
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

442

A Computation Offloading Framework to Optimize Makespan in Mobile

Cloud Computing Environment

Gaurav

1
, Nitesh Kaushik

2
, Jitender Bhardwaj

3

Abstract

In the era of continuously evolving applications of

mobile devices in our daily routine, the processing

capacity is posing as a bottleneck in offering a

snappy experience to the users. Despite such

impeccable technological advancements coming

ever so swiftly in the industry, the resource

constraints like processing power still dwarf the

performance of certain types of computation-

intensive or data-intensive applications. Cloud

computing, with features like rapid scalability,

ubiquitous network access, on-demand self-service

seems to be the right solution to such problems.

Mobile cloud computing has created a reverberation

in the technology landscape around the world. In

this paper, we focus on augmenting execution of

mobile applications using cloud resources, more

often known as offloading. The approach uses

application partitioning, resource monitoring and

computation offloading to address the performance

or speedup issues. It monitors the available

resources both at mobile and cloud side and then

adaptively offloads different components of

partitioned application to optimize the execution

performance of the application. Genetic algorithm

is used to find the optimum offloading scenario and

the results are evaluated by simulating our

approach and comparing it with the all mobile-side

execution and all cloud-side execution.

Keywords

Mobile cloud computing, application partitioning,

offloading, makespan.

1. Introduction

As the use of mobile devices (such as smart phones,

Manuscript received June 4, 2014.

Gaurav, Department of CSE, DCRUST Murthal, Haryana,

India.
Nitesh Kaushik, Department of CSE, DCRUST Murthal,

Haryana, India.

Jitender Bhardwaj, Department of CSE, DCRUST Murthal,
Haryana, India.

PDAs, etc.) in our routine tasks is increasing day-by-

day, they have literally become an important part of

our life. For instance, using a smart phone, a user not

only receives and makes calls, but also performs

various information processing tasks. They are no

longer a luxury, but have become essential because of

the ubiquitous computing environment growing

continuously all around us. Because of the ever

evolving technology and depreciating prices, mobile

device manufacturers are offering higher than ever

specifications in terms of powerful processors, larger

memories, multi-network interfaces, a variety of

operating systems such as iOS, Android, Windows

Mobile etc. But despite all those high end

specifications, mobile devices are still unable to go

neck-to-neck with the traditional computational

devices. They still seem to be underpowered for

certain resource-demanding applications [1].

However, cloud computing provides an illusion of

infinite computing resources [2]. According to NIST,

Cloud Computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared

pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with

minimal management effort or service provider

interaction [3]. This cloud model is composed of five

essential characteristics, three service models, and

four deployment models. Mobile cloud computing is

a new platform combining the mobile devices and

cloud computing to create a new infrastructure,

whereby cloud performs the heavy lifting of

computing-intensive tasks and storing massive

amounts of data[4]. Mobile applications leverage this

IT infrastructure to generate the advantages such as

improvement of processing power and storage

capacity, extended battery life, improved reliability

and scalability etc.

Three approaches[5] have been proposed for mobile

cloud applications: 1) extending the access to cloud

services to mobile devices; 2) enabling mobile

devices to work collaboratively as cloud resource

providers[6][7]; 3) augmenting the execution of

mobile applications using cloud resources, e.g. by

offloading selected computing tasks required by

applications on mobile devices to the cloud. This will

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

443

allow us to create applications that far exceed

traditional mobile device‟s processing capabilities. In

this paper, we focus on the third approach. More

specifically, we focus on the problem of serving

computation or data intensive applications and

propose a partitioning offloading approach to speed

up their execution and enhance user experience. We

propose an approach which offloads the computation

of different components of the application to cloud

depending upon the current environmental scenario.

It monitors a set of mobile, cloud and network

parameters such as available resources at mobile

device, resources at cloud, available speed and

bandwidth of the network in order to decide whether

to offload any computation to the cloud or execute it

locally on mobile device. Offloading might benefit in

terms of execution speed as cloud is a resource rich

platform, but the available network bandwidth might

be a spoilsport while transferring the data from

mobile to cloud for offloading.

