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Abstract  
 

Microarray Gene Profile studies can assess the 

global patterns of thousands of genes under 

different varying conditions. It provides important 

insights about the underlying genetic causes for 

diseases, ultimately allowing the development of 

modern chemical entities as medical-kit drug 

candidates. The informatics analysis and 

integration of microarray gene expression pattern 

are difficult for understanding or interpretation of 

gene array features. In this paper, we discuss the 

deterministic computational analysis of:  the 

identification of differentially expressed genes using 

statistical methods, the discovery of gene clusters, 

and the classification of biological samples using 

standard clustering and classification approaches. 
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1. Introduction 
 

Gene expression is the process by which a gene‟s 

coded information is converted into the structures as 

per the information present in and processing in the 

cell. Expressed genes include those that are 

transcribed into mRNA and then translated into 

protein, and those that are transcribed into RNA but 

not translated into protein. Not all genes are 

expressed, and gene expression involves the study of 

the expression level of genes in the cells under 

different conditions. Gene Expression Profiles using 

Microarrays is emerging key technology for 

understanding fundamental biology of gene function, 

development, and for discovering new classes of 

diseases and for understanding their molecular 

pharmacology.[1] Microarray technology allows 

expression levels of thousands of genes to be 

measured at the same time. 
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A microarray is typically a glass slide, on to which 

DNA molecules are attached at fixed spots. There 

may be tens of thousands of spots on an array, each 

containing a huge number of identical DNA 

molecules, of lengths from twenty to hundreds of 

nucleotides. Each of these molecules ideally should 

identify one gene or one exon in the genome. The 

spots are either printed on the microarrays by a robot, 

or synthesized by photolithography (as in computer 

chip productions), or by ink-jet printing. 

 

Microarray studies often generate massive amounts 

of data, which are difficult to be examined by hand. 

Bioinformatics analysis and interpretation to extract 

genetic patterns from these data are therefore 

essential for gaining biological insights from 

experiments. The utility of computational analysis 

such as clustering, classification and feature selection 

is demonstrated by another recent study, where 

subtypes of diseases are successfully discovered 

without employing any prior biological knowledge. 

In this article, we describe computational methods for 

several common tasks in microarray studies: (1) 

identifying genes that experience significant changes 

in expression under different experimental 

conditions; (2) clustering of genes to identify groups 

of genes that are likely to be co-regulated or 

participating in related metabolic and regulatory 

pathways, (3) predicting and classifying experimental 

samples whether they belong to a particular type of 

tissue, disease or phenotype classes. 

 

2. Identifying Differentially 

Expressed Genes 
 

To identify genes differentially expressed under 

different conditions from cDNA microarray 

experiments, a heuristic approach frequently applied 

is to examine the ratio of fold increase/decrease of 

the expression levels of a gene. If the ratio is above a 

predefined cut-off threshold, these genes are declared 

to be differentially expressed, and are selected for 

further experimental validation. This approach is 

problematic, because the cut-off value is set rather 

arbitrarily, and it is difficult to assess the rate of false 

positives (unchanged genes declared differentially 

expressed) and rate of false negatives (missed 

differentially expressed genes). We discuss two 
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statistical methods [2, 3] that can be used in 

conjunction with permutation tests to identify 

differentially expressed genes.  We begin with the 

lay-out of microarray data. Data from gene 

expression experiments can be organized as a matrix. 

Here, each row represents the hybridization results 

for a single gene across different conditions, and each 

column represents the measured expression levels of 

all genes for one condition. To draw statistical 

inference, it is essential to have replicated samples 

for each experimental condition. For identification of 

differentially expressed genes, we can test against the 

following null hypothesis: the mean expression levels 

xi of gene i under conditions 1 and 2 are the same. 

Here, we assume that there are r1 replicate samples 

for condition 1 and r2 replicate samples for condition 

2. Simple yet more sophisticated and widely-used 

approach to the two class experiment is to use 

Student‟s t test to assess whether a gene is 

differentially expressed between biological 

conditions. 

