downloading vile JavaScript

code from a trusted web site. Such an exploitation

technique is called a cross-site scripting (XSS) attack

[3, 4]. XSS is used to allow attackers to execute

script in the victim’s browser, which can hijack user

sessions, deface web sites, insert hostile content, and

conduct phishing attacks. Any scripting language

supported by the victim’s browser can also be a

potential target for this attack. Web based

applications are accessed using Web based

communication protocols and use Web browsers as

graphical user interface. The most dangerous threat is

alteration of the data in text, pdf files and images

contents which is called content sniffing

attack[5][6][7]. In this type of attach the data will be

received by the client but the data is not correct or

updated by the attacker.

To customize back plasticity in the HTML song and

to digest round-trip delays, browsers offered the

choice to encompass program pandect into the

HTML permit depart is present and flawless on the

catch by an interpreter integrated into the browser

[8]. Java Script code may not be mixed up with Java

Server Pages (JSP); JSP code is executed at the

server side and not at the client browser [9][10]. The

Java Applets is an option purchaser combine

technology cruise allows the download and conduct

of Java applications to and at the client machine. The

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

734

java Applets average does quite a distance right away

manipulate the browser or HTML document [11].

Our paper main motivation is to secure the data and

check the data attack status so that the data usage will

be stopped. This mechanism will allow us to find the

execution time of scripting language along with the

attack time. The subsequent sections show the

proposed methodology and our results.

2. Related Work

In 2007, José Fonseca et al. [12] propose a method to

evaluate and benchmark automatic web vulnerability

scanners using software fault injection techniques.

The most common types of software faults are

injected in the web application code which is then

checked by the scanners. Their results are compared

by analyzing coverage of vulnerability detection and

false positives. Three leading commercial scanning

tools are evaluated and the results show that in

general the coverage is low and the percentage of

false positives is very high.

In 2009, Genta Iha et al. [13] suggest preventing XSS

attacks, there are several solutions based on blacklist

filtering or whitelist filtering. Unfortunately, these

solutions cannot solve XSS vulnerabilities

completely. They propose a binding mechanism,

which is comparable to the binding mechanism for

SQL. They show the evaluation results of this

mechanism by implementing this mechanism into the

web browser (Firefox 3.0).

In 2010, Zubair M. Fadlullah et al. [14] to combat

against attacks on encrypted protocols; they propose

an anomaly-based detection system by using

strategically distributed monitoring stubs (MSs).

They have categorized various attacks against

cryptographic protocols. The MSs, by sniffing the

encrypted traffic, extract features for detecting these

attacks and construct normal usage behaviour

profiles. Upon detecting suspicious activities due to

the deviations from these normal profiles, the MSs

notify the victim servers, which may then take

necessary actions. In addition to detecting attacks, the

MSs can also trace back the originating network of

the attack. They call their unique approach DTRAB

since it focuses on both Detection and Trace Back in

the MS level. The effectiveness of their proposed

detection and traceback methods are verified through

extensive simulations and Internet datasets.

In 2011, Misganaw Tadesse Gebre et al. [15]

proposed a server-side ingress filter that aims to

protect vulnerable browsers which may treat non-

HTML files as HTML files. Their filter examines

user uploaded files against a set of potentially

dangerous HTML elements (a set of regular

expressions). The results of their experiment show

that the proposed automata-based scheme is highly

efficient and more accurate than existing signature-

based approach.

In 2012, Takeshi Matsudat et al. [16] proposed a new

detection algorithm against cross site scripting

attacks by extracting an attack feature of cross site

scripting attacks considering the appearance position

and frequency of symbols. Their proposed algorithm

learns the attack features from given attack samples.

They prepared samples for learning and testing, to

show the effectiveness of their proposed algorithm.

As the result their proposed detection method was

successfully detected attack test samples and normal

test samples.