In the rest of the paper, section II consists of the

review of related research work in mobile cloud

computing. Then, we describe the system model in

section III followed by section VI discussing

mathematical model. In section V, we evaluate the

proposed approach and compare the results with the

all-cloud execution and all-mobile execution. Finally,

section VI consists of the conclusions drawn and

some future scope.

2. Related Work

Although, other related work have also included the

speeding up of execution by using collaborative

approaches, migrating the execution from mobile

devices to resource rich platforms. Our work is

similar to that of L. Yang [5] and D. Kovachev [8]

but is different in the sense that we have considered

the SLA negotiated waiting time which is not

considered by the previous works.

Huerta-Canepa et al [7] provide the basic framework

for creating a virtual cloud with the help of devices

falling in close proximity of each other. The

framework detects nearby nodes that will remain in

the same area or follow the same movement pattern.

In scenarios like downloading a description file at a

museum, collocation increases the chances of people

willing to perform common tasks. To save the

resources like energy and processing power, the

collocated mobile devices can collaboratively act as a

local cloud and split the task into smaller subtasks to

be performed on different devices. The results can

then be aggregated and shared. The framework might

not provide the same amount of benefits as with

traditional cloud but preserves several benefits of

offloading and omits the need of internet or a

connection to traditional cloud platforms. Fernando et

al in [9], on the other hand, propose an opportunistic

job sharing approach on an ad hoc cloud. It advocates

all kinds of local resources (smart phones, PDA, even

laptops and PCs) to be used to collaborate in forming

the local cloud to achieve a common goal. Their

approach is to overcome the resource sparseness,

energy consumption and low connectivity problems

faced in traditional mobile cloud computing. Sharing

of workload is dynamic, proactive and depends on

cost model to benefit all participants. SpACCE

concept by Tatsuya et al [10] which can be built

according to the needs that occur at any given time

on a set of personal, i.e., non-dedicated, PCs and

dynamically migrate a server for application sharing

to another PC. By migrating the server, redundant

calculation capacity of PCs can be utilized for

creating a SpACCE, where the response time of the

application shared among users is improved.

The abovementioned approaches work well for the

common tasks but sometimes one particular user

might want to execute some application which cannot

be distributed among different mobile devices. Works

by R. F. Lopes [11], E.Truyen [12], T.Sakamoto [13]

advocate for the migration of the executable block of

an application to a resource rich platform. Ricky et al

[14] proposed offloading the work to a cloud by

using the Stack-on-Demand Asynchronous Exception

(SOD_AE) mechanism. Here, the work is offloaded

by transferring only the current state of the

application from mobile to cloud in order to resume

further execution at cloud right from the state left

from mobile. Another approach proposed by B. Chun

et al[15] emphasizes on embedding the complete

software stack of mobile device in a virtual machine

hired from the cloud provider. The cloudlet

architecture proposed by M. Satyanarayanan [1]

introduces the concept of two-tier approach for using

cloud. The approach helps in lowering the network

latencies by introducing a resource rich cloudlet

(computer) between mobile device and cloud. The

mobile user can use cloudlet with LAN and offload

tasks on it instead of using WAN to connect to the

distant cloud. If no such cloudlet is available nearby

then the traditional cloud is used. Hyrax [6] is also a

similar concept which uses mobile devices as nodes

to create a mobile cloud. These nodes are considered

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

444

as slaves and the jobs from users are divided into

independent „tasks‟ and these tasks are distributed

among these slave nodes.

In the recent past, researchers have been stressing

upon offloading techniques, in which the application

is executed in parts. Certain parts of it execute on

mobile device and the rest on the cloud. Such

approaches give better results in terms of both

speedup and energy consumption [16]. B. Chun et al

[16] proposed CloneCloud concept, which offloads

some components of the application on the cloud

platform. Cloud platform being resource rich boosts

up the performance.