 

2.1 t- test: The basis of this test is the t statistic,  

which is an assessment of signal to-noise ratio for the 

particular gene in question, comparing its expression 

measure for the two conditions under study. 

Student‟s t-test is a simple method for testing 

whether the distributions of two variables are 

identical. Provided that gene expression levels under 

two different experimental conditions have identical 

Gaussian distributions, the statistics 

 

   (1) 

 

follows a Student‟s t-distribution,[4]with  r1+r2-2 

degrees of freedom. Here,  are the mean 

expression levels of gene i in the r1 replicated 

samples of condition 1 and r2  replicated samples of 

condition 2, respectively;  are the sample 

variances of gene i under these two conditions: 

 

 
 

If ti exceeds the threshold value for a specific 

confidence level (e.g. 95%), the expression levels of 

gene i at conditions 1 and 2 will then be considered to 

be different. Although a large ti value indicates that 

the expression levels of gene i are different under 

conditions 1and 2, one cannot assume the distribution 

of gene expression level is Gaussian or the statistic t 

follows a t-distribution, and therefore, one cannot 

obtain direct estimates of statistical confidence 

intervals from standard tables of t-distributions. With 

multiplicative samples, permutation tests can be 

applied to assess the statistical significance of the 

observed t-statistic. We randomly divide the samples 

into group 1 with r1 samples, and group 2 with r2 

samples. The statistic t can be calculated for this 

grouping. Altogether there are  such 

groupings, and when plausible, we can calculate the 

t-statistic, denoted as t*, for each of them. An 

alternative approach is to sample a few thousands of 

such groupings. The distribution of calculated t* 

values can provide an estimation of the p-value 𝑃𝑖∗ 

for the observed value of t. If we let t to be the 

observed t t-statistic for gene i, 𝑡𝑘∗ the kth permuted 

sample, R to be the number of permuted samples, we 

have the estimated P-value for observing t: 

 

 
 

The following data came from a set of Affymetrix 

experiments Affymetrix MOE 430A Gene Chips 

done by Daniel Amador-Noguez. 24 different arrays 

were run looking at 2 different genotypes, wild type 

mice and Ames Dwarf mice. The results were 

normalized in dChip and a one-way ANOVA (t-test) 

was applied.  Using different p-values of 0.001 and 

0.0001(without multiple testing correction), the t-test 

generated a certain number of significant genes. 

Starting with 2 biological replicates for each 

treatment (in total 4 arrays), a t-test was run. Each 

data point represents how many statistically 

significant, differentially expressed genes were found 

per number of replicates used in the analysis. 

 

In addition, different approaches were used in terms 

of the assumptions made about the variance across 

the samples for each gene. If you assume that the 

variance is equal between the two different samples 

across every gene, then you will get a larger number 

of significant genes, compared to assuming that the 

variance is not equal across the samples. Although 

you will get a larger number of differentially 

expressed genes from assuming the variance is equal, 

more than likely the safer bet statistically is to 

assume non-equal variance. 
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Tabe1: Affymetrix experimental Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Number of Genes Vs Number of 

Replicates  (Not-equal Variance) 

 

 
 

Figure 2: Number of Genes Vs Number of 

Replicates   (Equal Variance) 

 

Observation: 

Table 1 and figure 1&2 clearly show that as you 

increase the number of replicates, your number of 

significant differentially expressed genes will also 

increase. Therefore, when planning microarray 

experiments, it is important to seriously consider the 

number of replicates for each treatment. 

 

Table 2: List of Tasks – Methods (Algorithms) 

used for it 

 

Task Methods 

Class Discovery Hierarchical Clustering 

k-means Clustering 

Self-Organizing Maps 

Self-Organizing Trees 

Relevance Networks 

Force-directed layouts 

Principal Component Analysis 

Class Comparison t-test 

SAM 

Analysis of variance(ANOVA) 

Class Prediction k-nearest neighbors(KNN) 

Weighted Voting 

Artificial Neural Networks(ANN) 

Discriminant Analysis 

Classification and Regression 

Trees(CART) 

Support Vector Machines(SVM) 

 

Table 2 provides list of tasks with the class 

identification, comparison, prediction and related 

deterministic models or algorithms that are applied to 

classes. 