In 2012, Fokko Beekhof et al. [17] consider the

problem of content identification and authentication

based on digital content fingerprinting. They

investigate the information theoretic performance

under informed attacks. In the case of binary content

fingerprinting, in a blind attack, a probe is produced

at random independently from the fingerprints of the

original contents. Contrarily, informed attacks

assume that the attacker might have some

information about the original content and is thus

able to produce a counterfeit probe that is related to

an authentic fingerprint corresponding to an original

item, thus leading to an increased probability of false

acceptance. They demonstrate the impact of the

ability of an attacker to create counterfeit items

whose fingerprints are related to fingerprints of

authentic items, and consider the influence of the

length of the fingerprint on the performance of finite

length systems. Finally, the information-theoretic

achievable rate of content identification systems

sustaining informed attacks is derived under

asymptotic assumptions about the fingerprint length.

In 2012, Dawei Wang et al. [18] suggest Payload-

based approaches are effective to known DOS attacks

but are unable to be deployed on high-speed

networks. To address this issue, flow-based DOS

detection schemes have been proposed for high-speed

networks as an effective supplement of payload-

based solutions. Author suggest that the existing

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

735

flow-based solutions have serious limitations in

detecting unknown attacks and efficiently identifying

real attack flows buried in the background traffic. In

addition, existing solutions also have difficulty to

adapt to attack dynamics. To address these issues,

they propose a flow-based DOS detection scheme

based on Artificial Immune systems. They adopt a

tree structure to store flow information such that we

can effectively extract useful features from flow

information for better detecting DoS attacks.

In 2013, Nagarjun, P.M.D. et al. [19] propose

variants of RTS/CTS attacks in wireless networks.

We simulate the attacks behavior in ns2 simulation

environment to demonstrate the attack feasibility as

well as potential negative impact of these attacks on

802.11 based networks. They have created an

application that has the capability to create test bed

environment for the attacks, perform RTS/CTS

attacks and generate suitable graphs to analyze the

attack's behavior.

In 2013, Seungoh Choi et al. [20] prove that Interest

flooding attack can be applied for Denial of Service

(Dos) in Content Centric Network (CCN) based on

the simulation results which can affect quality of

service. They expect that it contributes to give a

security issue about potential threats of DoS in CCN.

In 2013, Michelle E Ruse et al. [21] propose a two-

phase technique to detect XSS vulnerabilities and

prevent XSS attacks. In the first phase, they translate

the Web application to a language for which recently

developed concolic testing tools are available. Their

translation also identifies input and output variables

that are used to generate test cases for determining

input/output dependencies in the application.

Dependencies indicate vulnerabilities in the

application that can be potentially exploited when the

application is deployed. In the second phase, based

on the input/output dependencies determined in the

first phase, they automatically instrument the

application code by including monitors. The monitors

check exploitation of vulnerabilities at runtime. In

addition to being both as efficient and effective as the

available XSS attack detection techniques, their two-

phase method is also capable of identifying XSS

vulnerabilities that occur due to (a) conditional copy

(of inputs to outputs) and (b) construction of

malicious string inputs from the concatenation of

singularly benign inputs. Client server security is also

discussed in [22][23].

3. Proposed Methodology

The main motivation of our work is to detection of

XSS attack in the less time as possible. Our whole

process is divided into five parts:

1) Web Browser Authentication

2) Data Request

3) RC4 Encryption

4) Random Key Generation

5) E-Time and C-Time Computation

Web Browser Authentication

In our framework a client first registered with the

central admin and then if admin grants the permission

the web user is eligible for that environment. The

select statement is fired with the option command to

set the request;

Select * from user_details where status='no';

select name='opt';

Our connection establishment parameters are shown

below:

Connection con=

DriverManager.getConnection("jdbc:odbc:db19");

 Statement st=con.createStatement();

Data Request

If the user is authenticated, it sends the data request

to the client. Server will handle the data request by

applying the below query.

Select * from user_details where status='no' and

user_id='"+uname”;

“uname” is used for validating the users.

Then the server prepares the data for sending to the

authentic client that has requested the data.

RC4 Encryption

The data will be sending after applying RC4

encryption standard. The RC4 Encryption Algorithm

eas discovered by Ronald Rivest of RSA,which is a

shared key stream cipher algorithm which belives in

exchanging the sharing key. The inevitable principal

algorithm is inconsiderate bang on for encryption and

decryption such excursus the facts cove is unexcelled

XORed encircling the generated principal gyve. The

algorithm is schedule as it requires alteration

exchanges of aver entries based on the vital sequence.