 Here, clone components of mobile application reside

over the cloud and are executed the same way they

would have executed on mobile. Though, the

partitioning decisions are made offline, the concept

manages to speed up the execution. L Yang in [5]

puts forward an offloading approach for data stream

mobile applications where accuracy of application is

determined by its throughput. The proposed approach

makes dynamic offloading decisions based on

resource availability at mobile device. The approach

determines a critical component of application which

takes the maximum execution time among all

components. This critical component becomes the

deciding component. D. Kovachev in [8] proposes

Mobile Augmented Cloud Services (MACS) based

on adaptive computation and elasticity in executing

blocks of an application. It is aimed at the

applications which have some native functions

(which are device dependent and must be performed

on mobile device itself) and other functionalities of

application which are resource-demanding and can be

offloaded to get benefits of cloud.

3. System Model

The system architecture of the proposed approach is

illustrated in fig. 1. The system primarily consists of

eight components, namely a resource manager, a

local execution manager, an offload manager,

sequential execution tracker, resource monitor,

application behaviour generator, optimization solver,

cloud offload manager. The first four components

reside on the mobile device whereas the rest of the

components reside on a middleware. We describe the

components in following sub-sections.

A. Resource Manager
 The Resource Manager works for monitoring

and management of different resources such

as processing capacity of mobile, bandwidth

of the available network etc. and sends this

information to the Resource Monitor

residing on the middleware.

B. Local Execution Manager
 This component manages the local execution

of application components, i.e., the parts of

the application running locally on mobile

resources.

C. Offload Manager

 This module manages the transmission and

reception of data for executing the

application components at cloud resources.

It transmits the data to the Sequential

Execution Tracker on middleware in order

to make the data available for execution at

cloud, and also receives the output data back

at mobile side after the execution at cloud

side is completed.

D. Sequential Execution Tracker
 It works to basically keep the application

components in synchronization by

communicating with the Cloud Offload

Manager as well as Offload Manager on

mobile side to offload certain application

components on virtual machines running on

cloud.

E. Resource Monitor
 This component receives the parameters sent

by the Resource Monitor at mobile side to

help the Application Behaviour Generator to

generate suitable partitioning scheme.

F. Application Behaviour Generator
 It generates appropriate partitioning scheme

for the application so that the local execution

cost and remote execution cost can be

estimated for each component.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

445

Figure 1: The proposed system model

G. Optimization Solver
 The Optimization Solver takes its input from

Application Behaviour Generator and

generates an optimal offloading scheme in

order to minimize the total makespan of the

application. This offloading scheme is

passed on to both the Sequential Execution

Tracker on middleware as well as Sequential

Execution Tracker on mobile side.

H. Cloud Offload Manager
 It takes the transmitted data from Sequential

Execution Tracker in order to offload the

execution to a suitable virtual machine

running on the cloud. It is basically

responsible for providing the input data to

the virtual machines as well as for fetching

their outputs back.

4. Mathematical Model for

Offloading Decisions

The offloading decisions are based upon some

mathematical equations. These mathematical

equations comprise of the current environmental

factors of the scenario, such as the available

resources on the mobile device, the average

bandwidth of the network currently available for the

mobile device and the available resources on the

cloud platform for offloaded execution.

Total cost of execution of an application having „n‟

number of components can be formulated as:

Costapp comp …(1)

where, i = (1,2,3,…,n) and represent all the n

components of the application. We assume that the

system is secure and reliable. So, extra overheads

required for trust management are negligible.

The cost of execution of a component of the

application can be calculated as:

Costcomp = min{Comp_Costmob : Comp_Costcloud}

 …(2)

where, Comp_Costmob is the execution cost of

component on mobile and Comp_Costcloud is the total

execution cost of the component on cloud.

The total execution cost of component on cloud is a

sum of cost of offloading the corresponding data, cost

of executing the component on cloud resources and

time spent in waiting queue of virtual machine.