 

2.2 Wilcoxon test:  Student‟s t-test is sensitive  

to extreme values.[2] It is often safer to use the 

nonparametric Wilcoxon test when there may be 

skewness or contamination in the gene expression 

data. In this test, we assume that xi is drawn from a 

symmetric distribution. We combine the r1 + r2 

samples, and rank them in ascending order by their 

magnitude, and assign each sample the ranks 1, 2,. . ., 

r1 + r2. Next, we sum up the ranks of samples from 

condition 1, which will be our statistic w. To 

determine the significance of the P-value, the value 

of w can then be compared with the null model of the 

standard distribution of Wilcoxon rank sum values, 

which can be obtained by the moment generating 

function: 

    [12] 

 

or more conveniently, it can be found in look-up 

tables in statistics[9]. With multiplicative samples, 

the permutation test again is more applicable to 

assess the statistical significance of the observed w 

statistic. With R permuted samples, we have the 

estimated P-value for observing w: 

Number of differentially expressed genes vs. number of 

replicates (ANOVA) 

#of 

Replicates 

Variance Not 

Equal Variance Equal 

p<0.001 p<0.0001 p<0.001 p<0.0001 

2 3 1 32 4 

3 74 10 160 27 

4 292 61 441 135 

5 456 140 618 228 

6 791 296 956 420 

7 1128 513 1294 628 

8 1315 626 1469 727 

9 1766 896 1895 990 

10 1928 1016 2014 1121 
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3. Pattern Discovery- Clustering 

Approach 
 

A useful method to the analysis of microarray data is 

to use an unsupervised method to explore expression 

patterns of that exist in the data. Three of the most 

widely used methods are hierarchical clustering, k-

means clustering, and self-organizing maps. Although 

each of these approaches will work with any dataset, 

in practice they often do not work well for large 

datasets where many of the genes do not vary between 

samples. It is useful to apply a statistical filter to the 

data to exclude genes which simply are not varying 

between experimental classes.[10] If there are no pre-

determined classes in the data, a useful alternative is 

simply to eliminate those genes that have minimal 

variance across the collection of samples as those 

genes are not changing significantly in the dataset and 

are therefore the least likely to shed any light on 

subclasses that exist in the sample collection. 

       

The quantitative expression levels of n genes under d 

conditions can be thought as n points in d-dimensional 

space. Clustering methods group points together those 

are close-by in the d dimensional space. Clustering 

has been shown to be very effective, in associating 

gene expression patterns with the ligand specificity of 

neurotransmitter receptors. 

 

3.1 Distance and similarity measure 

The „„closeness‟‟ between genes becomes concrete 

once a distance measure or similarity measure is 

defined to quantitatively describe how similar or 

dissimilar the expression profiles of two genes are. 

For n genes in the microarray experiment, each pair 

(x, y) of the ( ) pairs of genes can be assessed for 

their similarity in the expression levels under d 

condition. A widely used dissimilarity or distance 

measure is the Euclidean distance: 

  (6) 

Another convenient measure is the correlation 

coefficients, which evaluates how correlated the 

expression levels of genes x and y under d different 

conditions: 

    (7) 

The value 1-R(x, y) can also be used as a dissimilarity 

measure. When distances or correlations for all ( ) 

pairs of genes are calculated, we obtain a n×n distance 

or similarity matrix, which can then be used for 

cluster analysis.[5,6] 

 

3.2 Hierarchical clustering 

Hierarchical clustering has become one of the most 

widely-used techniques for the analysis of gene 

expression data; it has the advantage that it is simple 

and the result can be easily visualized [8]. Initially, 

one starts with N clusters, where N is the number of 

genes (or samples) to be in the target dataset. 