Justify implementations foundation be very

computationally intensive. This algorithm has been

explicate to the explanations noticeable and has

peculiar implementations. It is aside alien second-

hand by IEEE momentous 802.11 core WEP

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

736

(Wireless Encryption Protocol) point a 40 and 128-bit

keys. It generates a pseudorandom creek of bits. As

close by Harry streamlet maxims, these arse be hand-

me-down for encryption by annexe it relating to the

plaintext using bit-wise exclusive-or; decryption is

performed the same way. For era a sequence of

harbour traditions it uses variation of throughout

possible bytes. In RC4 barney it is 256.

Instrumentality the key thunderbolt in RC4 is {1-

255}. It is correct explained beside figure 2. The

diversifying will-power be street by round of

applause pointers prowl are IP1 and IP2. The key

eye-opener may change from 40 to 255 and the

simulation is according to the key scheduling

algorithm.

The iterative process will start from 0 to 255[24]

arr [ip1]:= i

End for

Ip2:= 0

Second iteration 0 to 255

IP2 := (IP2 + S[IP1] + key[IP1 mod keylength]) mod

256

swap values of S[IP1] and S[IP2]

End for

The pseudo code for S box working is shown below:

public char[] encrypt(final char[] msg) {

 sbox = initSBox(key);

 char[] code = new char[msg.length];

 int i = 0;

 int j = 0;

 for (int n = 0; n < msg.length; n++) {

 i = (i + 1) % SBOX_LENGTH;

 j = (j + sbox[i]) % SBOX_LENGTH;

 swap(i, j, sbox);

 int rand = sbox[(sbox[i] + sbox[j]) %

SBOX_LENGTH];

 code[n] = (char) (rand ^ (int) msg[n]);

 }

 return code;

 }

The pseudo code for the private part is shown below:

private int[] initSBox(char[] key) {

 int[] sbox = new int[SBOX_LENGTH];

 int j = 0;

 for (int i = 0; i < SBOX_LENGTH; i++) {

 sbox[i] = i;

 }

 for (int i = 0; i < SBOX_LENGTH; i++) {

 j = (j + sbox[i] + key[i % key.length]) %

SBOX_LENGTH;

 swap(i, j, sbox);

 }

 return sbox;

 }

Then the data will be send to the authorized user

which will be open by the user by applying proper

decryption algorithm.

The algorithm of RC4 algorithm is shown below:

Algorithm 1:RC4 Algorithm for Encryption and

Decryption.

Algorithm: RC4[24]

We are using two different array one for the state and

other for storing the key. State is represented by S[]

and key is represented by K[]

Step 1: First the state table is arranged according to

256 bytes means one array with numbers from 0 to

255

S[256]=[0 .. 255]

Step 2: Then the key table is arranged

K [1..2048] = […….]

Step3:Then randomize the first array to generate the

final key stream.

Step 4: Then key setup phase will be started.

1. Sf = (f + Si+ Kg) mod 4

2. Swapping Si with Sf

Step 5: Perform XOR

1. i = (i + 1) mod 4 , and f = (f + Si) mod 4

2. Swaping Si with Sf

3. t = (Si+ Sf) mod 4

The above procedure secures the data, but if the data

is attacked then we have also the mechanism to detect

the attack in proper time. For this we are considering

two types of time evaluation. First time is time to

translating JSP script to java programs for data

sending which is called C-Time and second time is

for identification of vulnerable outputs that is called

E-Time. Based on the timing comparison we will

prove that our methodology has better detection in

comparison to the traditional system. It will be

discussed in the result analysis section.