Comp_Costcloud = Comp_Costoffload + Comp_Costexec

 + tqueue …(3)

Given the environmental parameters such as the

available mobile resources δmob, the bandwidth of

available network β, the available cloud resources as

δcloud; and the parameters of application such as ψi is

the number of CPU instructions in component i to

process one unit of data, ϴi is the amount of data

required to be offloaded for component i. The cost of

executing component i on mobile becomes:

Compi_Costmob = ψi/δmob …(4)

the total cost of executing component i on cloud from

equation (3) becomes:

Compi_Costcloud = ϴi/β + ψi/δcloud + tqueue …(5)

And the time spent by the request in cloud virtual

machine‟s queue is:

tqueue = Lq/λe ...(6)

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

446

where, Lq is the length of the waiting queue at cloud

virtual machine, λe is the effective arrival rate of

requests at cloud virtual machine, which is further

given by:

λe = λ/[1-Pk] …(7)

given that λ is the arrival rate of requests at cloud

virtual machine and Pk is the probability that there are

k requests in the queue.

Integrating all the equations, the total cost of

execution of application using this approach

becomes:

Costapp= (ψi/δmob) , (ϴi/β + ψi/δcloud +

tqueue)}) …(8)

5. Evaluation and Analysis

In this section, we simulate the proposed

functionality and analyze the cost of execution of

application in our experiments under a variety of

different factors related to mobile device, available

network as well as cloud platform.

a.) Experimental Setup

Genetic algorithms are used to get the fittest

generation of our string for offloading decisions for

randomly taken application components and their

corresponding data inputs. Table 1 shows the

configuration of our simulation. First, we decide

particular values for all the parameters and then we

start our simulations by choosing one parameter to be

varied each time to analyze its effects on the

execution cost, keeping the rest of the parameters

constant. We show the varying parameter as „*‟ in

the table, while assigning the constant parameters

their corresponding values. For instance, in

experiment depicted by first row we vary the

bandwidth of available network (β) and denote it as

„*‟ in corresponding row of the table. Note that β,

δmob and δcloud shown in the table are normalized

values, whereas ψ and ϴ values in table denote the

multiplying factor applied to the randomly generated

values as stated above.

b.) Results and Analysis

Using table 1, we executed a number of experiments

by varying one the parameters each time and the

results of the experiments can be seen in fig 2(a)-(f).

Below is the analysis about the effects of those

parameters on the execution cost of application. Most

of the analysis circles around the equation (2) and

(3), i.e., the cost of execution at mobile comprises of

only computation cost, but execution on cloud

requires both computation as well as communication

Fig. 2(a) shows the influence of network parameter β

on the execution. It is interesting to find that our

approach produces best results among all three

approaches throughout the considered range of

bandwidth. In low bandwidth conditions, the results

of all Cloud execution approach depict significant

communication overheads. In such conditions, our

approach tends to keep most of the components on

mobile device itself and hence, closely follows the all

execution on mobile approach. As the bandwidth

starts increasing, the communication overhead ease

up and more components start getting offloaded to

cloud. As the bandwidth becomes abundant, the

constraint shifts from bandwidth to cloud resources

and the approach ends up following the all Cloud

execution approach.

In fig. 2(b), initially the cloud resources become the

constraint and the proposed approach offload most of

the components on cloud platform to get better

performance of to achieve speedup. With the increase

in mobile resources, the local execution approach

starts dominating and lesser components are

offloaded. The proposed approach finally ends up

executing all components on mobile.

Table 1: Configuration used in experiments

Β δmob δcloud Ψ ϴ

* 1 4 1 1

1 * 4 1 1

1 1 * 1 1

1

1 4 * 1

1 1 4 1 *

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

447

(a) Effects of available bandwidth

(b) Effects of available mobile resources

(c) Effects of available cloud resources

(d) Effects of size of application’s

components

(e) Effects of data needs to be offloaded per

component

(f) Effects of number of components in

application.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

448

(g) Partition with waiting time Vs Partition without waiting time

Fig. 2: Simulated Results

The effect of varying cloud resources can be seen in

fig. 2(c). With low resources available on cloud, the

proposed approach decides not to offload and run

most of the components on mobile device itself. As

the cloud resources are increased, the cost of

execution on cloud resources starts reducing. The

reduction in cost of execution on cloud turns the

offloading decisions in the favour of cloud, and the

approach starts acting similar to all Cloud execution

approach.