Hierarchical clustering is an agglomerative approach 

in which single expression profiles are joined to form 

nodes, which are further joined until the process has 

been carried to completion, forming a single 

hierarchical tree. The algorithm proceeds in a straight 

forward manner: 

 

1. Calculate the pair wise distance matrix for all of the 

genes to be clustered. 

2. Search the distance matrix for the two most similar 

genes or clusters; initially each cluster consists of a 

single gene. This is the true first stage in the 

“clustering” process. If several pairs share the same 

degree of similarity, a predetermined rule is used to 

decide between alternatives. 

3. The two selected clusters are merged to produce a 

new cluster that now contains at two or more objects. 

4. The distances are calculated between this new 

cluster and all other clusters. There is no need to 

calculate all distances since only those involving the 

new cluster have changed. 

5. Steps 2-4 are repeated until all objects are in one 

cluster.  

There are a number of variants of hierarchical 

Clustering that reflect different approaches to 

calculate distances between the newly defined clusters 

and the other genes or clusters: 

3.2.1. Single linkage clustering uses the shortest 

distance between one cluster and any other, 

3.2.2. Complete linkage clustering takes the largest 

distance between any two clusters, and 

3.2.3. Average linkage clustering uses the average 

distance between two clusters. 

 

 A1: Algorithm Hierarchical Clustering 

               repeat 

                     find two clusters Ci and Cj 

                     where d(Ci, Cj) = minr ≠ s d(Cr,Cs). 

merge Ci, Cj into a single cluster Cq. 
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                      replace clusters Ci, Cj with Cq. 

     update distance matrix of new clusters. 

              until all genes lie in the same cluster. 

 

In order to update the distance matrix when two 

clusters Ci, Cj are merged into a new cluster Cq, the 

key question is how to define the distance between the 

new cluster Cq and all other existing clusters.  

 

In the single linkage approach, the distance of Cq to 

another existing cluster Cs is calculated as: 

 

 
Where d is the distance or dissimilarity measure used. 

In the complete linkage approach, the distance is 

calculated as: 

 
In the weighted pair group method average 

(WPGMA) approach: 

 
In the unweighted pair group method average 

(UPGMA) approach: 

 

Where  ai =  and aj =  

 

Typically, the relationship between samples is 

represented using a Dendrogram, where branches in 

the tree are built based on the connections determined 

between clusters as the algorithm progresses. In order 

to visualize the relationships between samples, the 

dendrogram is used to rearrange the rows (or columns 

as appropriate) in the expression matrix to visualize 

patterns in the dataset. Hierarchical clustering is often 

misused to partition data into some number of clusters 

without the application of any objective criterion. 

Fortunately, there are a number of approaches that can 

be used to identify subgroups in the clustering 

dendrograms.  

 

One method is to simply use the distances calculated 

in building the clusters as a measure of the 

connectivity of the individual clusters.  As one moves 

up the dendrogram from the individual elements, the 

distance between clusters increases. Consequently, as 

one increases the distance threshold, the effective 

number of clusters decreases. An alternative approach 

is to use bootstrapping or jack-knifing techniques to 

measure the stability of relationships in the 

dendrogram, using this stability as a measure of the 

number of clusters represented. In bootstrapping, [11] 

there are a number of approaches that can be used, but 

the simplest is to use sampling of the dataset with 

replacement, each time calculating a new hierarchical 

clustering dendrogram and simply counting how often 

each branch in the dendrogram is recovered; a 

percentage cutoff on the dendrogram sets the number 

of clusters. In making a bootstrap estimate for gene 

cluster stability, it is appropriate to resample the 

collection of biological samples while in estimating 

the number of clusters in the biological samples, one 

bootstraps the gene expression vectors. Jack-knifing is 

similar, but instead of resampling, the appropriate 

vectors are sequentially left out as new dendrograms 

are calculated until all vectors have been considered. 