The whole working procedure is better understood

with the process flowchart shown in figure 1.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

737

 Data Send

 Data Attack

Figure 1: Working Flowchart

Admin

<tr><td colspan=2><center>Login

Window </center></td> </tr>

 <tr><td>Enter the User

Name</td><td><input type="text"

size="20" name="username">

</td></tr>

Client

<tr><td colspan=2><center>Login

Window </center></td> </tr>

 <tr><td>Enter the User

Name</td><td><input type="text"

size="20" name="username">

</td></tr>

Data Request

Data

Preparation

(Security)

Data

E-Time and C-Time Computation

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

738

4. Result Analysis

In this section we have discussed the results as we

obtained by our above discussed methodology. The

details of data sending and receiving time are shown

in table 1. The C-Time and E-Time comparison is

shown in figure 2. We are considering three different

files for results computation as shown in figure 2.

The E-Time is in the form millisecond. So the attack

detection is possible in very less time as compared to

the traditional technique. It shows the effectiveness

of our approach which detects the attack in very less

time.

Table 1: Log Details

Log Details

fname private_key hidden sendingtime rectime size client

ab1.txt rM9Jd8 0 0:25:13:251 0:25:13:334 29789 u1

email.txt kW3Ic4 1 0:25:41:765 0:25:41:836 131 u1

wd2.html eF1Nz9 1 0:25:41:765 0:25:41:925 2348 u1

xyz.txt vW4Ec8 0 0:25:41:765 0:25:42:84 45 u1

pdf1.pdf aL2Ev2 1 0:25:41:765 0:25:42:728 405044 u1

pdf2.pdf dD1De7 1 0:25:41:765 0:25:43:535 20859 u1

LICENSE.txt qF2Lu4 1 0:25:41:765 0:25:44:421 38801 u1

MAIN.CPP eF6Yb8 1 0:25:41:765 0:25:45:691 4194 u1

Figure 2: Comparison in E-Time and C-time

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

739

5. Conclusion

In this paper we have proposed an efficient security

mechanism for web data communication. The script

computation time as well as the attack detection time

is very les in comparison to the previous

methodology which shows the effectiveness of our

approach.

References

[1] D. Flanagan. JavaScript: The Definitive Guide.

December 2001. 4th Edition.

[2] ECMA-262, ECMA Script language

specification, 1999.

[3] David Endler. The Evolution of Cross Site

Scripting Attacks. Technical report, iDEFENSE

Labs, 2002.

[4] Center, CERT Coordination. "CERT Advisory

CA-2000-02 Malicious HTML Tags Embedded

in Client Web Requests." CERT/CC Advisories 3

(2000).

[5] Syed Imran Ahmed Qadri, Prof. Kiran Pandey,

“Tag Based Client Side Detection of Content

Sniffing Attacks with File Encryption and File

Splitter Technique”, International Journal of

Advanced Computer Research (IJACR), Volume-

2, Number-3, Issue-5, September-2012.

[6] Animesh Dubey, Ravindra Gupta, Gajendra

Singh Chandel,” An Efficient Partition Technique

to reduce the Attack Detection Time with Web

based Text and PDF files”, International Journal

of Advanced Computer Research

(IJACR),Volume-3 Number-1 Issue-9 March-

2013.

[7] Barua, Anton, Hossain Shahriar, and Mohammad

Zulkernine. "Server side detection of content

sniffing attacks." In Software Reliability

Engineering (ISSRE), 2011 IEEE 22nd

International Symposium on, pp. 20-29. IEEE,

2011.

[8] Richard Sharp and David Scott,” Abstracting

Application Level Web Security,” In Proceedings

of the 11th ACM International World Wide Web

Conference (WWW 2002), May 7-11, 2002.

[9] Peter wurzinger, Christian Platzer, Christian

Ludl, and Christopher

Kruegel,”SWAP:Mitigating XSS Attacks using a

Reverse Proxy,” In proceedings of the 2009 ICSE

Workshop on Software Engineering for secure

systems,pp.33-39,2009.

[10] Engin Kirda, Nenad Jovanovic, Christopher

Kruegel and Giovanni Vigna,”Client-Side Cross-

Site Scripting Protection,” ScienceDirect

Trans.computer and security ,pp.184-197,2009.

[11] Nao Ikemiya and Noriko Hanakawa, “A New

Web Browser Including A Transferable Function

to Ajax Codes”, In Proceedings of 21st

IEEE/ACM International Conference on

Automated Software Engineering (ASE '06),

Tokyo, Japan, pp. 351-352, September 2006.