Interesting trends are seen in fig. 2(d), when the

instructions per unit data in the components are

varied. With the lesser instructions to be executed,

the scenario tends to favour mobile device. This is

because lesser number of instructions to be executed

as compared to the corresponding data offloading

needs. So, the cost of computation gets much smaller

than the cost of communication (data offloading) and

hence, all the execution is carried on mobile device.

With increase in instructions per unit data, the

communication versus computation cost ratio turns in

favour of communication as the data to be offloaded

is lesser as compared to instructions to be executed.

Hence, the approach tends to start offloading more

and more data and starts following the all-cloud

approach.

Fig. 2(e) shows the effect of varying the data to be

migrated or offloaded with respect to the

components. As the data is low initially, the

communication cost is very low and computation cost

at cloud side is already low because of much better

resources. So, more execution is done on cloud. As

the data to be offloaded increases, communication

cost becomes a bottleneck and execution on mobile

device becomes more cost effective even with lesser

resources than cloud.

Varying the number of components in which the

application is divided, we see in fig. 2(f) that the

proposed approach performs the best among all the

three approaches in all scenarios.

In fig. 2(g), we study the difference between the

nature of partitioning by considering the waiting time

and without considering the waiting time. As

consideration of waiting time is expected to result in

increase of total makespan of the application, the

graph which considers the waiting time hovers

slightly above the graph not considering the waiting

time. Even though the results are not better but are

comparatively closer to the real world.

6. Conclusion & Future Work

Our work presents an approach to make mobile

computing to work collaboratively with cloud

computing and shows that the collaborative approach

proves to be better. Although, the SLA negotiated

waiting time poses as a hindrance to the mobile cloud

computing but still it is a factor which cannot be

ignored.

The simulation results show that offloading approach

keeps the cost low in every scenario by exploiting the

resources available at mobile side as well as cloud

side and minimizes the makespan by 37% on average

without considering the waiting time and 34% on

average by considering the waiting time. But, as the

waiting time is an important factor and cannot be

ignored, these results are relatively closer to the real

world. We have assumed the whole system to be

secure and reliable. So, extra overheads due to

security were considered as negligible. But in real

world, it cannot be so. So in future work, we would

like to incorporate extra overheads due to security

and privacy.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-2 Issue-15 June-2014

449

References

[1] M. Satyanarayanan, P. Bahl, R. C´aceres, and N.

Davies, “The Case for VM-Based Cloudlets in

Mobile Computing,” IEEE Pervasive Computing,

vol. 8, no. 4, pp. 14–23, Oct. 2009.

[2] Michael Armbrust, Armando Fox, Rean Griffith,

Anthony D. Joseph, Randy Katz, Andy

Konwinski, Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoica, and Matei Zaharia, “Above

the Clouds: A Berkeley View of Cloud

Computing”, 2009, [Online]. Available:

http://www.eecs.berkeley.edu/Pubs/TechRpts/20

09/EECS-2009-28.pdf

[3] P. Mell and T. Grance, “The NIST Definition of

Cloud Computing” [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-

145/SP800-145.pdf

[4] Shamim Hossain, “ThoughtsOnCloud Cloud

Computing conversations led by IBMers”,

[Online]. Available:

http://thoughtsoncloud.com/2013/06/mobile-

cloud-computing/

[5] L. Yang, J. Cao, S. Tang, Tao Li, Alvin T. S.

Chan, “A framework for Partitioning and

Execution of Data Stream Application in Mobile

Cloud Computing.” IEEE Fifth International

Conference on Cloud Computing, 2012.

[6] E. E. Marinelli. Hyrax: Cloud Computing on

Mobile Devices using MapReduce. In Master

Thesis, Carnegie Mellon Universtiy, 2009.