Once again, the stability of each cluster is estimated 

based on how often a given relationship in the 

dendrogram is recovered. One potential problem with 

many hierarchical clustering methods is that, as 

clusters grow in size, the expression vector that 

represents the cluster when calculating distance may 

no longer represent any of the genes within the 

cluster. Consequently, as clustering progresses, the 

actual expression patterns of the genes themselves 

become less relevant. Furthermore, if a bad 

assignment is made early in the process, it cannot be 

corrected. An alternative, which can avoid these 

artifacts, is to use a divisive clustering approach, such  

as k-means, to partition data (either genes or samples) 

into groups having similar expression patterns. 

 

3.3 K-means Clustering 
If there is advance knowledge regarding the number 

of clusters that should be represented in the data, k-

means clustering is a good alternative to hierarchical 

methods. In K-means, objects are partitioned into a 

fixed number (k) of clusters such that the clusters are 

internally similar but externally dissimilar. No 

dendrograms are produced, but one could use 

hierarchical techniques on each of the data partitions 

after they are constructed. The process involved in k-

means clustering is conceptually simple, but can be 

computationally intensive: 

1. All initial objects are randomly assigned to one of k 

clusters (where k is specified by the user). 

2. An average expression vector is then calculated for 

each cluster and this is used to compute the distances 

between clusters. 

3. Using an iterative method, objects are moved 

between clusters and intra and inter-cluster distances 

are measured with each move. Objects are allowed to 
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remain in the new cluster only if they are closer to it 

than to their previous cluster. 

4. Following each move, the expression vectors for 

each cluster are recalculated. 

5. The shuffling proceeds until moving any more 

objects would make the clusters more variable, 

increasing intra-cluster distances and decreasing inter-

cluster dissimilarity.  

 

Some implementations of k-means clustering allow 

not only the number of clusters to be specified, but 

also seed cases for each cluster. This has the potential 

to allow one to use prior knowledge of the system 

helps to define the cluster output, such as a typical 

profile for a few key genes known to distinguish 

classes. Of course, the “means” in K-means refers to 

the use of a mean expression vector for each emerging 

cluster. As one might imagine, there are variations 

that also use other measures, such as K-medians 

clustering. 

 

 It has the advantage that no strict phylogenetic 

relationship is enforced on every gene, as is in 

hierarchical clustering, which can be problematic 

because there is no absolute ancestral relationship in 

expression patterns. In this method, genes are 

classified as belonging to one of the k clusters. Cluster 

membership is determined by calculating the centers 

a1, a2, a3 . ., .ak  for each gene cluster, and 

assigning each gene i according to its expression 

profile xi to the cluster with the closest centroid. The 

goal is to find empirically optimal cluster centers a1, 

a2, a3 . ., .ak such that the empirical error 

 
is minimized. This is achieved through an iterative 

approach: 

Algorithm k-Means Clustering 

i: = 0 

Assign k initial centers a1
(0)

,. . ., ak
(0)

 arbitrarily; 

Repeat 

cluster genes x1,. . .,xn to k clusters 

for xj,  a[1,. . .,n] 

if   ||xj-am||
2 

 || xj-al||
2
 l m 

Assign xj to the m-th  cluster 

update cluster centers 

   =∑j:xj  Xj/|
 

i: = i+1 

Until no changes in the cluster centers. 

 

3.4 Self Organizing Maps 

A self-organizing map (SOM) is a neural network-

based divisive clustering approach. A SOM assigns 

genes to a series of partitions based on the similarity 

of their expression vectors to reference vectors that 

are defined for each partition. It is the process of 

defining these reference vectors that distinguishes 

SOMs from k-means clustering.[20]  Prior to 

initiating the analysis, the user defines a geometric 

configuration for the partitions, typically a two-

dimensional rectangular or hexagonal grid. Random 

vectors are generated for each partition, but before 

genes can be assigned to partitions, the vectors are 

first “trained” using an iterative process that continues 

until convergence so that the data are most effectively 

separated:[16] 

1. Random vectors are constructed and assigned to 

each partition. 