[12] Fonseca, J.; Vieira, M.; Madeira, H., "Testing

and Comparing Web Vulnerability Scanning

Tools for SQL Injection and XSS Attacks,"

Dependable Computing, 2007. PRDC 2007. 13th

Pacific Rim International Symposium on , vol.,

no., pp.365,372, 17-19 Dec. 2007.

[13] Iha, G.; Doi, H., "An Implementation of the

Binding Mechanism in the Web Browser for

Preventing XSS Attacks: Introducing the Bind-

Value Headers," Availability, Reliability and

Security, 2009. ARES '09. International

Conference on, vol., no., pp.966, 971, 16-19

March 2009.

[14] Zubair M. Fadlullah, Tarik Taleb,Athanasios V.

Vasilakos, Mohsen Guizani and Nei Kato,

“DTRAB: Combating Against Attacks on

Encrypted Protocols Through Traffic-Feature

Analysis”, IEEE/ACM Transactions On

Networking, Vol. 18, No. 4, August 2010.

[15] Misganaw Tadesse Gebre, Kyung-Suk Lhee and

ManPyo Hong, “A Robust Defense against

Content Sniffing XSS Attacks”, IEEE 2010.

[16] Matsuda, T.; Koizumi, D.; Sonoda, M., "Cross

site scripting attacks detection algorithm based on

the appearance position of characters,"

Communications, Computers and Applications

(MIC-CCA), 2012 Mosharaka International

Conference on, vol., no., pp.65, 70, 12-14 Oct.

2012.

[17] Fokko Beekhof, Sviatoslav Voloshynovskiy

,Farzad Farhadzadeh,” Content Authentication

and Identification under Informed Attacks”, IEEE

2012.

[18] Dawei Wang; Longtao He; Yibo Xue; Yingfei

Dong, "Exploiting Artificial Immune systems to

detect unknown DoS attacks in real-time," Cloud

Computing and Intelligent Systems (CCIS), 2012

IEEE 2nd International Conference on, vol.02,

no., pp.646, 650, Oct. 30 2012-Nov. 1 2012.

[19] Nagarjun, P.M.D.; Kumar, V.A.; Kumar, C.A.;

Ravi, A., "Simulation and analysis of RTS/CTS

DoS attack variants in 802.11 networks," Pattern

Recognition, Informatics and Mobile Engineering

(PRIME), 2013 International Conference on ,

vol., no., pp.258,263, 21-22 Feb. 2013.

[20] Seungoh Choi, Kwangsoo Kim, Seongmin Kim,

and Byeong-hee Roh,” Threat of DoS by Interest

Flooding Attack in Content-Centric Networking”

IEEE 2013.

[21] Ruse, M.E.; Basu, S., "Detecting Cross-Site

Scripting Vulnerability Using Concolic Testing,"

Information Technology: New Generations

(ITNG), 2013 Tenth International Conference on

, vol., no., pp.633,638, 15-17 April 2013.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

740

[22] Saket Gupta,” Secure and Automated

Communication in Client and Server

Environment”, International Journal of Advanced

Computer Research (IJACR) Volume-3 Number-

4 Issue-13 December-2013.

[23] Bhupendra Singh Thakur, Sapna Chaudhary,‖

Content Sniffing Attack Detection in Client and

Server Side: A Survey‖, International Journal of

Advanced Computer Research (IJACR), Volume-

3 Number-2 Issue-10 June-2013.

[24] Rivest, R.L., Shamir, A., and Adleman, L., "A

Method for Obtaining Digital Signatures and

Public-Key Cryptosystems", Communications of

the ACM, Vol 21, No. 2, February 1978, p. 120-

26.

Urmi chhajed pursuing her master

degree in computer science engineering

from the jecrc university Jaipur. She

obtained her bachelor degree in

computer science from oriental institute

and science and technology indore with

dist.

Mr. Ajay kumar is an Assistant

Professor in the JECRC University.He

graduated in Computer Science and

Engineering from Faculty of

Engineering and Technology, RBS

College, Agra. Mr. Ajay completed his

M.Tech. in Computer Science and Engineering from RTU,

Kota with hono.