[7] Gonzalo Huerta-Canepa, Dongman Lee. A

Virtual Cloud Computing Provider for Mobile

Devices. In Proc. ACM MCS‟10, pages 3756–

3761. ACM Press, 2010.

[8] D. Kovachev, Tian Yu and Ralf Klamma.

“Adaptive Computation Offloading from Mobile

Devices into the Cloud.” 10th IEEE International

Symposium on Parallel and Distributed

Processing with Applications, 2012.

[9] Niroshinie Fernando, Seng W. Loke, Wenny

Rahayu, “Dynamic Mobile Cloud Computing: Ad

Hoc and Opportunistic Job Sharing”, Fourth

IEEE International Conference on Utility and

Cloud Computing, Victoria, NSW: December

2011.

[10] Tatsuya Mori, Makoto Nakashima, and Tetsuro

Ito, “A Sophisticated Ad Hoc Cloud Computing

Environment Built by the Migration of a Server

to Facilitate Distributed Collaboration”, in 26th

International Conference on Advanced

Information Networking and Applications

Workshops, pages 1196-1202, Fukuoka: March

2012.

[11] R. F. Lopes, and F. J. D. S. E. Silva. “Migration

Transparency in a Mobile Agent Based

Computational Grid.” In Proc. Of the 5th

WSEAS Intl. Conf. on Simulation, Modelling

and Optimization, pp. 31-36, Greece, August 17-

19, 2005.

[12] E.Truyen, B.Robben, B.Vamhaute, T.Coninx

,W.Joosen, and P. Verbaeten, “Portable Support

for Transparent Thread Migration in Java.” In

Proceedings of 2nd International Symposium on

Agent Systems and Applications and 4th

International Symposium on Mobile Agents

2000, Zurich, Switzerland, Sept. 13-15, 2000.

[13] T.Sakamoto, T. Sekiguchi, and A. Yonezawa,

“Bytecode transformation for portable thread

migration in java,” In proceedings of 2nd

international Symposium on Mobile Agents,

Zurich, Switzerland, Sept. 13-15, 2000.

[14] Ricky K.K. Ma, Cho-Li Wang, “Lightweight

Application-level Task Migration for Mobile

Cloud Computing.” In Proceedings of 26th IEEE

International Conference on Advanced

Information Networking and Applications, 2012.

[15] B.-G. Chun and P. Maniatis, “Augmented

Smartphone Applications Through Clone Cloud

Execution,” in Proceedings of the 12th Workshop

on Hot Topics in Operating Systems (HotOS

XII). Monte Verita, Switzerland: USENIX, 2009.

[16] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A.

Patti. “CloneCloud: Elastic execution between

mobile device and cloud,” In Proceedings of

EuroSys 2011.

 Mr. Gaurav is a Research Scholar

pursuing his M. Tech., Computer

Science and Engineering II year from

Deenbandhu Chhotu Ram University of

Science and Technology, Haryana,

India. He has completed his B. Tech.

degree in Computer Science and

Engineering from Maharshi Dayanand University, Rohtak

(Haryana).

 Mr. Nitesh Kaushik is a Research

Scholar pursuing his M. Tech.,

Computer Science and Engineering II

year from Deenbandhu Chhotu Ram

University of Science and Technology,

Haryana, India. He has completed his

B. Tech. degree in Computer Science

and Engineering from Maharshi Dayanand University,

Rohtak (Haryana).

 Mr. Jitender. Bhardwaj is working as

Assistant Professor in Deenbandhu

Chhotu Ram University of Science and

Technology, and also pursuing his Ph.

D., from Deenbandhu Chhotu Ram

University of Science and Technology,

Haryana, India. He has completed his B. Tech. and M.

Tech. degree in the past and working as Assistant Professor

for last few years.

http://thoughtsoncloud.com/2013/06/mobile-cloud-computing/
http://thoughtsoncloud.com/2013/06/mobile-cloud-computing/