2. A gene is picked at random and, using a selected 

distance metric, the reference vector that is closest to 

the gene is identified. 

3. The reference vector is then adjusted so that it is 

more similar to the randomly picked gene. The 

reference vectors that are nearby on the two 

dimensional grid are also adjusted so that they too are 

more similar to the randomly selected gene. 

4. Steps 2 and 3 are iterated several thousand times, 

decreasing the amount by which the reference vectors 

are adjusted and increasing the stringency used to 

define closeness in each step. As the process 

continues, the reference vectors converge to fixed 

values. 

5. Finally, the genes are mapped to the relevant 

partitions depending on the reference vector to which 

they are most similar. 

In choosing the geometric configuration for the 

clusters,[21] the user is, effectively, specifying the 

number of partitions into which the data are to be 

divided. As with k-means clustering, the user has to 

rely on some other sources of information, such as 

principal component analysis (PCA), to determine the 

number of clusters that best represents the available 

data.  

 

1. Initialization – Choose random values for the initial 

weight vectors wj 

2. Sampling – Draw a sample training input vector x 

from the input space. 

3. Matching – Find the winning neuron I(x) that has 

weight vector closest to the input vector, i.e. the 

minimum value of    dj(x)= xi - wji )
2
 

4. Updating – Apply the weight update equation  

∆wji = η(t)Tj, I(x) (t)(xi – wj ) 
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Where Tj, I(x) (t) is a Gaussian neighbourhood and η(t) 

is the learning rate. 

5. Continuation – keep returning to step 2 until the 

feature map stops changing. 
 

4. Classifying biological samples 

predictors and classifiers 
 

As mentioned earlier, some microarray experiments 

do not focus on identifying function, but rather on 

finding genes that can be used to group samples into 

biologically or clinically relevant classes and 

supervised approaches to data analysis are 

particularly useful for these studies. One typically 

begins with a priori knowledge of the groups 

represented in the data, although any hypothesis 

along these lines can be further explored using 

clustering techniques and other information. With 

those groups, one then asks whether there are genes 

that can be used to separate the relevant classes. For 

two groups of samples, a t-test or unpaired two-class 

Significance Analysis of Microarrays SAM are useful 

tools while, for a larger number of classes, ANOVA 

or multi-class SAM are appropriate. Having 

identified a set of genes that show significant 

differences, one then builds a classification algorithm 

that can be used to assign a new sample to one of the 

classes.[11] 

There are a wide range of algorithms that have been 

used for classification, including weighted voting, 

artificial neural networks,[17] discriminant analysis,  

classification and regression trees, support vector 

machines, k-nearest neighbours, and a host of others. 

Essentially, each of these uses an original set of 

samples – a training set – to develop a rule that takes 

a new test sample from a test set and uses its 

expression vector sample, trimmed to a previously 

identified set of classification genes, to place this test 

sample into the context of the original sample set, 

thus identifying its class.  

In many ways, KNN is the simplest approach to 

doing classification. First, one must assemble a 

collection of expression vectors for our samples and 

assign the samples to various experimental classes. 

We will refer to these samples, about which we have 

prior knowledge, as our training set. Next, genes are 

selected that separate the various classes using an 

appropriate statistical test to identify good 

classification candidate genes, thus reducing the size 

of the sample classification vectors.[18] This 

represents a first-pass collection of classification 

genes. The next step is to identify and eliminate 

samples that appear to be outliers. These may be 

important because they possibly represent new 

subclasses in our original sample classification set; 

alternatively, they may just represent poor-quality 

data. The outlying samples are identified by applying 

a correlation filter to the reduced sample expression 

vectors, as follows: 

1. The Pearson correlation coefficient (r) is computed 

between a given vector and each member of the 

training set; the maximum r identified is called the 

rmax for that vector. The vector is randomized a user 

specified number of times. Each time, an rmax is 

calculated using the randomized vector (called 

r*max), just as in Step 1. 

2. The fraction of times r*max exceeds rmax over all 

randomizations is used to calculate a p-value for that 

vector. 

3. If the p-value for a vector is less than a user-

specified threshold (meaning it is well-correlated 

with other samples), that vector is retained for further 

analysis. Otherwise, it is discarded. 

Steps 1-3 are repeated for every sample vector in the 

set. 

At this point, the training set has led to the generation 

of a collection of sample vectors that represent prior 

knowledge regarding the biological classes 

represented in the data. The next step in the analysis 

involves assigning new samples from the test set to 

classes, based on their expression vectors. For each 

sample in the test set, its expression vector is reduced 

to include only those genes previously identified as 

being significant for classification. The distance 

between this reduced expression vector and the 

reduced expression vectors is then computed for each 

and every sample in the training set. As the name 

KNN implies, some number k of nearest neighbours 

is chosen from the training set – those k vectors that 

have the smallest distances from the test sample. The 

new test vector is then assigned to the class most 

highly represented in its k nearest neighbours. If there 

is a tie, the new sample remains unclassified. 

 

KNN is one of the simplest nonlinear classifiers that 

have found practical use in many applications. To 

classify a biological sample j of unknown phenotype, 

we calculate its distance based on its expression 

profile yj to all of the dt training set samples, where 

classifications are known. We then look for the k 

nearest neighbour samples to the dt training set 

samples. The class for each of the k nearest 

neighbours is then identified, and the unknown 

sample is assigned to the class where the majority of 

the k neighbours belong. 
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4.1 Classifiers based on Gaussian distribution 
We begin with a simple parametric model for 

describing microarray data. Gaussian distribution is a 

convenient model for studying a wide variety of 

physical processes. The probability density function 

of a univariate Gaussian distribution takes the 

following familiar form: 

 
where   is the mean and  2 is the variance. Its 

generalization is the multivariate Gaussian 

distribution[12,14]  where  is the 

mean vector and ∑ is the covariance matrix: 

 
and its probability density function is: 

 

 
When classifying biological samples [13] where each 

sample belongs to exactly one of the P classes, we 

can evaluate the probability that sample j belongs to a 

specific class K: 

P (yj, K) =P (yj | K)(K) (16) here, yj  

is the vector representing the global expression 

profile of all n genes from sample j, i.e. it is a column 

vector in the n X d data matrix. (K) is the prior 

probability that any given sample belongs to class 

K1, and P( yj | K) is the conditional probability of 

observing yj from a sample of class K. Assume that 

the pdf of P( yj | K) is a Gaussian distribution  

(K,∑K), several classifiers can be developed with 

different additional assumptions [7,8]. 

4.1.1 Quadratic classifier. If we can assess the joint 

probability P(yj,K) for the global expression profile 

of all n genes in condition j for every class K  P, we 

can simply classify sample j into the class with the 

highest probability P(yj,K). Technically, it is more 

convenient to work with the log transformed 

discriminant function g k: 

             gK = ln[P(yj,K)(K)]  (17) 

When P(yj, K) follows a Gaussian distribution, 

 gK=- ) )+ lnP(K)+Const.(18) 

The first term on the right hand side is quadratic. 

Standard techniques can be applied to calculate this 

term, for example, by using Moore–Penrose pseudo 

inverse. 

 

 4.1.2 Linear classifier. When all classes have the 

same covariance matrix, i.e. ∑i = ∑, the discriminant 

function is: 

gK=- )
T 

∑
-
1(X-k)+ln P(K) + Const. (19)                   

Here, the quadratic term becomes the same for all 

classes, and the boundary between classes becomes 

linear.  

4.1.3 Diagonal classifier. When the covariance 

matrices for all classes are the same, and when the 

expression levels of all genes are uncorrelated, the 

covariance matrices are all diagonal K= diag(1
2
,…. 

(n
2
). The discriminant function in this case is 

simple: 

       gk  = -  i-ik)
2
/ i

2
)  (20) 

The quadratic classifier is the most sophisticated 

among the three, and it is provable that it is the 

optimal classifier for Gaussian distributions. 

Quadratic classifier involves estimating mean vectors 

1, 2 and covariance matrices ∑1, ∑2 altogether n(n + 

3)/2 parameters.   Estimating these parameters with 

high accuracy is necessary for constructing good 

discriminant rule, because the calculation of the 

inverse matrices ∑1
-1

, ∑2
-1

 are often ill-conditioned. 

Estimating the high-dimensional covariance matrices 

requires a large amount of data. In contrast, simpler 

classifiers, such as the diagonal linear classifier, 

require only the estimation of order O(n) number of 

parameters. 

The quadratic classifier is the most sophisticated 

among the three, and it is provable that it is the 

optimal classifier for Gaussian distributions. 

Quadratic classifier involves estimating mean vectors 

1, 2 and covariance matrices ∑1, ∑2 altogether n(n + 

3)/2 parameters.   Estimating these parameters with 

high accuracy is necessary for constructing good 

discriminant rule, because the calculation of the 

inverse matrices ∑1
-1

, ∑2
-1

 are often ill-conditioned. 

Estimating the high-dimensional covariance matrices 

requires a large amount of data. In contrast, simpler 

classifiers, such as the diagonal linear classifier, 

require only the estimation of order O(n) number of 

parameters.    

 

Maximize  L()=∑ii - ∑i,jijyiyj.xixj 

with constraints ∑iiyi=0 and i 0 (21) 

Because this is an optimization problem on convex 

set,   the solution found is automatically guaranteed 

to be the global solution. This offers an important 

advantage not shared by other classifiers such as the 
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neural network, where one often encounters the 

problem of local optimum in the training phase. 

Because a large data set is involved, solving the 

quadratic programming efficiently is crucial in 

developing an effective SVM classifier. Recent 

development in subset selection methods such as 

Sequential Minimal Optimization (SMO) allows 

practical implementation of SVM for solving 

classification problems involving very large data sets 

such as gene array data. 

 

Another major bioinformatics challenge of 

microarray analysis is the global integration of 

microarray studies [19] of different tissues and cell 

lines under various different conditions from 

different investigators. Yet another challenge is to 

integrate microarray expression profiles with other 

bioinformatics analyses, for examples, the detection 

of membrane proteins as potential markers, the 

discovery of previously unknown biological roles by 

combining expression studies and the detection of 

sequence/structure function motifs, as well as 

integration with pharmacological studies. Ultimately, 

the integration of gene expression under various 

conditions with the analysis of multiple 

bioinformatics tools will help to tease out various 

components of regulatory and metabolic genetic 

networks of cells.  

 

During the past few years, there have been many 

discussions in the literature on “noise” in microarray 

says: disparate results arising from the use of 

different platforms, questions regarding the validity 

of microarray results, and the need to validate the 

findings.[15]  If one closely examines the underlying 

issues, it is clear that microarrays are no different 

than any other approach to assaying levels of gene 

expression each method has its own biases and 

limitations. What is underlying all of these issues is 

trying to understand what can be done with the data 

that emerges. Although there are no absolute 

answers, there are some overarching generalizations 

that can be made that will help guide the follow-on 

experiments. First, whether one is trying to identify 

genes that can be used for sample classification, what 

microarray assays generally give us are lists of genes 

that can be significantly correlated with some classes 

in our experiments. These should be treated not as 

truths, but as hypotheses that can be tested. Second, 

statistical significance is fine, but biological 

significance is better. Statistics provides very 

powerful tools for identifying candidate genes, for 

prioritizing them in the lack of any other evidence, 

and in helping to resolve features in the data. 

 

5. Conclusion 
 

In this paper we are used both Statistical and 

Computer Science methods to represent use Micro 

array Profiles in a deterministic way. Using this as a 

basis one can apply for it any disorder or disease data 

to get clear understanding of microarray profiles. It 

can be extended to incorporate many more methods 

to estimate and analyse in a specified time to take an 

early action on the genes that cause a particular 

disorder that causes the disease.     
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